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Poll: how are you?

❖ What is love?
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Administrivia

❖ PennOS

▪ Milestone 1 & Extra Credit posted!

▪ Need to meet with your TA next week before end of Friday 

• Late tokens possible to use

▪ Rough list of allowed functions on Ed

❖ Reading Assignment Posted!

▪ Shouldn’t take too long, please just do it

▪ We are checking for AI

▪ Grading isn’t harsh

▪ Due Friday @ midnight

• Late tokens possible to use
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Lecture Outline

❖ Deadlock Handling

❖ Data Races vs Race Conditions

❖ Producer/Consumer & Condition Variables

❖ Amdahl's Law
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Deadlock Handling: Ostrich Algorithm
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Deadlock Handling: Ostrich Algorithm

6Ostriches don’t actually do this, but it is an old myth
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Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive to handle, and/or not a 
fatal error

❖ Used in real world contexts, there is a real cost to tracking down every possible 
deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to do, slows things down
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Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd philosophers

❖ Exhaustive Search Approach 

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without restrictions)
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Detection

❖ If we can’t guarantee deadlocks won’t happen, we can instead try to detect a 
deadlock just before it will happen and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata and graph theory

▪ The intervention/recovery. We typically want some sort of way to “recover” to a safe state 
when we detect a deadlock is going to happen

9
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Detection Algorithms

❖ The common idea is to think of the threads and resources as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem with many solutions.
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Deadlock Detection Example

❖ Consider the following example with 5 threads and 5 resources that require 
mutual exclusion is this a deadlock?

▪ Thread 1 has R2 but wants R1 

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

11
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Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow pointing at the resource 
from the thread trying to acquire it

12
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
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▪ Thread 3 has R4
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Resource Allocation Graph Example
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

16

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph



CIS 4480/5480, Spring 2025L18: Cond & Threads Wrap-upUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 
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▪ Thread 5 has R3
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Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1 

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3
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Alternate graph

❖ Instead of also representing resources as nodes, we can have a “wait for” 
graph, showing how threads are waiting on each other
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Recovery after Detection

❖ Preemption: 

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is detected then go back to 
the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no deadlock

▪ Not safe, but it is simple

20
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Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock issues, but there is a 
cost to memory and CPU to store the necessary information and check for 
deadlock

❖ This is why sometimes the ostrich algorithm is preferred

21
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Avoidance

❖ Instead of detecting a deadlock when it happens and having expensive 
rollbacks, we may want to instead avoid deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the request. The calling thread can 
try again later

• If there is no deadlock, then the thread can acquire the resources and complete its task

▪ The calling thread later releases resources as they are done with them

22
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Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources need to be acquired before 
an action is taken by a thread, could hurt parallelizability

• Consider a thread that does a very expensive computation with many shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may need it cannot access it

23
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Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple copies of resources, or a 
finite number of people can access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can watch if you want to 
know more

24
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Lecture Outline

❖ Deadlock Handling

❖ Data Races vs Race Conditions

❖ Producer/Consumer & Condition Variables

❖ Amdahl's Law
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❖ Does this code have a data race?

▪ Assume that there is one thread running produce()
and another thread running consume()

▪ Can this program enter an “invalid” (unexpected or 
error) state from having concurrent memory accesses?

▪ Assume lock initialized and funcs don’t fail

❖ Any issues with this code?

pthread_mutex_t lock;
string data;

void* produce(void* arg) {
 int fd = open(some_file, O_RDONLY);
 char buf[1024];
 ssize_t res = read(fd, buf, 1023);
 buf[res] = '\0'; 

 pthread_mutex_lock(&lock);
 data = string(buf);
 pthread_mutex_lock(&lock);

 pthread_exit(NULL);
}

void* consume(void* arg) {
 pthread_mutex_lock(&lock);
 if (!data.empty()) {
  print(data);
 }
 thread_mutex_unlock(&lock);
 pthread_exit(NULL);
}
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Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at 
least one write, that can cause the shared resource to enter an invalid or 
“unexpected” state.

❖ Race-Condition: Where the program has different behaviour depending on the 
ordering of concurrent threads. This can happen even if all accesses to shared 
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a race condition 

27
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Thread Communication

❖ Sometimes threads may need to communicate with each other to know when 
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only consume things once the producer has produced them 

❖ Need to make sure this communication has no data race or race condition

28



CIS 4480/5480, Spring 2025L18: Cond & Threads Wrap-upUniversity of Pennsylvania

Lecture Outline

❖ Deadlock Handling

❖ Data Races vs Race Conditions

❖ Producer/Consumer & Condition Variables

❖ Amdahl's Law
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Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will process and remove data from the shared data structure

❖ We need to make sure that the threads play nice 

30
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Aside: C++ deque

❖ I am using a c++ deque for this example so that we don’t have to write our 
own data structure.  This is not legal C

❖ Deque is a double ended queue, you can push to the front or back and pop 
from the front or back

31

// global deque of integers

// will be initialized to be empty

deque<int> dq {};

int main() {

  dq.push_back(3);      // adds 3

  int val = dq.at(0);   // access index 0

  dq.pop_front()        // delete first element

  printf("%d\n", val);  // should print 3

}
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Producer Consumer Example

❖ Does this work?

❖ Assume that two threads are 
created, one assigned to each 
function

32

deque<int> dq {};

void* producer_thread(void* arg) {

  while (true) {

    dq.push_back(long_computation()); 

  }

}

void* consumer_thread(void* arg) {

  while (true) {

    while (dq.size() == 0) {

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

  }

}
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Producer Consumer Example

❖ How do we use mutex to fix 
this? To make sure that the 
threads access dq safely.

▪ You are only allowed to add calls 
to pthread_mutex_lock and 
pthread_mutex_unlock

▪ Can add other mutexes if needed

❖ Similar code: no_sync.cpp

33

deque<int> dq {};

pthread_mutex_t dq_lock;

void* producer_thread(void* arg) {

  while (true) {

    dq.push_back(long_computation()); 

  }

}

void* consumer_thread(void* arg) {

  while (true) {

    while (dq.size() == 0) {

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

  }

}

pollev.com/tqm
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Any issue?

❖ The code is correct, but do we notice anything wrong with this code?

❖ Maybe a common inefficiency that I have told you about several times before 
(just in other contexts?)

❖ The consumer code “busy waits” when there is nothing for it to consume.

▪ It is particularly bad if we have multiple consumers, the locks make the busy waiting of the 
consumers sequential and use more CPU resources. 

36
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Thread Communication: Naïve Solution

❖ Consider the example where a thread must wait to be notified before it can 
print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the consumer thread can print

❖ See spinning.cpp

▪ The thread in the loop uses A LOT of cpu just checking until the value is safe

▪ Use top to see CPU util

❖ Alternative: Condition variables

37
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Condition Variables

❖ Variables that allow for a thread to wait until they are notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily release while waiting

▪ Once notified, the thread will re-acquire a lock and resume execution

38
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖  

▪ “Uninitializes” a condition variable – clean up when done

39

int pthread_cond_init(pthread_cond_t* cond,

                const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition variable. Once unblocked (by 
one of the functions below), function will return and calling thread will have the mutex 
locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

40

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

                pthread_mutex_t* mutex);
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pthread_cond_t Internal Pseudo-Code

❖ Here is some pseudo code to help understand condition variables

41

int pthread_cond_wait(pthread_cond_t* cond, pthead_mutex_t* mutex) {
 pthread_mutex_unlock(&lock);
 sleep_on_cond(cond); // sleeps till cond wakes them up
 pthread_mutex_lock(&lock);
 return 0;

}

int pthread_cond_signal(pthread_cond_t* cond) {
 wakeup_a_thread(cond); // wake's up a thread sleeping on the cond
 return 0;

}

int pthread_cond_broadcast(pthread_cond_t* cond) { 
 for (thread_sleeping : cond->asleep) { // wake's up all threads
  wakeup(thread_sleeping); 
 }
 return 0;

}
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Demo: cond.cpp

❖ See cond.cpp

▪ Changes our spinning code to use a condition variable properly

▪ No issues with cpu utilization!

42
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

43
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

44
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

45
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

46
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If a thread can’t complete its action, or must wait for some change in 
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It will release the lock implicitly when it goes to sleep
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example
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One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock
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Lecture Outline

❖ Deadlock Handling

❖ Data Races vs Race Conditions

❖ Producer/Consumer & Condition Variables

❖ Parallel Analysis & Amdahl's Law

49
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Parallel Algorithms 

❖ One interesting applications of threads is for faster algorithms

❖ Common Example: Merge sort

50
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

Output array

firstIndex secondIndex



CIS 4480/5480, Spring 2025L18: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex
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Merge Sort: Core Ideas
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1 2Output array
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3Output array
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array
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2 4 7 81 3 5 6
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14



CIS 4480/5480, Spring 2025L18: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78
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Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

❖ We recurse log2(N) times, each recursive “layer” does O(N) work 

67

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  merge_sort(arr, lo, mid);  // sort the bottom half

  merge_sort(arr, mid, hi);  // sort the upper half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!
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void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 69

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm
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Parallel Algos:

❖ We can define T(n) to be the running time of our algorithm

❖ We can split up our work between two parts, the part done sequentially, and 
the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array 

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

70

Will not test you on this
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Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further optimizations that can be done to 
reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I am just giving you a 
sneak peek

71

Will not test you on this
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Amdahl's Law

❖ For most algorithms, there are parts that parallelize well and parts that don’t. 
This causes adding threads to have diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S)  // (1-S) is the sequential part

72
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Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the parallelizable part, we 
get

▪ TP = (1-S) + 
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =  

1

1−𝑆+
𝑆

𝑃
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Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and our algorithm is only 
2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =  

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

74



CIS 4480/5480, Spring 2025L18: Cond & Threads Wrap-upUniversity of Pennsylvania

Limitation: Hardware Threads

❖ These algorithms are limited by hardware. 

❖ Number of Hardware Threads: The number of threads can genuinely run in 
parallel on hardware 

❖ We may be able to create a huge number of threads, but only run a few (e.g. 4) 
in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads
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