
CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Sockets & Distributed Systems Intro
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Poll: how are you?

❖ What kind of lectures do you like?

▪ What makes a lecture good for you?

▪ (I know this is a biased sample but I still want to ask)

2

pollev.com/tqm

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ PennOS Final Demo posted

• You will have to demo FAT here even if you pass the autograder.

▪ Integration can be a big pain, make sure you allocate enough time to it!

▪ Can use 1 late token for free now to submit by EOD Sunday

▪ We will ask you short answer questions during the demo to check that you actually
understand your code.

• You will be able to choose the category of question.

• More details on Ed

3

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Administrivia

❖ Some notes:

▪NEW: If you are having issues with the scheduler sometimes not suspending a thread:

make sure that you do NOT have interrupts disabled when you call spthread_create.

• Or, you can redownload spthread.c from the course website

• You do not HAVE to do either of these, though this will almost certainly cause issues.

▪ DO NOT mmap the entire File System. Only mmap the Allocation Table, the rest of the file
system needs to be handled with lseek/write.

• Do not keep the contents of the file in memory, it should be stored in the file

• If your PennFat is killed with kill -9, your file contents should still be saved in disk

▪ Advice for using gdb to debug

• Handle SIGUSR1 noprint nostop

Makes it so that gdb doesn’t report every time SIGUSR1 goes and interrupts you
4

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Administrivia

❖ Some notes:

▪ Reminder, you instead of just doing:

you may need to do:

▪ With the description of setitimer(), it just says that sigalarm is delivered to the
process, not necessarily the calling thread. To make sure siglaram goes to the scheduler,
you may want to make it so that all threads (spthread or otherwise) that aren’t the
scheduler call something like: pthread_sigmask(SIG_BLOCK, SIGALARM)

• Which will block SIGALARM in that thread.

5

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Administrivia

❖ If you are having issues with the scheduler not running you can try running
▪ strace –e 'trace=!all' ./bin/pennos

▪ You may have to install strace: sudo apt install strace

▪ This will print out every time a signal is sent to your pennos

▪ (Usual fix is the pthread_sigmask thing on the previous slide)

6

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Poll: how are you?

❖ Any questions on PennOS?

7

pollev.com/tqm

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Lecture Outline

❖ Sockets

▪ High Level Socket

▪ How different from Files

❖ Distributed Systems

▪ Muddy Forehead

▪ Distributed String

▪ Performance

8

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

9

Can still use these in C++ code

You’ll see some C-idioms and design practices.

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Socket

❖ A Socket is an endpoint for a specific connection

▪ If we think of a connection like a wire, then it must “plug in” to each end of the
connection. Sort of like how you plug a charger into an outlet/wall socket

❖ A connection is identified by four things:

▪ Client IP address

▪ Client Port Number

▪ Server IP Address

▪ Server Port Number

❖ Going back to our apartment and post office analogy. For real packages we
don’t just put an address and apartment number of the destination, we also
include the address it came from.

10

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Files and File Descriptors

❖ Remember open(), read(), write(), and close()?

▪ POSIX system calls for interacting with files

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and close()

▪ Inside the OS, the file descriptor is used to index into a table that keeps track of any OS-
level state associated with the file, such as the file position

11

Parameters to

Can’t be a

pointer, don’t

want to give

address to

kernel

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O
▪ You use read() and write() to communicate with remote computers over the

network!

▪ A file descriptor use for network communications is called a socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the OS know which network
channel to use

12

In other words, we

specify the socket

to read/write on

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

13

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

Can have multiple

files and network

connections open
0,1,2 always start as

stdin, stdout & stderr.

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

14

What we will focus on

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

▪ Can also be used for other forms of communication like peer-to-peer

1) Establish connection:

2) Communicate:

3) Close connection:

15

client server

client server

client server

Client reaches out
Server is “passive” &

listens for clients

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

▪ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

16

host

host host

host

host

host host

host

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Demo

❖ sendreceive.cpp

❖ udp_receive.cpp

❖ udp_send.cpp

17

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Sockets are sort of like files

❖ When dealing with stream sockets (TCP) Sockets, the TCP part is done for us.
We can deal with the stream ABSTRACTION

▪ Stream: That the bytes show up in order reliably

❖ How do you think a network connection may behave differently from a file?

▪ If it helps you can compare a file to reading/writing into a book
and reading/writing a socket to texting/messaging a friend.

18

pollev.com/tqm

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

read()

❖ If there is data that has already been received by the network stack, then read
will return immediately with it
▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read() will block until
something arrives

▪ How might this cause deadlock?

▪ Can read() return 0? (EOF)

19

pollev.com/tqm

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Lecture Outline

❖ Sockets

▪ High Level Socket

▪ How different from Files

❖ Distributed Systems

▪ Muddy Forehead

▪ Distributed String

▪ Performance

20

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

What are distributed systems?

❖ A group of computers communicating over the network by sending messages,
which interact to accomplish some common task

▪ There is no shared hardware (e.g. memory) other than the network

▪ Individual computers (nodes) can fail

▪ The network itself can fail (Drop messages, corrupt messages, delay messages, etc.)

21

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Why do we care?

❖ They are really interesting problem to work with

❖ Most applications we interact with are distributed systems of some sort:

22

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

❖ They are really interesting problem to work with

❖ Distributed systems typically allow a system to scale well. Need more work to
be done? Just add a new computer to the system

❖ Distributed systems can also allow for some amount of “fault tolerance”. If one
computer crashes, the rest of the computers will probably keep running.

Why do we care?

23

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Distributed Systems Concerns

❖ How do we make it so that the computers work together:

▪ Correctly

▪ Consistent

▪ Efficiently

▪ At (huge) scale

▪ High availability

❖ Despite issues with the network

❖ Despite some computers crashing

❖ Despite some computers being compromised
24

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Distributed Systems: Pessimistic View

❖ Considered a very hard topic

▪ Involves many of the topics covered in this course and more

▪ CIS 5050 spends ~8 lectures covering things already introduced here. (out of 25 lectures)

❖ “The most thought per line of code out of any course”

▪ Hal Perkins Circa 2019

❖ “A distributed system is one where you can’t get your work done because
some machine you’ve never heard of is broken.”

▪ Leslie Lamport, circa 1990

25

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared Nothing Architecture

❖ Consistency and sharing data is hard in a threaded program (as you may see
with PennOS, though PennOS is especially weird)

❖ What about distributed systems?

▪ Distributed systems are typically “Shared nothing” meaning that it is a collection of
computers communicating over the network

▪ There is no shared memory

▪ There is no shared disk/storage

❖ How can we get a cluster (group of machines) to agree on some state?

▪ How do the computers in the system reason about each other?

26

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud on their
foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone has mud on
their forehead

▪ Teacher repeatedly asks "Raise your hand if
you know you have mud on your forehead."

▪ Children cannot feel the mud on their head.

▪ Children cannot speak

▪ What happens?

27

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud on their
foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone has mud on
their forehead

▪ Teacher repeatedly asks "Raise your hand if
you know you have mud on your forehead."

▪ Children cannot feel the mud on their head.

▪ Children cannot speak

▪ What happens?

• The answer is not "no one raises their hand"

28
This Photo by Unknown Author is licensed under CC BY-NC-ND

https://mujeresconciencia.com/2014/12/09/grace-murray-hopper-informatica/
https://creativecommons.org/licenses/by-nc-nd/3.0/

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Muddy Foreheads

❖ Answer: On the 𝑘th round, all of the muddy children know they have mud on their forehead,

raise their hands

❖ "Proof" by induction on 𝒌. When 𝑘=1, the muddy child knows no other child is muddy, must

be muddy themself. When k=2, on the first round, both muddy children see each other, cannot

conclude they themselves are muddy. But after neither raises their hand, they realize there

must be two muddy children, raise their hand.

❖ In general, when 𝑘>1, after round 𝑘-1, if there were 𝑘-1 muddy foreheads, all of those children

would have raised their hands (by induction). Therefore, each muddy child knows they're
muddy and raises their hand on the 𝑘th round

29

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

The Muddy Forehead "Paradox"

❖ If k > 1, the teacher didn’t say anything anyone didn’t already
know!

❖ Yet the information is crucial to let the children solve the
problem

30

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Common Knowledge

❖ There’s a difference between what you know and what you know others know

❖ And what others know you know

❖ And what others know you know about what you know

❖ And what you know others know you know about what they know

31

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Muddy Forehead Alteration

❖ What if the teacher pulled each student aside individually and told them “at
least one student has mud on their forehead”?

▪ Would our solution still work?

32

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Muddy Forehead Takeaways

❖ Why did we talk about this?

▪ Cause I think its fun ☺

▪ Helps us think about how there are many concurrent “rational agents” all working “as
equals”

• There isn’t a head coordinator amongst the children, they are all equals

▪ The children don’t have a shared state (memory or disk). In fact, they barely have a
working "network"! (All they can do is see the other children)

33

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC

❖ Remote Procedure Call: When a program is able to invoke a function on
another computers address space, and then get the results.

❖ Usually done as a form of “Message Passing”

▪ Client calls a function that sends a “message” over the network

▪ A server receives the message, executes the function, and sends the response back

❖ Even in this simple, example, issues can arise

34

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

35

Client 1

Server Node

Data

balance = $100

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

36

Client 1

Server Node

Data

balance = $100

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back

37

Client 1

Server Node

Data

balance = $100

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back

▪ Client returns from the function “get_balance()”

38

Client 1

Server Node

Data

balance = $100

Client was blocked while waiting for the server to respond.

Program that called get_balance() probably doesn’t need

to know much about the network messaging

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Blank Slide

39

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

40

Client 1

Server Node

Data

balance = $100

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back

41

Client 1

Server Node

Data

balance = $25

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back

• … But what if the connection is dropped before client receives response!

42

Client 1

Server Node

Data

balance = $25

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives response!

❖ Let’s say connection is re-established and client resends “withdraw(75)”…

43

Client 1

Server Node

Data

balance = $25

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives response!

❖ Let’s say connection is re-established and client resends “withdraw(75)”…

▪ How does the server know if this is the same request as last time, or another request to
withdraw $75

▪ How does the server know what the client is “intending”

• Is this a new request? Is this a repeat request?

44

Client 1

Server Node

Data

balance = $25

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Fix?

❖ How do we ensure that each transaction is done exactly once?

▪ Thoughts?

45

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Fix?

❖ How do we ensure that each transaction is done exactly once?

▪ Thoughts?

❖ We can have a “logical timestamp” (sometimes called a logical clock).
We can have some sort of counter to identify the action taken.

❖ If the server receives these it means something different
two messages than receiving these two

46

action_id = 5;
action = withdraw(75);

action_id = 6;
action = withdraw(75);

action_id = 5;
action = withdraw(75);

action_id = 5;
action = withdraw(75);

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared State in Distributed Systems

❖ Let’s say we have a collection of computers that together share the state of a
single string.

❖ A client can connect to any node and submit a command

▪ E.g. append, get, set, etc.

47

Server Node 1 Server Node 2

Server Node 3

data = “hi” data = “hi”

data = “hi”

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared State in Distributed Systems: Network Delays

❖ Let’s say a client connects to node 1 and sends a request to append “a” to the
end of the string.

❖ Node 1 then does the action then forwards the request to other nodes so that
we can maintain a consistent state across all nodes.

48

Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hi”

data = “hi”

append: “a”

Consider that network messages may be delayed/lost
 How is this a naive implementation?
 Ignore multiple requests for now

How might we fix this issues?
 we can always change the contents of the message or
 send more messages. How might we do that?

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared State in Distributed Systems: Network Delays

❖ Fix part 1: Don’t execute action yet. Have other nodes send an
acknowledgement back. If the node doesn’t send an ack, then we re-send the
command to them intermittently until they do ack it.

49

Server Node 1 Server Node 2

Server Node 3

data = “hi” data = “hi”

data = “hi”

Acknowledge: append: “a”

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared State in Distributed Systems: Network Delays

❖ Fix part 2: Once all nodes have acknowledged a request, the node sends a
“execute” command to let all nodes know that everyone reached a consensus.

50

Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hia”

data = “hia”

Execute: append: “a”

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Generals Problem

❖ Two generals, on opposite sides of a city on a
hill.

❖ If they attack simultaneously, they will be
victorious. If one attacks without the other,
they will both be defeated.

❖ Can communicate by messenger.
Messengers can
get lost or be captured.

❖ How do they ensure they can take the city?

51

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Coordinated Attack

❖ Answer: There does not exist a protocol to decide when and whether to
attack.

❖ Proof by contradiction. Assume a protocol exists. Let the minimum number of
messages received in any terminating execution be 𝑛. Consider the last
message received in one such execution.

❖ The sender's decision to attack does not depend on whether or not the
message is received; sender must attack. Since the sender attacks, the receiver
must also attack when the message is not received.

❖ Therefore, the last message is irrelevant, and there exists an execution with 𝑛-
1 message deliveries. 𝑛 was the minimum! Contradiction.

52

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Generals Problem

❖ To coordinate an attack, the problem requires
common knowledge

❖ With the messengers, common knowledge is
never reached.

❖ What happens when we add
more generals?

❖ What happens when some of the generals are
malicious?

53

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared State in Distributed Systems: Network Delays

❖ Going back to our action / acknowledge / execute plan

▪ Does this work in all cases?

54

Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hia”

data = “hia”

Execute: append: “a”

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared State in Distributed Systems: Concurrent Requests

❖ Let’s say that we have two clients:

▪ One connects to node 1 and wants to append a

▪ Another client connects to node 2 wants to append b

55

Server Node 1 Server Node 2

Server Node 3

data = “hi” data = “hi”

data = “hi”

append: “a”

append: “b”

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Shared State in Distributed Systems: Concurrent Requests

❖ Let’s say that we have two clients:

▪ One connects to node 1 and wants to append a

▪ Another client connects to node 2 wants to append b

56

Server Node 1 Server Node 2

Server Node 3

data = “hi” data = “hi”

data = “hi”

append: “a”

append: “b”

How do we maintain an ordering among the
commands so that we know which to execute first?
 Any ideas?

A lot more complicated……
 include some amount of “logical timestamps”

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

PAXOS

❖ No deterministic fault-tolerant consensus protocol can guarantee progress in
an asynchronous network.

❖ PAXOS is a protocol for solving consensus while being resistant to unreliable
or failable processors in the system

▪ Unreliable and failable could mean just that

• the system crashes

• packet (messages) are being sent and received inconsistently

• Nodes become malicious and behaves incorrectly “on purpose”

• Paxos could possibly recover from any of these (to some amount)

•

❖ Paxos guarantees consistency, and the conditions that could prevent it from
making progress are difficult to provoke.

57

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

Performance

❖ Taking a step back from fault tolerance

❖ Another concern with doing actions across a distributed system is trying to
make efficient utilization of the nodes in the system

❖ If we have a large task, how do we split up the work roughly evenly across
nodes in the network so that it is completed faster?

▪ Avoid having one “coordinator” node if possible

• Then nodes may have to wait for the coordinator to tell them what to do and there is less
coordinators)

▪ Try to treat the nodes equally like rational actors so that they can all do work at the same
time.

58

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

An Interview Question:

❖ 100 Nodes in a cluster of computers

❖ Each Node is numbered 0 through 99

❖ Each node has 1,000,000 integers

▪ No node can hold all the integers, but you can assume each node can hold more than
1,000,000.

❖ We want to sort all the numbers so that node 0 contains the first 1% of the
integers in sorted order (the lowest million integers). Node 1 contains the next
million lowest integers, etc.

❖ How do we do this efficiently?

▪ Afterwards: How can we make this algorithm minimally dependent on the original
contents of the nodes.

59

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

An Interview Answer

❖ Answer:

▪ Have each node sort their 1,000,000 integers

▪ Send the bottom 1% to the node 0, the next 1% to node 1, etc. etc.

▪ This should get you most of the way there. From there you can have each node sort their
internal list and “bubble sort” values up and down the nodes as needed.

❖ This works well in the “general” case where the nodes aren’t sorted

▪ What happens if the nodes were already sorted tho?

▪ Can we assume that each node’s data is representative of the whole set?

▪ Answer: fix this by making each node first randomly distribute their integers. Then each
node will have a random sample of integers to work with that should be roughly
representative of the whole data.

60

CIS 4480/5480, Spring 2025L24: SocketsUniversity of Pennsylvania

This was just an “intro” to the field ☺

❖ Lots of details left out, but these concepts apply to distributed systems.

❖ If a bank or database runs on a collection of nodes. How do we agree on
whether a transaction occurred?

▪ How do we ensure that the transaction went through and won’t get “lost” due to faults?

❖ What if data was split across different nodes and multiple clients needed data
from multiple nodes at the same time?

61

	Default Section
	Slide 1: Sockets & Distributed Systems Intro Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Administrivia
	Slide 7: Poll: how are you?
	Slide 8: Lecture Outline
	Slide 9: The Sockets API
	Slide 10: Socket
	Slide 11: Files and File Descriptors
	Slide 12: Networks and Sockets
	Slide 13: File Descriptor Table
	Slide 14: Types of Sockets
	Slide 15: Stream Sockets
	Slide 16: Datagram Sockets
	Slide 17: Demo
	Slide 18: Sockets are sort of like files
	Slide 19: read()
	Slide 20: Lecture Outline
	Slide 21: What are distributed systems?
	Slide 22: Why do we care?
	Slide 23: Why do we care?
	Slide 24: Distributed Systems Concerns
	Slide 25: Distributed Systems: Pessimistic View
	Slide 26: Shared Nothing Architecture
	Slide 27: Muddy Foreheads
	Slide 28: Muddy Foreheads
	Slide 29: Muddy Foreheads
	Slide 30: The Muddy Forehead "Paradox"
	Slide 31: Common Knowledge
	Slide 32: Muddy Forehead Alteration
	Slide 33: Muddy Forehead Takeaways
	Slide 34: Example: RPC
	Slide 35: Example: RPC
	Slide 36: Example: RPC
	Slide 37: Example: RPC
	Slide 38: Example: RPC
	Slide 39: Blank Slide
	Slide 40: Example: RPC Transaction
	Slide 41: Example: RPC Transaction
	Slide 42: Example: RPC Transaction
	Slide 43: Example: RPC Transaction
	Slide 44: Example: RPC Transaction
	Slide 45: Fix?
	Slide 46: Fix?
	Slide 47: Shared State in Distributed Systems
	Slide 48: Shared State in Distributed Systems: Network Delays
	Slide 49: Shared State in Distributed Systems: Network Delays
	Slide 50: Shared State in Distributed Systems: Network Delays
	Slide 51: Generals Problem
	Slide 52: Coordinated Attack
	Slide 53: Generals Problem
	Slide 54: Shared State in Distributed Systems: Network Delays
	Slide 55: Shared State in Distributed Systems: Concurrent Requests
	Slide 56: Shared State in Distributed Systems: Concurrent Requests
	Slide 57: PAXOS
	Slide 58: Performance
	Slide 59: An Interview Question:
	Slide 60: An Interview Answer
	Slide 61: This was just an “intro” to the field

