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Poll: how are you?

❖ Any planned courses for Fall 2025?
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Administrivia

❖ PennOS

▪ Groups have been assigned

▪ TA’s have been assigned to groups

▪ You have the first milestone, which needs to be done sometime next week

▪ Your group (or at least most of your group) needs to meet with your assigned TA and 
display the expectations laid out in the PennOS Specification

▪ We will send emails to every group that had to be filled by course staff soon (let us know if 
you don’t get this by the end of the week)

❖ Will post a small assignment with some readings sometime before next lecture

▪ Details coming soon
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Administrivia

❖ PennOS Advice:

▪ Will announce this on Ed as well

▪ In your FAT code you may do something like this:

• Sometimes though, the write and lseek will return a success, but it won’t actually write to your 
file system

• Most commonly happens with blocks near the end of the FAT
(as in blocks not in the allocation table but show up shortly after the end of the allocation table)

• Most likely related to an issue between mmap and write

• Shows up inconsistently!

• What’s the fix?
Just do it twice, that usually
fixes it.
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lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
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Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling

5



CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖  

▪ “Uninitializes” a mutex – clean up when done
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int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

                const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired 
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pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with 
checking the lock and switching between threads

▪ One possible fix:  each thread increments a local variable and then adds its value (once!) to 
the shared variable at the end

• See total_locking_better.c

7



CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are 
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g =  0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}
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Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are 
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.
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// global variables

pthread_mutex_t lock;

int g =  0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}
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Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling

12



CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

TSL

❖ TSL stands for Test and Set Lock, sometimes just called test-and-set.

❖ TSL is an atomic instruction that is guaranteed to be atomic at the hardware 
level

❖ TSL R, M

▪ Pass in a register and a memory location

▪ R gets the value of M

▪ M is set to 1 AFTER setting R 

13
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TSL to implement Mutex

❖ A mutex is pretty much this:
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pthread_mutex_lock(lock) {

   prev_value = TSL(lock);

   

   // if prev_value = 1, then it was already locked

   while (prev_value == 1) {

      block();

      prev_value = TSL(lock);

   }

}

pthread_mutex_unlock(lock) {

  lock = 0;

  wakeup_blocked_threads(lock);

}
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Disabling Interrupts

❖ If data races occur when one thread is interrupted while it is accessing some 
shared code….

What is we don’t switch to other threads while executing that code?

❖ This can be done by disabling interrupts: no interrupts means that the clock 
interrupt won’t go off and interrupt the currently running thread

15
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Disabling Interrupts

❖ Consider that sum_total starts at 0 and two threads try to execute 
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disable_interrupts();

++sum_total;

enable_interrupts();

++sum_total

Thread 0 Thread 1

sum_total = 1

disable_interrupts();

++sum_total;

enable_interrupts();
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Disabling Interrupts

❖ Advantages:

▪ This is one way to fix this issue

❖ Disadvantages

▪ This is usually overkill

▪ This can stop threads that aren’t trying to access the shared resources in the critical 
section. May stop threads that are executing other processes entirely

▪ If interrupts disabled for a long time, then other threads will starve

▪ In a multi-core environment, this gets complicated
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Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code,
one with arg = 0, other thread has arg = 1

❖ Each thread tries to increment sum_total. Does this work?
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int sum_total = 0;

bool flag[2] = {false, false};

int turn = 0

void thread_code(int arg) {

  int me = arg;

  flag[me] = true;

  turn = 1 - me;

  while((flag[1-me] == true) && (turn != me)) { }

  ++sum_total;

  flag[me] = false;

}

Check the index of the other thread 

Discuss
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Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work? (using an analogy)

▪ Each thread first declares that they want to enter the critical section by setting their flag

▪ Each thread then states (once) that the other should “go first”.

• This is done by setting the turn variable to 1 – me

• One of these assignments to the turn variable will happen last, that is the one that decides who 
goes first

▪ One of the thread goes first (decided by the value of turn) and accesses the critical section, 
before saying it is done (by changing their flag to false)

19
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Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value is turn = 1. P0 will get to 
run first. 

20
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Explanation

flag[0] = true

Thread 0 Thread 1

turn = 1

while(flag[1] == true 

        && turn != 0)

flag[1] = true

turn = 0

++sum_total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 1 came after turn = 0
// the turn variable is set to 1

turn = 1

while(flag[0] == true 

        && turn != 1)

turn = ?

turn = 1
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Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be interrupted before or after, but 
not “during” when turn may have some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order laid out in the code

22
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Atomicity

❖ Atomicity: An operation or set of operations on some data are atomic if the 
operation(s) are indivisible, that no other operation(s) on that same data can 
interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.

23
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Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

24

bool g = false;

int t = 0

void some_func(int arg) {

  t = arg;

  g = true;

}
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Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not 
appear that it will affect the semantics of the function

▪ Since                                    is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the 
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

26

g = true; t = arg;
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Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a 
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory 
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the 
CPU

▪ This is done for us when we mark a variable as atomic or use a lock.

27
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Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling
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Liveness

❖ Liveness: A set of properties that ensure that threads execute in a timely 
manner, despite any contention on shared resources.

❖ When       is called, the calling thread blocks (stops 
executing) until  it can acquire the lock.

▪ What happens if the thread can never acquire the lock?

29

pthread_mutex_lock();
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Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads cannot acquire that 
lock

❖ See release_locks.c

▪ Example where locks are not released once critical section is completed.

30
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Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.c

❖ Note: there are many algorithms for detecting/preventing deadlocks

31

Neither thread can make progress 
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Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it has already 
acquired?

❖ See recursive_deadlock.c

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until the lock is released

32
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Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked if the thread already 
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of times it was 
acquired

❖ Has its uses, but generally discouraged.

33
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Deadlock Definition

❖ A computer has multiple threads, finite resources, and the threads want to 
acquire those resources

▪ Some of these resources require exclusive access

❖ A thread can acquire resources:

▪ All at once

▪ Accumulate them over time

▪ If it fails to acquire a resource, it will (by default) wait until it is available before doing 
anything 

❖ Deadlock: Cyclical dependency on resource acquisition so that none of them 
can proceed

▪ Even if all unblocked threads release, deadlock will continue
34
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Preconditions for Deadlock

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a resource that is held by 
a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly releases it. It cannot be 
preempted by the OS or something else to force it to release the resource 

▪ Circular Wait: 
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other 
thread must waiting on a resource that forms a chain of dependency

35
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Circular Wait Example

❖ A cycle can exist of more than just two threads:

36

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3
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Poll:

❖ Can a thread deadlock if there is only one thread?

37

Discuss
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Deadlock Prevention

❖ If we can remove the conditions for deadlock, we could avoid prevent 
deadlock from every happening 

38
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Deadlock Prevention: Mutual Exclusion

❖ Mutual Exclusion: at least one resource must be held exclusively by one thread

❖ You usually need mutual exclusion or you don’t, so  it is hard to avoid.

❖ Some resources require exclusive access

❖ A lot of work done related to this

▪ called: Lock-free programming, Lock-less programming, or Non-blocking algorithms

▪ General idea is to take advantage of operations that are atomic at the hardware level 
when sharing is needed

39
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Deadlock Prevention: Hold and Wait

❖ Hold and Wait: a thread must be holding a resource, requesting a resource 
that is held by a thread, and then waiting for it.

❖ What if we had each thread acquire all resources it needs in the beginning “at 
once”

▪ Not always practical, a thread may not know ahead of time all the resources it will need

40
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Deadlock Prevention: No Preemption

❖ No preemption: A resource is held by a thread until it explicitly releases it. It 
cannot be preempted by the OS or something else to force it to release the 
resource

❖ If we force a thread to release a resource, how do we ensure it is in a valid 
state?

▪ Undoing actions and recovering valid state is complex (more on this next lecture)

41
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Deadlock Prevention: Circular Wait

❖ Circular Wait: Each thread must be waiting for a resource that is held by 
another thread. That other thread must waiting on a resource that forms a 
chain of dependency

❖ Break cycles in resource acquisition. 

❖ We could enforce an ordering to resource acquisition.

❖ Challenge: Still we may not know all resources we need ahead of time

42
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Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four deadlock preconditions

❖ But eliminating even one of the preconditions is often hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early requires rollback of execution

▪ Not always possible to know all resources that an operating system or process will use 
upfront

43
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Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling
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Dining Philosophers

❖ Assume the following situation

▪ There are N philosophers (computer 
scientists) that are trying to eat rice.

▪ They only have one chopstick each!

• Need two chopsticks to eat 

▪ Alternate between two states:

• Thinking

• Eating

▪ They are arranged in a circle with a 
chopstick between each of them

45
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Dining Philosophers

❖ Philosophers have good table manners

▪ Must acquire two chopsticks to eat

▪ Only one philosopher can have
a chopstick at a time

❖ Useful abstraction / “standard problem”
try to achieve:

▪ Deadlock Free

• No state where no one gets to eat

▪ Starvation Free

• Solution guarantees that all philosophers 
occasionally eat

• Ideally maximize parallel eating

46
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First Solution Attempt

❖ If we number each philosopher 0 – N and then each chopstick is also 0 – N, we 
can model the problem with mutexes, each chopstick is a mutex and each 
philosopher is a thread
▪ To eat, thread I must acquire lock I and I + 1

▪ This ensures that each chopstick is only in use by one philosopher at a time

47

while (true) {

  pthread_mutex_lock(&chopstick[i]);

  pthread_mutex_lock(&chopstick[(i + 1) % N]);

  eat();

  pthread_mutex_unlock(&chopstick[(i + 1) % N]);

  pthread_mutex_unlock(&chopstick[i]);

  think();

}
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Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each 
chopstick is also 0 – N

48

while (true) {

  pthread_mutex_lock(&chopstick[i]);

  pthread_mutex_lock(&chopstick[(i + 1) % N]);

  eat();

  pthread_mutex_unlock(&chopstick[(i + 1) % N]);

  pthread_mutex_unlock(&chopstick[i]);

  think();

}
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Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we pass around a token 
that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

50
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Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that controls permission to 
pick up chopsticks. Once a philosopher has chopsticks, they can release the 
lock before they eat

❖ In our metaphor, this means that each philosopher “waits in line” to pick up 
chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

52
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Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it puts down any 
chopsticks it has, waits for a little bit and then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired, return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a mutex for some specified 
amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?
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Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd numbered philosophers do 
things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

56



CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling
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Deadlock Handling: Ostrich Algorithm

59
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Deadlock Handling: Ostrich Algorithm

60Ostriches don’t actually do this, but it is an old myth
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Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive to handle, and/or not a 
fatal error

❖ Used in real world contexts, there is a real cost to tracking down every possible 
deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to do, slows things down

61
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Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd philosophers

❖ Exhaustive Search Approach 

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without restrictions)
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Detection

❖ If we can’t guarantee deadlocks won’t happen, we can instead try to detect a 
deadlock just before it will happen and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata and graph theory

▪ The intervention/recovery. We typically want some sort of way to “recover” to a safe state 
when we detect a deadlock is going to happen

63
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Detection Algorithms

❖ The common idea is to think of the threads and resources as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem with many solutions.

64
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Deadlock Detection Example

❖ Consider the following example with 5 threads and 5 resources that require 
mutual exclusion is this a deadlock?

▪ Thread 1 has R2 but wants R1 

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

65
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Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow pointing at the resource 
from the thread trying to acquire it
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Alternate graph

❖ Instead of also representing resources as nodes, we can have a “wait for” 
graph, showing how threads are waiting on each other
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Recovery after Detection

❖ Preemption: 

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is detected then go back to 
the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no deadlock

▪ Not safe, but it is simple
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Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock issues, but there is a 
cost to memory and CPU to store the necessary information and check for 
deadlock

❖ This is why sometimes the ostrich algorithm is preferred
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Avoidance

❖ Instead of detecting a deadlock when it happens and having expensive 
rollbacks, we may want to instead avoid deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the request. The calling thread can 
try again later

• If there is no deadlock, then the thread can acquire the resources and complete its task

▪ The calling thread later releases resources as they are done with them
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Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources need to be acquired before 
an action is taken by a thread, could hurt parallelizability

• Consider a thread that does a very expensive computation with many shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may need it cannot access it
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Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple copies of resources, or a 
finite number of people can access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can watch if you want to 
know more
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