
CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Caches & Threads
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ What is your favourite programming language? (And why?)

2

pollev.com/tqm

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ Groups have been assigned

▪ TA’s have been assigned to groups

▪ You have the first milestone, which needs to be done sometime next week

▪ Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

▪ We will send emails to every group that had to be filled by course staff soon (let us know if
you don’t get this by the end of the week)

❖ Mid Semester Survey is Posted!

▪ Due soon (tonight or tomorrow)

▪ Anonymous!

3

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Administrivia

❖ PennOS Advice:
▪ Don’t push .o files to your repository. Add a .gitignore file to help reduce this issue

▪ After this lecture, PennOS isn’t really talked about.

• Recitation is focused on PennOS for the rest of the semester

• Still may have some useful stuff, but not as directly

▪ Feel free to change the makefile, you likely will have to do so

4

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Administrivia

❖ TA Advice:

▪ Shout out to the vs code live share extension

▪ Run the yourselves on the same machine you tested the demos on

▪ Writing test cases would be VERY helpful for checking your correctness

▪ Organize your code into appropriate folders. This is also helpful for doxygen

• If you have a folder that is empty for now, git won’t let you push the folder unless something is in
it. Create an empty file or a .gitkeep

▪ Maybe add a command to your makefile to run doxygen?

• At least don’t put off doxygen to the very last minute

▪ Don’t assume that integrating the kernel and FS will be short, give your selves enough time
to do it

▪ Don’t start too late ☺

5

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Caches

❖ Threads
▪ Threads refresher

▪ spthreads

▪ Mutex refresher

▪ tsl

▪ Disable interrupts

▪ Petersons

6

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Memory Hierarchy

7

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data
▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space
goes up, but access times increase

8

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on performance
▪ It is important that data is quick to access to get better CPU utilization

9

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the Programs to access the same set of memory locations
over a short period of time

❖ Two main types:
▪ Temporal Locality: If we access a portion of memory, we will likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely reference memory close
to it in the near future.

❖ Data that is accessed frequently can be stored in hardware that is quicker to
access.

10

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Locality Analogy

❖ If we are at home and we are hungry, where do we get
food from?
▪ We get it from our refrigerator!
▪ If the refrigerator is empty, we go to the grocery store
▪ When at the grocery store, we don’t just get what we want right

now, but also get other things we think we want in the near
future (so that it will be in our fridge when we want it)

11

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons,
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the
storage of data for increased performance. Data is usually
either something frequently and/or recently used.
▪ Physical memory is a “Cache” of page frames which may be

stored on disk. (Instead of going to disk, we can go to physical
memory which is quicker to access)

12

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Memory & Locality

13

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?
▪ What if we need to use Linear search?

❖ Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?
▪ What if we need to use Linear search?

14

Discuss

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

pollev.com/tqm

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Answer:

❖ I ran this in C++
on this laptop:

❖ Terminology
❖ Vector == ArrayList

❖ List == LinkedList

❖ On Element size from
100,000 -> 500,000

15

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?

16

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we understand the memory
layout of these data structures

❖ ArrayList In C++:

17

int main() {

 vector<int> array_list {1, 2, 3};

 // …

}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data =

1 2 3

stack:

Elements are next to each
other in memory ☺

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we understand the memory
layout of these data structures

❖ LinkedList In C++:

18

int main() {

 list<int> linked_list {1, 2, 3, 4};

 // …

}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail =

head =

stack:

Elements are not next
to each other in memory 

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from spatial complexity (and
temporal complexity from being iterated through in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your default in C++, Rust, etc
should be a vector

▪ If you are doing something where performance matters, your best bet is to experiment try
all options and analyze which is better.

19

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines inside it.

❖ When we access data not in the cache, and the cache is full, we must evict an
existing entry.

❖ When we access a line, we can do a quick calculation on the address to
determine which entry in the cache we can store it in. (Depending on
architecture, 1 to 12 possible slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the entries a line can be stored in

20

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

LRU (Least Recently Used)

❖ If a cache line is used recently, it is likely to be used again in the near future

❖ Use past knowledge to predict the future

❖ Replace the cache line that has had the longest time since it was last used

21

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer
to an object on the heap

22

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object variables are object
references, that refer to an object on the heap

23

public class MemoryModel {

 public static void main(String[] args) {

 ArrayList l = new ArrayList({1, 2, 3});

 // …

 }

}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data =

1

2

3
heap:

stack:

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

24

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/tqm

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

25

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/tqm

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Experiment Results

❖ I ran this in C:

❖ Row traversal is better since it means you can take advantage of the cache

26

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches instructions. There is a
separate cache for this
▪ which is why you may see something like L1I cache and L1D cache, for Instructions and

Data respectively

❖ Consider the following three fake objects linked in inheritance

27

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 28

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> l = new ArrayList<A>();

 // …

 for (A item : l) {

 item.compute();

 }

 }

}

public class B extends A {

 public void compute() {

 // …

 }

}

public class C extends A {

 public void compute() {

 // …

 }

}

public class A {

 public void compute() {

 // …

 }

}

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

29

public class ICacheExample {

 public static void main(String[] args) {

 ArrayList<A> la = new ArrayList<A>();

 ArrayList lb = new ArrayList();

 ArrayList<C> lc = new ArrayList<C>();

 // …

 for (A item : la) {

 item.compute();

 }

 for (B item : lb) {

 item.compute();

 }

 for (C item : lc) {

 item.compute();

 }

 }

}

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html

30

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Caches

❖ Threads
▪ Threads refresher

▪ spthreads

▪ Mutex refresher

▪ tsl

▪ Disable interrupts

▪ Petersons

31

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

32

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Threads vs. Processes

33

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Threads vs. Processes

34

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

35

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

36

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

❖ What are the possible outputs
of this code?

37

int global_counter = 5;

void* t_fn(void* arg) {
 int num = * (int*) arg;

 global_counter += num;

 printf("%d\n", global_counter);

 free(num);
 return NULL;

}

int main() {
 pthread_t thds[2];

 for (int i = 0; i < 2; i++) {
 pthread_t temp;
 int* arg = malloc(sizeof(int));
 *arg = i;
 pthread_create(&temp, NULL, t_fn, arg);
 thds[i] = temp;
 }

 for (int i = 0; i < 2; i++) {
 pthread_join(thds[i], NULL);
 }

 return EXIT_SUCCESS;
}

pollev.com/tqm

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

38

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating system to help ensure
synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

39

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

40

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

41

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.c

42

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Caches

❖ Threads
▪ Threads refresher

▪ spthreads

▪ Mutex refresher

▪ tsl

▪ Disable interrupts

▪ Petersons

43

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Key Differences of spthread vs pthread

❖ spthread is something Travis wrote about a year ago.

▪ It does not exist anywhere else

▪ You likely won’t find any documentation on it outside of this course

❖ Main difference:

▪ When you create a thread, it starts “suspended”

▪ Threads can be explicitly continued and suspended

▪ When there is a corresponding spthread function, call that instead of the pthread function

44

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Practice

❖ There are issues here.
What are they?

45

vector(int) vec;

void* s_fn(void* arg) {
 while(true) {
 int num = rand();

 // generate a random number
 vector_push(&vec, num);
 }
 return NULL;

}

pollev.com/tqm

int main() {
 vec = vector_new(int, 10, NULL);

 // initialize a length 10 vector of ints

 spthread_t thds[2];
 spthread_create(&(thds[0]), NULL, s_fn, NULL);
 spthread_create(&(thds[1]), NULL, s_fn, NULL);

 int curr_thread = 0;
 while(vector_len(&vec) < 200) {
 spthread_continue(thds[curr_thread]);
 sleep(1); // sleep for 1 seconds
 spthread_suspend(thds[curr_thread]);

 curr_thread = 1 - curr_thread;
 }
 printf("%d\n", vector_len(&vec));

}

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Practice

❖ Adding a lock causes another
issue, what issue is it?

46

vector(int) vec;
pthread_mutex_t lock;

void* s_fn(void* arg) {
 while(true) {
 int num = rand();
 pthread_mutex_lock(&lock);
 vector_push(&vec, num);
 pthread_mutex_unlock(&lock);
 }
 return NULL;

}

pollev.com/tqm

int main() {
 ...

 pthread_mutex_init(&lock, NULL);

 int curr_thread = 0;
 while(vector_len(&vec) < 200) {
 spthread_continue(thds[curr_thread]);
 sleep(1); // sleep for 1 seconds
 spthread_suspend(thds[curr_thread]);

 curr_thread = 1 - curr_thread;
 }
 printf("%d\n", vector_len(&vec));

}

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Shared Data & spthread

❖ The calls to spthread_suspend and spthread_continue will not
return until that thread actually continues/suspends

❖ This can cause an issue when we use locks to maintain shared memory

❖ What do we do instead?

▪ spthread_disable_interrupts_self

▪ spthread_enable_interrupts_self

47

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Caches

❖ Threads
▪ Threads refresher

▪ spthreads

▪ tsl

▪ Disable interrupts

▪ Petersons

48

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

TSL

❖ TSL stands for Test and Set Lock, sometimes just called test-and-set.

❖ TSL is an atomic instruction that is guaranteed to be atomic at the hardware
level

❖ TSL R, M

▪ Pass in a register and a memory location

▪ R gets the value of M

▪ M is set to 1 AFTER setting R

49

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

TSL to implement Mutex

❖ A mutex is pretty much this:

50

pthread_mutex_lock(lock) {

 prev_value = TSL(lock);

 // if prev_value = 1, then it was already locked

 while (prev_value == 1) {

 block();

 prev_value = TSL(lock);

 }

}

pthread_mutex_unlock(lock) {

 lock = 0;

 wakeup_blocked_threads(lock);

}

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Caches

❖ Threads
▪ Threads refresher

▪ spthreads

▪ tsl

▪ Disable interrupts

▪ Petersons

51

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Disabling Interrupts

❖ If data races occur when one thread is interrupted while it is accessing some
shared code….

What is we don’t switch to other threads while executing that code?

❖ This can be done by disabling interrupts: no interrupts means that the clock
interrupt won’t go off and interrupt the currently running thread

52

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Disabling Interrupts

❖ Consider that sum_total starts at 0 and two threads try to execute

53

disable_interrupts();

++sum_total;

enable_interrupts();

++sum_total

Thread 0 Thread 1

sum_total = 1

disable_interrupts();

++sum_total;

enable_interrupts();

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Disabling Interrupts

❖ Advantages:

▪ This is one way to fix this issue

❖ Disadvantages

▪ This is usually overkill

▪ This can stop threads that aren’t trying to access the shared resources in the critical
section. May stop threads that are executing other processes entirely

▪ If interrupts disabled for a long time, then other threads will starve

▪ In a multi-core environment, this gets complicated

54

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Caches

❖ Threads
▪ Threads refresher

▪ spthreads

▪ tsl

▪ Disable interrupts

▪ Petersons

55

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code,
one with arg = 0, other thread has arg = 1

❖ Each thread tries to increment sum_total. Does this work?

56

int sum_total = 0;

bool flag[2] = {false, false};

int turn = 0

void thread_code(int arg) {

 int me = arg;

 flag[me] = true;

 turn = 1 - me;

 while((flag[1-me] == true) && (turn != me)) { }

 ++sum_total;

 flag[me] = false;

}

Check the index of the other thread

pollev.com/tqm

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work? (using an analogy)

▪ Each thread first declares that they want to enter the critical section by setting their flag

▪ Each thread then states (once) that the other should “go first”.

• This is done by setting the turn variable to 1 – me

• One of these assignments to the turn variable will happen last, that is the one that decides who
goes first

▪ One of the thread goes first (decided by the value of turn) and accesses the critical section,
before saying it is done (by changing their flag to false)

57

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value is turn = 1. P0 will get to
run first.

58

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Explanation

flag[0] = true

Thread 0 Thread 1

turn = 1

while(flag[1] == true

 && turn != 0)

flag[1] = true

turn = 0

++sum_total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 1 came after turn = 0
// the turn variable is set to 1

turn = 1

while(flag[0] == true

 && turn != 1)

turn = ?

turn = 1

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be interrupted before or after, but
not “during” when turn may have some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order laid out in the code

60

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Atomicity

❖ Atomicity: An operation or set of operations on some data are atomic if the
operation(s) are indivisible, that no other operation(s) on that same data can
interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.

61

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

62

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

63

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

NO

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some_func returns

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

▪ Since is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

64

g = true; t = arg;

CIS 4480/5480, Spring 2025L15: LocalityUniversity of Pennsylvania

Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

▪ This is done for us when we mark a variable as atomic or use a lock.

65

	Default Section
	Slide 1: Caches & Threads Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Lecture Outline
	Slide 7: Memory Hierarchy
	Slide 8: Memory Hierarchy so far
	Slide 9: Processor Memory Gap
	Slide 10: Principle of Locality
	Slide 11: Locality Analogy
	Slide 12: Cache
	Slide 13: Memory & Locality
	Slide 14: Poll: how are you?
	Slide 15: Answer:
	Slide 16: Back to the Poll Questions
	Slide 17: Data Structure Memory Layout
	Slide 18: Data Structure Memory Layout
	Slide 19: Poll Question: Explanation
	Slide 20: Cache Replacement Policy
	Slide 21: LRU (Least Recently Used)
	Slide 22: What about other languages?
	Slide 23: ArrayList in Java Memory Model
	Slide 24: Poll: how are you?
	Slide 25: Poll: how are you?
	Slide 26: Experiment Results
	Slide 27: Instruction Cache
	Slide 28: Instruction Cache
	Slide 29: Instruction Cache
	Slide 30: Numbers Everyone Should Know
	Slide 31: Lecture Outline
	Slide 32: Threads vs. Processes
	Slide 33: Threads vs. Processes
	Slide 34: Threads vs. Processes
	Slide 35: Single-Threaded Address Spaces
	Slide 36: Multi-threaded Address Spaces
	Slide 37
	Slide 38: Lock Synchronization
	Slide 39: Lock API
	Slide 40: Milk Example – What is the Critical Section?
	Slide 41: pthreads and Locks
	Slide 42: pthread Mutex Examples
	Slide 43: Lecture Outline
	Slide 44: Key Differences of spthread vs pthread
	Slide 45: Practice
	Slide 46: Practice
	Slide 47: Shared Data & spthread
	Slide 48: Lecture Outline
	Slide 49: TSL
	Slide 50: TSL to implement Mutex
	Slide 51: Lecture Outline
	Slide 52: Disabling Interrupts
	Slide 53: Disabling Interrupts
	Slide 54: Disabling Interrupts
	Slide 55: Lecture Outline
	Slide 56: Software Synchronization
	Slide 57: Peterson’s Algorithm
	Slide 58: Peterson’s Algorithm
	Slide 59: Explanation
	Slide 60: Peterson’s Assumptions
	Slide 61: Atomicity
	Slide 62: Aside: Instruction & Memory Ordering
	Slide 63: Aside: Instruction & Memory Ordering
	Slide 64: Aside: Instruction & Memory Ordering
	Slide 65: Aside: Memory Barriers

