
CIS 5480
Recitation 3

Thursday, February 20, 2025

2

Agenda

- Process Groups
- waitpid()
- Signal handling

- Terminal Control

Process Groups

penn-shell
pgid = 969
pid = 969

echo hello | wc
pgid = 2401
pid = 2401

sleep 10 | sleep 10&
pgid = 1024
pid = 1024

sleep 10
pgid = 1024
pid = 1024

sleep 10
pgid = 1024
pid = 1025

echo hello
pgid = 2401
pid = 2401

wc
pgid = 2401
pid = 2402

penn-shell > sleep 10 | sleep 10 &
penn-shell > echo hello | wc

1. Which is the session?
2. How many processes?
3. How many process groups?

Process Groups

penn-shell
pgid = 969
pid = 969

echo hello | wc
pgid = 2401
pid = 2401

sleep 10 | sleep 10&
pgid = 1024
pid = 1024

sleep 10
pgid = 1024
pid = 1024

sleep 10
pgid = 1024
pid = 1025

echo hello
pgid = 2401
pid = 2401

wc
pgid = 2401
pid = 2402

penn-shell > sleep 10 | sleep 10 &
penn-shell > echo hello | wc

1. Which is the session? penn-shell
2. How many processes? 7
3. How many process groups? 3

Signal Handling

What does this code do?

Assume you have all the
proper #include statements

Signal Handling

How would you fix the
code?

What’s the difference between these two?

What does this code
do?

Assume you have all the
proper #include
statements

Now: we mix signals and process groups
True or False?
- Only foreground processes can read from the terminal
- Only foreground processes can write to the terminal
- Multiple processes can exist in the foreground
- Multiple process groups can exist in the foreground
- Multiple process groups can exist in the background
- Signals sent from the terminal is sent to all processes
- Signals can only be sent to the foreground job
- Signal blocking behavior is always different from signal ignoring behavior

Situation #1
A parent creates its own signal handler to ignore SIGINT. It
forks a child. You hit Ctrl+C. Which process terminates?

A. The parent only
B. The child only
C. Both parent and child
D. Neither parent nor child

Situation #2
A parent creates its own signal handler to ignore SIGINT. It
forks a child. The child execs the command “sleep 100” You hit
Ctrl+C. Which process terminates?

A. The parent only
B. The child only
C. Both parent and child
D. Neither parent nor child

Situation #3
A parent creates its own signal handler to ignore SIGINT. It
forks a child. The child execs the command “sleep 100 &” You hit
Ctrl+C. Which process terminates?

A. The parent only
B. The child only
C. Both parent and child
D. Neither parent nor child

Situation #4
A parent with no signal handlers forks a child. Both processes
run an infinite loop. You hit Ctrl+C. Which process terminates?

A. The parent only
B. The child only
C. Both parent and child
D. Neither parent nor child

Terminal Control

- Only one process group should have terminal
control at a time

- Only the controlling group can read from and
write to terminal, and receive terminal signals
(SIGINT from Ctrl-C & SIGTSTP from Ctrl-Z)

- foreground job in penn-shell

Terminal Control

- Which process group has terminal
control at this point?

- pid_t tcgetpgrp(int fd);

- What happens when another group
(e.g., in the background) tries to
access the terminal?

- OS sends a SIGTTIN signal
- Default action: stop the program

Terminal Control

- How can another process group take over
terminal control?

- int tcsetpgrp(int fd, pid_t pgrp);

- What if we need to write to stdout from the
background?

- Call tcsetpgrp()and receive a SIGTTOU signal (default:
stop the program)

- We can configure it to block or ignore this signal

./tc_demo

- Questions? :)

