
CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Course Wrapup
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Poll: how are you?

❖ What did you learn in this course? Is there anything you wish we talked about
more? Anything you wish we talked about less?

2

pollev.com/tqm

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Administrivia: Final Exam & End of Semester

❖ Final Exam: Monday May 5th from 9am to 11am

▪ Final Exam Policies posted on course website

▪ Old exams & exam questions

❖ TA-led Final Exam review on Saturday the 3rd from 6pm to 8pm. Towne 217

❖ End of Semester Survey: Due Sunday May 4th

▪ Graded on completion.

❖ PennOS Peer Evaluation Survey: Due Sunday May 4th

▪ Only submit after your PennOS Demo. Each groupmate submits individually and privately

▪ You get a little PennOS Extracredit for completing the survey
3

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Administrivia: PennOS

❖ PennOS

▪ PennOS Final Demo posted

• You will have to demo FAT here even if you pass the autograder.

▪ Integration can be a big pain, make sure you allocate enough time to it!

▪ Can use 1 late token for free now to submit by EOD Sunday

▪ We will ask you short answer questions during the demo to check that you actually
understand your code.

• You will be able to choose the category of question.

• More details on Ed

4

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Administrivia: PennOS

❖ Some notes:

▪NEW: If you are having issues with the scheduler sometimes not suspending a thread:

make sure that you do NOT have interrupts enabled when you call spthread_create.

• Or, you can redownload spthread.c from the course website

• You do not HAVE to do either of these, though this will almost certainly cause issues.

▪ DO NOT mmap the entire File System. Only mmap the Allocation Table, the rest of the file
system needs to be handled with lseek/write.

• Do not keep the contents of the file in memory, it should be stored in the file

• If your PennFat is killed with kill -9, your file contents should still be saved in disk

▪ Advice for using gdb to debug

• Handle SIGUSR1 noprint nostop

Makes it so that gdb doesn’t report every time SIGUSR1 goes and interrupts you
5

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Administrivia: PennOS

❖ Some notes:

▪ Reminder, you instead of just doing:

you may need to do:

▪ With the description of setitimer(), it just says that sigalarm is delivered to the
process, not necessarily the calling thread. To make sure siglaram goes to the scheduler,
you may want to make it so that all threads (spthread or otherwise) that aren’t the
scheduler call something like: pthread_sigmask(SIG_BLOCK, SIGALARM)

• Which will block SIGALARM in that thread.

6

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Administrivia: PennOS

❖ If you are having issues with the scheduler not running you can try running
▪ strace –e 'trace=!all' ./bin/pennos

▪ You may have to install strace: sudo apt install strace

▪ This will print out every time a signal is sent to your pennos

▪ (Usual fix is the pthread_sigmask thing on the previous slide)

7

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Lecture Outline

❖ Course Wrap-up

❖ Exam Review

8

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

What have we been
up to for the last

14 weeks?

9

▪ Ideally, you would have “learned” everything in this course, but
we’ll use red stars ___ today to highlight the ideas that we hope
stick with you beyond this course

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Operating Systems: The Why

❖ The programming skills, engineering discipline, and knowledge you need to
build a system

1) Understanding the “layer below” makes you a better programmer at the layer above

2) Gain experience with working with and designing more complex “systems”

3) Learning how to handle the unique challenges of low-level programming allows you to
work directly with the countless “systems” that take advantage of it

10

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

So What is a System?

❖ “A system is a group of interacting or interrelated entities that form a unified
whole. A system is delineated by its spatial and temporal boundaries,
surrounded and influenced by its environment, described by its structure and
purpose and expressed in its functioning.”

▪ https://en.wikipedia.org/wiki/System

▪ Still vague, maybe still confusing

❖ But hopefully you have a better idea of what a system in CS is now

▪ What kinds of systems have we seen…?

11

https://en.wikipedia.org/wiki/System

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Software System

❖ Writing complex software systems is difficult!

▪ Modularization and encapsulation of code

▪ Resource management

▪ Documentation and specification are critical

▪ Robustness and error handling

▪ Must be user-friendly and maintained (not write-once, read-never)

❖ Discipline: cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

12

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

The Computer as a System

❖ Modern computer systems are increasingly complex!

▪ threads, processes, pipes, files

▪ Buffered vs. unbuffered I/O, blocking calls, caches, virtual memory

13

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(ASM + devices)

OS / app interface
(system calls)

operating system

hardware

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Systems Programming: The What

❖ The programming skills, engineering discipline, and knowledge you need to
build a system

▪ Programming: C (& other languages)

▪ Discipline: design, testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent data management, …

• Most important: a deep understanding of the “layer below”

14

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Main Topics

❖ C

▪ Low-level programming language

❖ Memory management & allocation

❖ System interfaces and services

❖ Concurrency basics – POSIX threads, synchronization

❖ Multi-processing Basics – Fork, Pipe, Exec

❖ Buffering, Caches, Locality

❖ Operating System Internals

▪ File systems

▪ Scheduling

▪ Virtual Memory

15

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Topic Theme: Abstraction

❖ C: void* to abstract away types for some functions (pthread_create, read,
write, etc).

❖ abstract away details of interacting with system resources via system call
interface (e.g. file descriptors and pids)

❖ The concept of processes and virtual memory to abstract away sharing
hardware

❖ Read Write Locks and monitors abstract away their implementation of using a
mutex & condition variable

❖ Nice abstractions minimize cognitive complexity and make it harder for users
of the abstraction to fuck up.

16

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Topic Theme: Data & Locality

❖ I/O to send and receive data from outside of your program (e.g., disk/files,
network, streams)

▪ Linux/POSIX treats all I/O similarly

▪ Takes a LONG time relative to other operations

▪ Blocking vs. non-blocking (and the sin that is spinning)

❖ C: Memory model (Stack vs Heap)

❖ Buffers can be used to temporarily hold data

▪ Buffering can be used to reduce costly I/O accesses, depending on access pattern

❖ Caching & Locality

▪ Some memory is quicker to access than others

▪ Hardware makes assumptions on your program’s access patterns

17

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Topic Theme: Allocating Resources

❖ It is often the tasks of a system to distribute/allocate a finite number of
resources:

▪ Scheduling algorithms allocate which threads can utilize the CPU

▪ Memory allocation schemes (slab allocator, buddy algorithm)

▪ Virtual Memory: allocating pages in physical memory

▪ Caches: deciding what memory is in the cache.

▪ File System: Allocating Blocks in file system

❖ These allocation schemes need to consider:

▪ Efficient utilization of the resource that is being allocated

• Fragmentation, fairness, minimize times we go to slower storage

▪ Minimal overhead in the allocation scheme.

• Time spent on the allocation is time not spent doing other things
18

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Topic Theme: Concurrency

❖ Processes

▪ Exec

▪ Process Groups

• Terminal Control

▪ IPC

• Pipe

• Signals

❖ Threads

▪ Synchronization

• mutex

• Condition variables

▪ Deadlock

❖ Concurrency vs parallelism
19

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

MISSING Topic Theme: Society

❖ One flaw (among others) of this course is how we don’t talk ENOUGH about
how this relates to the rest of the world

▪ These systems we build do not have to necessarily be “evil”, but can often be used in
those ways

▪ We need to work and communicate with other people, even in CS.

❖ Actions:

▪ Take Algorithmic Justice (CIS 7000) with Danaë Metaxa

▪ Take Software Engineering (CIS 3500)

▪ Join a community of people working on things that matter to you, (Unions or other
organizations)

▪ Join as a TA for 2400 or 54800 next year. We are trying to further integrate ethics.

20

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Congratulations!

❖ Look how much we learned!

❖ Lots of effort and work, but lots of useful takeaways:
▪ Debugging practice

▪ Reading documentation

▪ Tools (gdb, valgrind)

▪ C familiarity

▪ Concurrent Programing

▪ Designing large systems

▪ Working with others

❖ Go forth and build cool systems!

21

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Future Courses

❖ Systems Courses

▪ CIS 5050: Software Systems

▪ CIS 5530: Networked Systems

▪ CIS 5521: Compilers

▪ CIS 5550: Internet and Web Systems

▪ CIS 5500: Database and Information Systems

▪ CIS 5470: Software Analysis

❖ Otherwise related courses

▪ CIS 5600 Interactive Computer Graphics

▪ CIS 5650 GPU Programming and Architecture

▪ CIS 5510 Security

22

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Thanks for a great semester!

❖ Special thanks to all the instructors before me (Both at UPenn and UW) who
have influenced me to make the course what it is

❖ Huge thanks to the course TA’s for helping with the course!

23

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

❖ Special thanks to all the instructors before me (Both at UPenn and UW) who
have influenced me to make the course what it is

❖ Huge thanks to the course TA’s for helping with the course!

Thanks for a great semester!

24

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Thanks for a great semester!

❖ Thanks to you!

▪ It has been another tough semester. Look at the state of Society ☺

▪ Things are still a bit rough in the course as we change it.

• Joel’s first time teaching this course, Travis’ 3rd

▪ You’ve made it through so far, be proud that you’ve made it and what you’ve
accomplished!

❖ Please take care of yourselves, your friends, and your community

25

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Lecture Outline

❖ Course Wrap-up

❖ Exam Review

26

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review are still
testable

❖ Exam Review tentatively during reading days. Saturday
6pm – 8pm (tentative)

27

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Practice Problems

❖ Processes vs Threads

❖ Signal Handlers

❖ Memory Allocation

❖ Caches

❖ Scheduling (Same as extra practice at end of scheduling lecture)

❖ File System

❖ Virtual Memory

❖ Threads & Data Races

❖ Deadlock

28

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive computation (like summing a
1,000,000 element array) that we wanted to parallelize, we could use either
threads or processes. Which one would be faster and why?

32

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive computation (like summing a
1,000,000 element array) that we wanted to parallelize, we could use either
threads or processes. Which one would be faster and why?

❖ Probably threads. Threads and processes are both parallelizable, but processes
have a larger overhead since they have separate address spaces that need to
be switched between.

❖ Additionally, if we were using processes, how they would synchronize their
sums would become a more involved issue.

33

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads and Exec

❖ You spawn 10 threads and assign to each a random function to execute. Some
seem harmless and others not so much.

❖ Specifically, one of the random functions they can call is the following.

34

int random_func_a(){
char *argv[] = {"sleep", "0", NULL};
execvp(argv[0], argv);

}

What happens if one of the threads is assigned this function and runs it?

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads and Exec

❖ You spawn 10 threads and assign to each a random function to execute. Some
seem harmless and others not so much.

❖ Specifically, one of the random functions they can call is the following.

35

int random_func_a(){
char *argv[] = {"sleep", "0", NULL};
execvp(argv[0], argv);

}

If a thread runs exec, the entire process is scrapped and thus, so are the other threads.
It’s all gone. Tada.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let's say you've written a program that runs really well and does everything
you need to, except that once every day it crashes. Fortunately for you, it's not
doing anything critical - but it's not worth the development time to find and fix
the cause of the crash.

❖ You decide to write a program that checks the status of another program and
restarts it if it crashes. You are deciding whether your two programs (the one
that crashes and the one that restarts) should be two threads in the same
process or in two separate processes.

❖ Which do you choose? Briefly explain your answer

36

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let's say you've written a program that runs really well and does everything
you need to, except that once every day it crashes. Fortunately for you, it's not
doing anything critical - but it's not worth the development time to find and fix
the cause of the crash.

❖ You decide to write a program that checks the status of another program and
restarts it if it crashes. You are deciding whether your two programs (the one
that crashes and the one that restarts) should be two threads in the same
process or in two separate processes.

❖ Which do you choose? Briefly explain your answer

❖ You need two separate processes because otherwise the two threads share a
memory space and if one crashes they both will crash. If we have two
processes there is some isolation and thus the program that “restarts” the
failing program can keep running when the failing program

crashes.

37

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ We have seen two concurrency models so far

▪ Forking processes (fork)

• Creates a new process, but each process will have 1 thread inside it

▪ Kernel Level Threads (pthread_create)

• User level library, but each thread we create is known by the kernel

• 1:1 threading model

38

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do
each of the following.

❖ In real exam, I would ask you to briefly explain why

39

Processes pthread

Can share files and concurrently access those files.

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do
each of the following.

❖ In real exam, I would ask you to briefly explain why

40

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do
each of the following.

❖ In real exam, I would ask you to briefly explain why

41

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes (can’t redirect
w/o affecting other threads though)

Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do
each of the following.

❖ In real exam, I would ask you to briefly explain why

42

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do
each of the following.

❖ In real exam, I would ask you to briefly explain why

43

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

No Yes

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do
each of the following.

❖ In real exam, I would ask you to briefly explain why

44

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

No Yes

Switch to another concurrent task when one
makes a blocking system call.

Yes Yes

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Kernal Signal Handlers

❖ You’re a TA in OS and you’re overseeing a group. You notice they wrote
functionality in their signal handlers (:/). PCBs are updated within the handler
and also within their waitpid implementation. They leave all signals unblocked.

45

void update_pcb(ksignal __signal){
//check for child updates
//update pcb as necessary

}

This is exactly what the function does.
It does nothing other than check for updates and update the PCB.

They tell you that sometimes the PCB
updates correctly, but other times it becomes
corrupted.

What could explain this behavior?

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Kernal Signal Handlers

❖ You’re a TA in OS and you’re overseeing a group. You notice they wrote
functionality in their signal handlers (:/). PCBs are updated within the handler
and also within their waitpid implementation. They leave all signals unblocked.

46

void update_pcb(ksignal __signal){
//check for child updates
//update pcb as necessary

}

This is exactly what the function does.
It does nothing other than check for updates and update the PCB.

They tell you that sometimes the PCB
updates correctly, but other times it becomes
corrupted.

What could explain this behavior?

If a section of your code must run to completion without being interrupted (meaning the current thread or process
must finish executing it without being paused), you should disable interrupts to prevent preemption by another
thread or interruption by a signal handler. In this case, there’s nothing stopping this code from being interrupted mid
signal handler by something else or even within their waitpid implementation. Usually, all handler does is update a
flag to indicate they need to update later, rather than doing the update within the handler. Gotta be fast to respond.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ Some memory allocators (like the internal memory allocator for the Linux
kernel) allow for some options to be specified that can change the behavior of
these allocators. For each of these can you explain why this feature may be
useful to have as an option?

▪ If there is no memory available, then the allocation call may wait for some memory to be
freed up so that it can eventually succeed

▪ If memory is not able to be immediately allocated, give up at once. Caller can retry later if
they desire.

❖ Some allocators enforce a minimum size for each allocation. If you request less
than the minimum size it is rounded up.

❖ Why may an allocator do this?

❖ What is a downside to doing this?
47

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ Some memory allocators (like the internal memory allocator for the Linux
kernel) allow for some options to be specified that can change the behavior of
these allocators. For each of these can you explain why this feature may be
useful to have as an option?

▪ If there is no memory available, then the allocation call may wait for some memory to be
freed up so that it can eventually succeed

• In a multi-threaded environment we can try to avoid a catastrophic out of memory issue by just
waiting till another thread releases memory. In the context of allocating kernel memory, this
could also just be memory allocated to some other process’s task that then gets deallocated at
some point.

▪ If memory is not able to be immediately allocated, give up at once. Caller can retry later if
they desire.

• Meeting tight timing requirements since doing memory allocation may take a while (especially if
the heap needs to grow or a new page added to the virtual memory space). Try again later once
more space is easily accessible. 48

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ Some allocators enforce a minimum size for each allocation. If you request less
than the minimum size it is rounded up.

❖ Why may an allocator do this?

▪ For things like the buddy allocator, they do this since the larger allocation size (1 page) is
core to how the system is designed. It makes it easier for the “math” to work out so that
their allocation scheme is faster/easier to implement

▪ Malloc may do something like this with a size of 8 as the minimum size to help make sure
all allocations start at a multiple of 8 and/or to minimize external fragmentation.

❖ What is a downside to doing this?

▪ Increased internal fragmentation, an allocation now takes up more space than it actually
needs.

49

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which ones is likely faster
than the other and why?

50

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int* arr = malloc(sizeof(int) * 10);

 arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which ones is likely faster
than the other and why?

51

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int* arr = malloc(sizeof(int) * 10);

 arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

 free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Likely the one on the right. Instead of calling malloc, the array is a static size on the stack.
The stack allocation is quicker to allocate and free.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ Lets say that in addition to malloc, we also had a custom slab allocator
implemented that could allocate chunks of space that is 64 bytes (16 integers)
large.

❖ What is one reason we may prefer the custom slab allocator to malloc?

❖ What is one reason we may prefer malloc?

52

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at a low level (in
assembly)?

53

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at a low level (in
assembly)?

54

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int arr[10];

 arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Just need to decrement the stack
pointer by 10 * sizeof(int) and there
is enough space to store the array
on the stack now :P

Would also accept more vague
answers like (grow the stack by 10
integers)

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Caches

❖ The most common way to store a sequence of elements in C++ and most
languages is a dynamically resizable array (e.g. a vector).

A vector of <int> looks something like this in memory:

55

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5, 7, 8};

}

stack

heap

v
size_t size = 3

size_t capacity = 3

int* data =

3

4

5

7

8

16 bytes 20 bytes

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type,
and instead has each bool stored as a bit instead of the type a stand-a-lone
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this.
What are those reasons?

56

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type,
and instead has each bool stored as a bit instead of the type a stand-a-lone
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this.
What are those reasons?

▪ A lot less space is taken up, and as a side effect of that, you probably don’t have to call
malloc as often and will have better cache performance

57

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them,
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

▪ If we use a vector<bool> that represents each bool with a single bit

58

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them,
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

• 2 cache misses, 118 cache hits

▪ If we use a vector<bool> that represents each bool with a single bit

• 1 cache miss, 119 cache hits

59

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Scheduling

❖ Four processes are executing on one CPU following round robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

60

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

61

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest

62

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

63

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Scheduling

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

64

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

File System Navigation

In a traditional Linux file system (like ext2), navigating a path like /dir1/dir2/file.txt

involves multiple steps.

Describe what the file system must do to locate the inode for file.txt, starting

from the root directory.

65

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

File System Navigation

In a traditional Linux file system (like ext2), navigating a path like /dir1/dir2/file.txt

involves multiple steps.

Describe what the file system must do to locate the inode for file.txt, starting

from the root directory.

66

1. First, we need to load in the blocks containing the directory entries for the root directory, “/”, in inode 2.
• After looping through the blocks containing the dirents, we find the entry for “dir1” and its inode X.

2. We need to load in the blocks containing the directory entries for the directory, “dir1”, in inode X.
• After looping through the dirents, we find the associated entry for “dir2” and its inode Y.

3. Finally, we load in the blocks containing the directory entries for the directory, “dir2”, in inode Y.
• We can finally loop through the directory entries for “dir2” and find file.txt’s entry and thus corresponding

inode. And we are done!

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ Each inode can operate in one of two modes: small or large mode.

❖ In small mode, the inode directly stores up to 5 block numbers that point to file
data.

❖ Each block is 1024 bytes in size.

❖ Assuming a file contains at least some data (i.e., it's not empty), what is the
smallest amount of space that would be allocated for a file?

67

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ Each inode can operate in one of two modes: small or large mode.

❖ In small mode, the inode directly stores up to 5 block numbers that point to file
data.

❖ Each block is 1024 bytes in size.

❖ Assuming a file contains at least some data (i.e., it's not empty), what is the
smallest amount of space that would be allocated for a file?

68

THE SMALLEST AMOUNT OF SPACE ALLOCATED TO A FILE IS ONE BLOCK SO 1024 BYTES!

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ Each inode can operate in one of two modes: small or large mode.

❖ In large mode, the inode directly stores up to 10 block numbers. The 1st is singly
indirect, the next 7 are double indirect, and the last 2 are triply indirect.

❖ Each block is 1024 bytes in size.

❖ And block numbers are 4 bytes large.

❖ Assuming a file contains at least some data (i.e., it's not empty), what is the largest
amount of space that would be allocated for a file? Feel free to leave your answer
as an expression.

69

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ In large mode, the inode directly stores up to 10 block numbers. The 1st is singly
indirect, the next 7 are double indirect, and the last 2 are triply indirect.

❖ Each block is 1024 bytes in size And block numbers are 4 bytes.

❖ What is the largest amount of space that would be allocated for a file? Feel free to
leave your answer as an expression.

70

X = # of Block Nums for singly indirect = 1024/4

Y = # of Block Nums for doubly indirect = 7 * (1024/4 * 1024/4)

Z = # of Block Nums for triple indirect = 2 * (1024/4 * 1024/4 * 1024/4)

(X + Y + Z) * 1024 bytes or just x + y + x blocks would be fine to say or write on an exam

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

File System Block Allocation

❖ When you move (mv) a file from one directory to another on the same Linux
file system, does the file’s inode number have to change?
In other words, can the file keep the same inode number after the move?
What needs to happen for this to work correctly?

❖ Here, in this command, we are moving the file 'myfile' to directory './dir'.

71

$ mv myfile ./dir/

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

File System Block Allocation

❖ When you move (mv) a file from one directory to another on the same Linux
file system, does the file’s inode number have to change?
In other words, can the file keep the same inode number after the move?
What needs to happen for this to work correctly?

❖ Here, in this command, we are moving the file 'myfile' to directory './dir'.

72

$ mv myfile ./dir/

Yes, the inode number can stay the same!

To move the file, the system only needs to update the directory entries: it adds an entry for 'myfile' in the target
directory (./dir) that points to the same inode, and then removes the old entry from the original directory (.).

The inode itself, and all the information stored in the inode, do not change (other than last accessed/modified time
stamps if so).

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes and Virtual Memory

❖ Take a look at the following program:

73

int main(){
pid_t child = fork();
if(child == 0){

printf("I'm the child!(:\n");
return;

}
printf("Just exec'd a child!\n");
waitpid(child, NULL, 0);
return 0;

}

Suppose a kernel is unable to
create new virtual memory
mappings after a fork operation
(you have an old computer what
can I say). This means all address
map to identical physical memory
locations in each process here.

Could this program function
correctly without requiring new
mappings?

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Processes and Virtual Memory

❖ Take a look at the following program:

74

int main(){
pid_t child = fork();
if(child == 0){

printf("I'm the child!(:\n");
return;

}
printf("Just exec'd a child!\n");
waitpid(child, NULL, 0);
return 0;

}

Suppose a kernel is unable to
create new virtual memory
mappings after a fork operation
(you have an old computer what
can I say). This means all address
map to identical physical memory
locations in each process here.

Could this program function
correctly without requiring new
mappings?

REMEMBER: PRINTF MAINTAINS A BUFFER (GLOBAL STATE) AND IF THEY BOTH SHARE THE SAME BUFFER THEN
NO BUENO! THEY NEED TO WRITE TO SEPARATE BUFFERS.

THERE IS ALSO pid_t child WHICH IS SHARED. THOUGH THIS COULD POSSIBLY BE KEPT IN SEPARATE REGISTERS.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity is that page tables exist in memory themselves. However, the
memory that is used to store some (not all) page tables are usually “pinned” in
memory, meaning that those pages cannot be evicted/removed from physical
memory even if we need more space.

❖ Why is it important that some of the pages containing these page tables
remain “pinned”? Please explain your answer.

75

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity is that page tables exist in memory themselves. However, the
memory that is used to store some (not all) page tables are usually “pinned” in
memory, meaning that those pages cannot be evicted/removed from physical
memory even if we need more space.

❖ Why is it important that some of the pages containing these page tables
remain “pinned”? Please explain your answer.

76

A page table walk (resolving a physical address) might be required for any virtual address at any time —
whether valid or invalid. To perform the walk, the system must be able to access the relevant page table
entries. But if those entries themselves require translation (and we don’t know where the page tables are in
physical memory), we’d be stuck in a loop.

That’s why some addresses — such as the ones containing the page tables — must be pinned in physical
memory so the hardware can always find and use them without needing to translate further.

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Page Tables Q2

❖ At the beginning, we imagined the page table as one giant array containing
one page table entry for each page (where the page number was the index into
the table). However, we saw that this design is pretty wasteful (do you
remember why?)

❖ Let’s say we had a virtual page number that we wanted to translate to a
physical page number. What would the look up speed be of the “big array”
page table be? What about one with 4 page table levels?

77

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Page Tables Q2

❖ At the beginning, we imagined the page table as one giant array containing
one page table entry for each page (where the page number was the index into
the table). However, we saw that this design is pretty wasteful (do you
remember why?)

78

We would then need one PTE for every virtual page, but most virtual pages won’t have a
mapping (or “exist”) .

In multilevel we can allocate PTE’s & create mappings later (when the page gets accessed for
the first time and thus the mapping is needed)

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Page Tables Q2

❖ Let’s say we had a virtual page number that we wanted to translate to a
physical page number. What would the look up speed be of the “big array”
page table be? What about one with 4 page table levels?

79

The large array model provides constant-time lookup with just one memory access, since the
specific section of the table we need can be directly indexed using the virtual page number
(VPN). Once we have the VPN, we index into the page table, and the translation is complete.
Tada.
In contrast, a 4-level page table requires us to traverse 4 separate memory locations, one for
each level of the hierarchy. Although this may seem like a minor increase, the overhead can
quickly add up — especially if any of those accesses trigger a page fault, causing the system to
load different page table levels from disk…no bueno (but we hope this doesn’t happen. ;))

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Eric and Akash are debating the best page replacement policy. One of them
says that LRU is strictly better (e.g. better in all cases) than FIFO page
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not true, provide an
example of page accesses that counters this claim.

80

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Eric and Akash are debating the best page replacement policy. One of them
says that LRU is strictly better (e.g. better in all cases) than FIFO page
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not true, provide an
example of page accesses that counters this claim.

81

False: consider we have 4 physical pages and have the reference string:
0 1 2 3 0 4 1 2 3
In LRU we get 8 page faults
In FIFO we get 5 page faults

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads. Assume that file.txt is
large file containing the contents of a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it
using just a mutex?
(where do we add calls to
lock and unlock?)

82

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

83

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

84

string data = ""; // global

pthread_mutex_t mutex;

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 pthread_mutex_lock(&mutex);

 data = data_read;

 pthread_mutex_unlock(&mutex);

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

85

string data = ""; // global

pthread_mutex_t mutex;

void* second_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&mutex);

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 pthread_mutex_unlock(&mutex);

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

86

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

This is the distinction
between a data race
and a race condition

87

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it
and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

88

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it
and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

▪ Busy waiting possible
in second_thread.
We could have the
threads use a
condition variable to
wait for data to be
updated and thread1
to signal thread2 once
ready

89

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Deadlock

❖ Consider we are working with a data base that has N numbered blocks.
Multiple threads can access the data base and before they perform an
operation, the thread first acquires the lock for the blocks it needs.

▪ Example: Thread1 accesses B3, B5 and B1. Thread2 may want to access B3, B9, B6. Here is
some example pseudo code:

90

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to acquire the same lock twice

▪ Someone proposes we fix this by locking the whole database instead of locking at the
block level. What downsides does this have? Does it even avoid deadlocks?

▪ How can we fix this
(without locking
the whole database
if that even works)?

91

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to acquire the same lock twice

• Thread 1 wants B2 and B4. Thread 2 also wants B2 and B4, but lists them in a different order.
Thread 1 gets B2, Thread 2 get B4, and we deadlock.

92

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Deadlock

▪ Someone proposes we fix this by locking the whole database instead of locking at the
block level. What downsides does this have? Does it even avoid deadlocks?

• This works, but now our data base is run entirely sequentially for these transactions even if
two thread have completely separate blocks they operate on, they cannot run in parallel.

93

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIS 4480/5480, Spring 2025L25: Wrap-up & ReviewUniversity of Pennsylvania

Deadlock

▪ How can we fix this (without locking the whole database
if that even works)?

▪ Have each thread acquire the locks in a strict increasing numerical order. This prevents
any cycles from happening

94

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

	Default Section
	Slide 1: Course Wrapup Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia: Final Exam & End of Semester
	Slide 4: Administrivia: PennOS
	Slide 5: Administrivia: PennOS
	Slide 6: Administrivia: PennOS
	Slide 7: Administrivia: PennOS
	Slide 8: Lecture Outline
	Slide 9: What have we been up to for the last 14 weeks?
	Slide 10: Operating Systems: The Why
	Slide 11: So What is a System?
	Slide 12: Software System
	Slide 13: The Computer as a System
	Slide 14: Systems Programming: The What
	Slide 15: Main Topics
	Slide 16: Topic Theme: Abstraction
	Slide 17: Topic Theme: Data & Locality
	Slide 18: Topic Theme: Allocating Resources
	Slide 19: Topic Theme: Concurrency
	Slide 20: MISSING Topic Theme: Society
	Slide 21: Congratulations!
	Slide 22: Future Courses
	Slide 23: Thanks for a great semester!
	Slide 24: Thanks for a great semester!
	Slide 25: Thanks for a great semester!
	Slide 26: Lecture Outline
	Slide 27: Disclaimer
	Slide 28: Practice Problems
	Slide 32: Processes vs Threads
	Slide 33: Processes vs Threads
	Slide 34: Threads and Exec
	Slide 35: Threads and Exec
	Slide 36: Processes vs Threads
	Slide 37: Processes vs Threads
	Slide 38: Processes vs Threads
	Slide 39: Processes vs Threads
	Slide 40: Processes vs Threads
	Slide 41: Processes vs Threads
	Slide 42: Processes vs Threads
	Slide 43: Processes vs Threads
	Slide 44: Processes vs Threads
	Slide 45: Kernal Signal Handlers
	Slide 46: Kernal Signal Handlers
	Slide 47: Memory Allocation
	Slide 48: Memory Allocation
	Slide 49: Memory Allocation
	Slide 50: Memory Allocation
	Slide 51: Memory Allocation
	Slide 52: Memory Allocation
	Slide 53: Memory Allocation
	Slide 54: Memory Allocation
	Slide 55: Caches
	Slide 56: Caches
	Slide 57: Caches
	Slide 58: Caches
	Slide 59: Caches
	Slide 60: Scheduling
	Slide 61: Scheduling
	Slide 62: Scheduling
	Slide 63: Scheduling
	Slide 64: Scheduling
	Slide 65: File System Navigation
	Slide 66: File System Navigation
	Slide 67: Largest File Possible
	Slide 68: Largest File Possible
	Slide 69: Largest File Possible
	Slide 70: Largest File Possible
	Slide 71: File System Block Allocation
	Slide 72: File System Block Allocation
	Slide 73: Processes and Virtual Memory
	Slide 74: Processes and Virtual Memory
	Slide 75: Page Tables Q1
	Slide 76: Page Tables Q1
	Slide 77: Page Tables Q2
	Slide 78: Page Tables Q2
	Slide 79: Page Tables Q2
	Slide 80: Page Replacement Policy
	Slide 81: Page Replacement Policy
	Slide 82: Threads & Data Races
	Slide 83: Threads & Data Races
	Slide 84: Threads & Data Races
	Slide 85: Threads & Data Races
	Slide 86: Threads & Data Races
	Slide 87: Threads & Data Races
	Slide 88: Threads & Data Races
	Slide 89: Threads & Data Races
	Slide 90: Deadlock
	Slide 91: Deadlock
	Slide 92: Deadlock
	Slide 93: Deadlock
	Slide 94: Deadlock

