
CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Final Exam Review (Pt. 3)
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Sid Sannapareddy Maya Huizar 



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Poll: how are you?

❖ Any General questions on the course or PennOS before we begin?

2

pollev.com/tqm



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT 
EXHAUSTIVE

❖Topics not in this review are still 
testable

3



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Disclaimer

❖THIS IS REVIEW

❖DO THE OLD EXAMS FOR THE 
BEST PRACTICE YOU CAN GET

4



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

New Problems Added

❖ New Cache Problem

❖ New Virtual Memory Problem

❖ New Memory Allocation Problem

❖ New File System Problem (Added now ☺)

5



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Practice Problems

❖ Processes vs Threads

❖ Signal Handlers

❖ Memory Allocation

❖ Caches

❖ Scheduling (Same as extra practice at end of scheduling lecture)

❖ File System

❖ Virtual Memory

❖ Threads & Data Races

❖ Deadlock

6



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive computation (like summing a 
1,000,000 element array) that we wanted to parallelize, we could use either 
threads or processes. Which one would be faster and why?

10



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive computation (like summing a 
1,000,000 element array) that we wanted to parallelize, we could use either 
threads or processes. Which one would be faster and why?

❖ Probably threads. Threads and processes are both parallelizable, but processes 
have a larger overhead since they have separate address spaces that need to 
be switched between.

❖ Additionally, if we were using processes, how they would synchronize their 
sums would become a more involved issue. 

11



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads and Exec

❖ You spawn 10 threads and assign to each a random function to execute. Some 
seem harmless and others not so much. 

❖ Specifically, one of the random functions they can call is the following.

12

int random_func_a(){
char *argv[] = {"sleep", "0", NULL};
execvp(argv[0], argv);

}

What happens if one of the threads is assigned this function and runs it?



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads and Exec

❖ You spawn 10 threads and assign to each a random function to execute. Some 
seem harmless and others not so much. 

❖ Specifically, one of the random functions they can call is the following.

13

int random_func_a(){
char *argv[] = {"sleep", "0", NULL};
execvp(argv[0], argv);

}

If a thread runs exec, the entire process is scrapped and thus, so are the other threads. 
It’s all gone. Tada. 



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let's say you've written a program that runs really well and does everything 
you need to, except that once every day it crashes. Fortunately for you, it's not 
doing anything critical - but it's not worth the development time to find and fix 
the cause of the crash.

❖ You decide to write a program that checks the status of another program and 
restarts it if it crashes. You are deciding whether your two programs (the one 
that crashes and the one that restarts) should be two threads in the same 
process or in two separate processes.

❖ Which do you choose? Briefly explain your answer

14



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let's say you've written a program that runs really well and does everything 
you need to, except that once every day it crashes. Fortunately for you, it's not 
doing anything critical - but it's not worth the development time to find and fix 
the cause of the crash.

❖ You decide to write a program that checks the status of another program and 
restarts it if it crashes. You are deciding whether your two programs (the one 
that crashes and the one that restarts) should be two threads in the same 
process or in two separate processes.

❖ Which do you choose? Briefly explain your answer

❖ You need two separate processes because otherwise the two threads share a 
memory space and if one crashes they both will crash. If we have two 
processes there is some isolation and thus the program that “restarts” the 
failing program can keep running when the failing program

crashes.

15



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ We have seen two concurrency models so far

▪ Forking processes (fork)

• Creates a new process, but each process will have 1 thread inside it

▪ Kernel Level Threads (pthread_create)

• User level library, but each thread we create is known by the kernel

• 1:1 threading model

16



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do 
each of the following.

❖ In real exam, I would ask you to briefly explain why

17

Processes pthread

Can share files and concurrently access those files.

Can communicate through pipes

Run in parallel with one another (assuming 
multiple CPUs/Cores)

Modify and read the same data structure that is 
stored in the heap

Switch to another concurrent task when one 
makes a blocking system call.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do 
each of the following.

❖ In real exam, I would ask you to briefly explain why

18

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes

Run in parallel with one another (assuming 
multiple CPUs/Cores)

Modify and read the same data structure that is 
stored in the heap

Switch to another concurrent task when one 
makes a blocking system call.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do 
each of the following.

❖ In real exam, I would ask you to briefly explain why

19

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes (can’t redirect 
w/o affecting other threads though)

Yes Yes

Run in parallel with one another (assuming 
multiple CPUs/Cores)

Modify and read the same data structure that is 
stored in the heap

Switch to another concurrent task when one 
makes a blocking system call.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do 
each of the following.

❖ In real exam, I would ask you to briefly explain why

20

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming 
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is 
stored in the heap

Switch to another concurrent task when one 
makes a blocking system call.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do 
each of the following.

❖ In real exam, I would ask you to briefly explain why

21

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming 
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is 
stored in the heap

No Yes

Switch to another concurrent task when one 
makes a blocking system call.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the three concurrency models, state whether it is possible to do 
each of the following.

❖ In real exam, I would ask you to briefly explain why

22

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming 
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is 
stored in the heap

No Yes

Switch to another concurrent task when one 
makes a blocking system call.

Yes Yes



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Kernal Signal Handlers

❖ You’re a TA in OS and you’re overseeing a group. You notice they wrote 
functionality in their signal handlers ( :/ ). PCBs are updated within the handler 
and also within their waitpid implementation. They leave all signals unblocked.

23

void update_pcb(ksignal __signal){
//check for child updates
//update pcb as necessary

}

This is exactly what the function does. 
It does nothing other than check for updates and update the PCB.

They tell you that sometimes the PCB 
updates correctly, but other times it becomes 
corrupted.

What could explain this behavior?



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Kernal Signal Handlers

❖ You’re a TA in OS and you’re overseeing a group. You notice they wrote 
functionality in their signal handlers ( :/ ). PCBs are updated within the handler 
and also within their waitpid implementation. They leave all signals unblocked.

24

void update_pcb(ksignal __signal){
//check for child updates
//update pcb as necessary

}

This is exactly what the function does. 
It does nothing other than check for updates and update the PCB.

They tell you that sometimes the PCB 
updates correctly, but other times it becomes 
corrupted.

What could explain this behavior?

If a section of your code must run to completion without being interrupted (meaning the current thread or process 
must finish executing it without being paused), you should disable interrupts to prevent preemption by another 
thread or interruption by a signal handler. In this case, there’s nothing stopping this code from being interrupted mid 
signal handler by something else or even within their waitpid implementation. Usually, all handler does is update a 
flag to indicate they need to update later, rather than doing the update within the handler. Gotta be fast to respond.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Some memory allocators (like the internal memory allocator for the Linux 
kernel) allow for some options to be specified that can change the behavior of 
these allocators. For each of these can you explain why this feature may be 
useful to have as an option?

▪ If there is no memory available, then the allocation call may wait for some memory to be 
freed up so that it can eventually succeed

▪ If memory is not able to be immediately allocated, give up at once. Caller can retry later if 
they desire.

❖ Some allocators enforce a minimum size for each allocation. If you request less 
than the minimum size it is rounded up.

❖   Why may an allocator do this?

❖   What is a downside to doing this?
25



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Some memory allocators (like the internal memory allocator for the Linux 
kernel) allow for some options to be specified that can change the behavior of 
these allocators. For each of these can you explain why this feature may be 
useful to have as an option?

▪ If there is no memory available, then the allocation call may wait for some memory to be 
freed up so that it can eventually succeed

• In a multi-threaded environment we can try to avoid a  catastrophic out of memory issue by just 
waiting till another thread releases memory. In the context of allocating kernel memory, this 
could also just be memory allocated to some other process’s task that then gets deallocated at 
some point.

▪ If memory is not able to be immediately allocated, give up at once. Caller can retry later if 
they desire.

• Meeting tight timing requirements since doing memory allocation may take a while (especially if 
the heap needs to grow or a new page added to the virtual memory space). Try again later once 
more space is easily accessible. 26



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Some allocators enforce a minimum size for each allocation. If you request less 
than the minimum size it is rounded up.

❖   Why may an allocator do this?

▪ For things like the buddy allocator, they do this since the larger allocation size (1 page) is 
core to how the system is designed. It makes it easier for the “math” to work out so that 
their allocation scheme is faster/easier to implement

▪ Malloc may do something like this with a size of 8 as the minimum size to help make sure 
all allocations start at a multiple of 8 and/or to minimize external fragmentation.

❖   What is a downside to doing this?

▪ Increased internal fragmentation, an allocation now takes up more space than it actually 
needs.

27



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which ones is likely faster 
than the other and why?

28

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int* arr = malloc(sizeof(int) * 10);

  arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

  free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int arr[10]; 

  arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

  free(arr);

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Assume we have the following two pieces of code, which ones is likely faster 
than the other and why?

29

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int* arr = malloc(sizeof(int) * 10);

  arr[0] = 1;

arr[1] = 1;

for(int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

  free(arr);

}

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int arr[10]; 

  arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Likely the one on the right. Instead of calling malloc, the array is a static size on the stack.
The stack allocation is quicker to allocate and free.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Lets say that in addition to malloc, we also had a custom slab allocator 
implemented that could allocate chunks of space that is 64 bytes (16 integers) 
large.

❖ What is one reason we may prefer the custom slab allocator to malloc?

❖ What is one reason we may prefer malloc?

30



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ Lets say that in addition to malloc, we also had a custom slab allocator 
implemented that could allocate chunks of space that is 64 bytes (16 integers) 
large.

❖ What is one reason we may prefer the custom slab allocator to malloc?

▪ One solution: It is probably faster and avoids the external fragmentation issues of malloc.

❖ What is one reason we may prefer malloc?

▪ One Solution: If we need to allocate anything that is not 64-bytes big, we are either 
wasting space or not allocating enough space for what we want.

31



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at a low level (in 
assembly)?

32

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int arr[10]; 

  arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Memory Allocation

❖ How is the array in this snippet of code likely allocated at a low level (in 
assembly)?

33

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

  int arr[10]; 

  arr[0] = 1;

arr[1] = 1;

for (int i = 2; i < 10; i++) {

arr[i] = arr[i-1] + arr[1-2];

}

printf("%d\n", arr[9]);

}

Just need to decrement the stack 
pointer by 10 * sizeof(int) and there 
is enough space to store the array 
on the stack now :P

Would also accept more vague 
answers like (grow the stack by 10 
integers)



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Slab Slob Slub ☺

❖ Sid is making a custom memory allocator that internally uses 4 different slab 
allocators with object sizes: 16 bytes, 64 bytes, 256 bytes, and 4096 bytes. 
Each of these allocators manage slabs that are 2 pages (8192 bytes) big.

❖ If a user makes these requests in this order, how much internal fragmentation 
do we get in total?

▪ 18 bytes

▪ 64 bytes

▪ 1000 bytes

▪ 2400 bytes

▪ 152 bytes

▪ 3990 bytes

34

❖ If we started with no slabs allocated, how many pages
are being managed by the allocators after these allocations?



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Slab Slob Slub ☺

❖ If a Slab allocator has multiple slabs that can fulfill an allocation request, it 
prefers to fill up slabs that are closest to being full. This is sort of the opposite 
of our “worst fit” algorithm. Why does the slab allocator do this?

35



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Slab Slob Slub

❖ Sid is making a custom memory allocator that internally uses 4 different slab 
allocators with object sizes: 16 bytes, 64 bytes, 256 bytes, and 4096 bytes. 
Each of these allocators manage slabs that are 2 pages (8192 bytes) big.

❖ If a user makes these requests in this order, how much internal fragmentation 
do we get in total?

▪ 18 bytes -> 46 bytes

▪ 64 bytes -> 0 bytes

▪ 1000 bytes -> 3096 bytes

▪ 2400 bytes -> 1696 bytes

▪ 152 bytes   -> 104 bytes

▪ 3990 bytes ->106 bytes

▪ Total: 5048 bytes 36



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Slab Slob Slub ☺

▪ 18 bytes

▪ 64 bytes

▪ 1000 bytes

▪ 2400 bytes

▪ 152 bytes

▪ 3990 bytes

❖ If we started with no slabs allocated, how many pages
are being managed by the allocators after these allocations

▪ 16-byte slab allocator: 0 slabs

▪ 64-byte allocator: 1 slab -> 2 pages

▪ 256-byte allocator: 1 slab -> 2 pages

▪ 4096-byte allocator: 2 slabs -> 4 pages
37



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Slab Slob Slub ☺

❖ If a Slab allocator has multiple slabs that can fulfill an allocation request, it 
prefers to fill up slabs that are closest to being full. This is sort of the opposite 
of our “worst fit” algorithm. Why does the slab allocator do this?

▪ We don’t have the same concern of “small chunks that can’t be used” in a slab allocator 
since all allocations are of the same size. So the benefits of worst fit don’t apply here.

▪ This does benefit us though since if we can make some slabs empty, the slab allocator can 
give those page(s) back to the OS, thus decreasing the amount of memory it needs to take 
up.

38



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches

❖ The most common way to store a sequence of elements in C++ and most 
languages is a dynamically resizable array (e.g. a vector). 

A vector of <int> looks something like this in memory:

39

int main(int argc, char** argv) {

  vector<int> v {3, 4, 5, 7, 8};

}

stack

heap

v
size_t size = 3

size_t capacity = 3

int* data = 

3

4

5

7

8

16 bytes 20 bytes



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly 
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type, 
and instead has each bool stored as a bit instead of the type a stand-a-lone 
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this. 
What are those reasons?

40



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly 
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type, 
and instead has each bool stored as a bit instead of the type a stand-a-lone 
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this. 
What are those reasons?

▪ A lot less space is taken up, and as a side effect of that, you probably don’t have to call 
malloc as often and will have better cache performance

41



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them, 
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

▪ If we use a vector<bool> that represents each bool with a single bit

42



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them, 
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

• 2 cache misses, 118 cache hits

▪ If we use a vector<bool> that represents each bool with a single bit

• 1 cache miss, 119 cache hits

43



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches Q2

❖ Let's say we are making a program that simulates various particles interacting 
with each other. To do this we have the following structs to represent a color 
and a point

❖ If we were to store 100 point structs in an array, and iterate over all of them, 
accessing them in order, roughly how many cache hits and cache misses would 
we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 44

struct color {

  int red, green, blue;

};

struct point {

  double x, y;

  struct color c;

};



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches Q2

❖ Let's say we are making a program that simulates various particles interacting 
with each other. To do this we have the following structs to represent a color 
and a point

❖ If we were to store 100 point structs in an array, and iterate over all of them, 
accessing them in order, roughly how many cache hits and cache misses would 
we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 45

struct color {

  int red, green, blue;

};

struct point {

  double x, y;

  struct color c;

};

Roughly every other time we access a point 
struct, it will already be in the cache. The other 
50% of the time, it needs to be fetched from 
memory



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches Q3

❖ Consider the previous problem with point and color structs. 

❖ In our simulator, it turns out a VERY common operation is to iterate over all 
points and do calculations with their X and Y values.

❖ How else can we store/represent the point objects to make this operation 
faster while still maintaining the same data? Roughly how many cache hits 
would we get from this updated code?

46



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Caches Q3

❖ Consider the previous problem with point and color structs. 

❖ In our simulator, it turns out a VERY common operation is to iterate over all 
points and do calculations with their X and Y values.

❖ How else can we store/represent the point objects to make this operation 
faster while still maintaining the same data? Roughly how many cache hits 
would we get from this updated code?

47

Change point to just be:
struct point {

  double x, y;

}

Then Store two arrays:
array<point, 100> arr1;   

array<color, 100> arr2;

// point at index I

// has color arr2[i]

Each time we access a point, 
we can now load 4 points into 
the cache. We now get ~25 
cache misses and 75 hits



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Scheduling

❖ Four processes are executing on one CPU following round robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one 
that just arrived goes into the ready queue before the one that just finished its time slice.

48



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one 
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context 
switches would there be?

49



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one 
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest

50



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one 
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

51



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Scheduling

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context 
switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

52

Depends on if C shows 

up at time 3 or 4

Either way, only 4 

context switches, so 3 

less than quantum = 2



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

File System Navigation

In a traditional Linux file system (like ext2), navigating a path like /dir1/dir2/file.txt

involves multiple steps.

Describe what the file system must do to locate the inode for file.txt, starting 

from the root directory. 

53



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

File System Navigation

In a traditional Linux file system (like ext2), navigating a path like /dir1/dir2/file.txt

involves multiple steps.

Describe what the file system must do to locate the inode for file.txt, starting 

from the root directory. 

54

1. First, we need to load in the blocks containing the directory entries for the root directory, “/”, in inode 2.
• After looping through the blocks containing the dirents, we find the entry for “dir1” and its inode X.

2. We need to load in the blocks containing the directory entries for the directory, “dir1”, in inode X.
• After looping through the dirents, we find the associated entry for “dir2” and its inode Y.

3. Finally, we load in the blocks containing the directory entries for the directory, “dir2”, in inode Y.
• We can finally loop through the directory entries for “dir2” and find file.txt’s entry and thus corresponding 

inode. And we are done!



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ Each inode can operate in one of two modes: small or large mode.

❖ In small mode, the inode directly stores up to 5 block numbers  that point to file 
data.

❖ Each block is 1024 bytes in size.

❖ Assuming a file contains at least some data (i.e., it's not empty), what is the 
smallest amount of space that would be allocated for a file?

55



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ Each inode can operate in one of two modes: small or large mode.

❖ In small mode, the inode directly stores up to 5 block numbers  that point to file 
data.

❖ Each block is 1024 bytes in size.

❖ Assuming a file contains at least some data (i.e., it's not empty), what is the 
smallest amount of space that would be allocated for a file?

56

THE SMALLEST AMOUNT OF SPACE ALLOCATED TO A FILE IS ONE BLOCK SO 1024 BYTES!



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ Each inode can operate in one of two modes: small or large mode.

❖ In large mode, the inode directly stores up to 10 block numbers. The 1st is singly 
indirect, the next 7 are double indirect, and the last 2 are triply indirect. 

❖ Each block is 1024 bytes in size.

❖ And block numbers are 4 bytes large.

❖ Assuming a file contains at least some data (i.e., it's not empty), what is the largest 
amount of space that would be allocated for a file? Feel free to leave your answer 
as an expression. 

57



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Largest File Possible

You are tasked with designing MinimalFS, where each file is represented by an inode.

❖ In large mode, the inode directly stores up to 10 block numbers. The 1st is singly 
indirect, the next 7 are double indirect, and the last 2 are triply indirect. 

❖ Each block is 1024 bytes in size And block numbers are 4 bytes.

❖ What is the largest amount of space that would be allocated for a file? Feel free to 
leave your answer as an expression. 

58

X = # of Block Nums for singly indirect = 1024/4 

Y = # of Block Nums for doubly indirect = 7 * ( 1024/4 * 1024/4) 

Z = # of Block Nums for triple indirect = 2 * (1024/4 * 1024/4 * 1024/4)  

(X + Y + Z) * 1024 bytes or just x + y + x blocks would be fine to say or write on an exam



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ When you move (mv) a file from one directory to another on the same Linux 
file system, does the file’s inode number have to change?
In other words, can the file keep the same inode number after the move?
What needs to happen for this to work correctly?

❖ Here, in this command, we are moving the file 'myfile' to directory './dir'.

59

$ mv myfile ./dir/



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

File System Block Allocation

❖ When you move (mv) a file from one directory to another on the same Linux 
file system, does the file’s inode number have to change?
In other words, can the file keep the same inode number after the move?
What needs to happen for this to work correctly?

❖ Here, in this command, we are moving the file 'myfile' to directory './dir'.

60

$ mv myfile ./dir/

Yes, the inode number can stay the same!

To move the file, the system only needs to update the directory entries: it adds an entry for 'myfile' in the target 
directory (./dir) that points to the same inode, and then removes the old entry from the original directory (.).

The inode itself, and all the information stored in the inode, do not change (other than last accessed/modified time 
stamps if so).



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes and Virtual Memory

❖ Take a look at the following program: 

64

int main(){
pid_t child = fork();
if(child == 0){

printf("I'm the child!(:\n");
return;

}
printf("Just exec'd a child!\n");
waitpid(child, NULL, 0);
return 0;

}

Suppose a kernel is unable to 
create new virtual memory 
mappings after a fork operation 
(you have an old computer what 
can I say). This means all address 
map to identical physical memory 
locations in each process here.

Could this program  function 
correctly without requiring new 
mappings? 



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Processes and Virtual Memory

❖ Take a look at the following program: 

65

int main(){
pid_t child = fork();
if(child == 0){

printf("I'm the child!(:\n");
return;

}
printf("Just exec'd a child!\n");
waitpid(child, NULL, 0);
return 0;

}

Suppose a kernel is unable to 
create new virtual memory 
mappings after a fork operation 
(you have an old computer what 
can I say). This means all address 
map to identical physical memory 
locations in each process here.

Could this program  function 
correctly without requiring new 
mappings? 

REMEMBER: PRINTF MAINTAINS A BUFFER (GLOBAL STATE) AND IF THEY BOTH SHARE THE SAME BUFFER THEN 
NO BUENO! THEY NEED TO WRITE TO SEPARATE BUFFERS.

THERE IS ALSO pid_t child WHICH IS SHARED. THOUGH THIS COULD POSSIBLY BE KEPT IN SEPARATE REGISTERS.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity is that page tables exist in memory themselves. However, the 
memory that is used to store some (not all) page tables are usually “pinned” in 
memory, meaning that those pages cannot be evicted/removed from physical 
memory even if we need more space.

❖ Why is it important that some of the pages containing these page tables 
remain “pinned”? Please explain your answer.

66



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Page Tables Q1

❖ One oddity is that page tables exist in memory themselves. However, the 
memory that is used to store some (not all) page tables are usually “pinned” in 
memory, meaning that those pages cannot be evicted/removed from physical 
memory even if we need more space.

❖ Why is it important that some of the pages containing these page tables 
remain “pinned”? Please explain your answer.

67

A page table walk (resolving a physical address) might be required for any virtual address at any time — 
whether valid or invalid. To perform the walk, the system must be able to access the relevant page table 
entries. But if those entries themselves require translation (and we don’t know where the page tables are in 
physical memory), we’d be stuck in a loop.

That’s why some addresses — such as the ones containing the page tables — must be pinned in physical 
memory  so the hardware can always find and use them without needing to translate further.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Page Tables Q2

❖ At the beginning, we imagined the page table as one giant array containing 
one page table entry for each page (where the page number was the index into 
the table). However, we saw that this design is pretty wasteful (do you 
remember why?) 

❖ Let’s say we had a virtual page number that we wanted to translate to a 
physical page number. What would the look up speed be of the “big array” 
page table be? What about one with 4 page table levels?

68



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Page Tables Q2

❖ At the beginning, we imagined the page table as one giant array containing 
one page table entry for each page (where the page number was the index into 
the table). However, we saw that this design is pretty wasteful (do you 
remember why?) 

69

We would then need one PTE for every virtual page, but most virtual pages won’t have a
mapping (or “exist”) .

In multilevel we can allocate PTE’s & create mappings later (when the page gets accessed for 
the first time and thus the mapping is needed)



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Page Tables Q2

❖ Let’s say we had a virtual page number that we wanted to translate to a 
physical page number. What would the look up speed be of the “big array” 
page table be? What about one with 4 page table levels?

70

The large array model provides constant-time lookup with just one memory access, since the 
specific section of the table we need can be directly indexed using the virtual page number 
(VPN). Once we have the VPN, we index into the page table, and the translation is complete. 
Tada.
In contrast, a 4-level page table requires us to traverse 4 separate memory locations, one for 
each level of the hierarchy. Although this may seem like a minor increase, the overhead can 
quickly add up — especially if any of those accesses trigger a page fault, causing the system to 
load different page table levels from disk…no bueno (but we hope this doesn’t happen. ;))



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Eric and Akash are debating the best page replacement policy. One of them 
says that LRU is strictly better (e.g. better in all cases) than FIFO page 
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not true, provide an 
example of page accesses that counters this claim.

71



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Page Replacement Policy

❖ Eric and Akash are debating the best page replacement policy. One of them 
says that LRU is strictly better (e.g. better in all cases) than FIFO page 
replacement and always leads to less page faults.

❖ Is this true or false? Please explain your answer. If it is not true, provide an 
example of page accesses that counters this claim.

72

False: consider we have 4 physical pages and have the reference string:
0 1 2 3 0 4 1 2 3
In LRU we get 8 page faults
In FIFO we get 5 page faults



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Inverted Page Table

❖ Some systems used something different than a multi-level page table. They 
realized that there are a lot more virtual pages than there are physical pages…
So why not just have one entry per physical page?

❖ Would be one global page table since it is based on physical memory

❖ Implemented essentially as a chaining hash table

73



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Inverted Page Table

❖ Chaining Hash Table

▪ Hash: If a process wants to lookup to see if a page is in physical memory, it hashes the 
virtual page number and iterates through that chain

74

Hash Chain

0

1

2 NULL

3 NULL

4

5 NULL

…

PTE

PTE

PTEPTE PTE

PTE PTE PTE

It isn’t really like a typical “chaining hash table”
but this is the core idea of how it works.



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Inverted Page Table

❖ How can we enforce process isolation in the table if it is shared across all 
processes?

❖ What is at least one advantage this has over the multi-level page tables?

❖ What is at least one disadvantage? (Other than the one in the question below)

❖ It turns out there is a benefit to having an entry for mappings that still exist, 
but point to the swap file and not physical memory. Why do you think this is?

75



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Inverted Page Table

❖ How can we enforce process isolation in the table if it is shared across all 
processes?

▪ The hash and “key” into the table should not just include the virtual page number, but also 
the process ID.

❖ What is at least one advantage this has over the multi-level page tables?

▪ Uses up a LOT less space, only 1 PTE per frame that is being used.

76



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Inverted Page Table

❖ What is at least one disadvantage? (Other than the one in the question below)

▪ Doesn’t benefit from locality as much. In multi-level the PTE’s of nearby addresses are next 
to each other, here they aren’t

▪ Could be more difficult to manage as it is shared across all processes as opposed to one 
process having it’s own. If one process needs to change the table, it could “lock” it and 
bottleneck other processes from using the table.

❖ It turns out there is a benefit to having an entry for mappings that still exist but 
point to the swap file and not physical memory. Why do you think this is?

▪ It makes it easier to know that the page is in swap, and where to fine it in the swap file

77



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads. Assume that file.txt is 
large file containing the contents of a book.  Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it
using just a mutex?
(where do we add calls to
lock and unlock?)

78

string data = "";  // global

void* first_thread(void* arg) {

  f = open("file.txt", O_RDONLY);

  while (!f.eof()) {

     string data_read = f.read(10 chars);

     data = data_read;

  }

}

void* second_thread(void* arg) {

  while (true) {

    if (data.size() != 0) {

      print(data);

    }

    data = "";

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

79

string data = "";  // global

void* first_thread(void* arg) {

  f = open("file.txt", O_RDONLY);

  while (!f.eof()) {

     string data_read = f.read(10 chars);

     data = data_read;

  }

}

void* second_thread(void* arg) {

  while (true) {

    if (data.size() != 0) {

      print(data);

    }

    data = "";

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

80

string data = "";  // global

pthread_mutex_t mutex;

void* first_thread(void* arg) {

  f = open("file.txt", O_RDONLY);

  while (!f.eof()) {

     string data_read = f.read(10 chars);

     pthread_mutex_lock(&mutex);

     data = data_read;

     pthread_mutex_unlock(&mutex);

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

81

string data = "";  // global

pthread_mutex_t mutex;

void* second_thread(void* arg) {

  while (true) {

    pthread_mutex_lock(&mutex);

    if (data.size() != 0) {

      print(data);

    }

    data = "";

    pthread_mutex_unlock(&mutex);

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic 
output? (Assuming the contents of the file stays the same).

82

string data = "";  // global

void* first_thread(void* arg) {

  f = open("file.txt", O_RDONLY);

  while (!f.eof()) {

     string data_read = f.read(10 chars);

     data = data_read;

  }

}

void* second_thread(void* arg) {

  while (true) {

    if (data.size() != 0) {

      print(data);

    }

    data = "";

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic 
output? (Assuming the contents of the file stays the same).

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

This is the distinction
between a data race
and a race condition

83

string data = "";  // global

void* first_thread(void* arg) {

  f = open("file.txt", O_RDONLY);

  while (!f.eof()) {

     string data_read = f.read(10 chars);

     data = data_read;

  }

}

void* second_thread(void* arg) {

  while (true) {

    if (data.size() != 0) {

      print(data);

    }

    data = "";

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it 
and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

84

string data = "";  // global

void* first_thread(void* arg) {

  f = open("file.txt", O_RDONLY);

  while (!f.eof()) {

     string data_read = f.read(10 chars);

     data = data_read;

  }

}

void* second_thread(void* arg) {

  while (true) {

    if (data.size() != 0) {

      print(data);

    }

    data = "";

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it 
and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

▪ Busy waiting possible
in second_thread. 
We could have the
threads use a
condition variable to
wait for data to be
updated and thread1
to signal thread2 once
ready

85

string data = "";  // global

void* first_thread(void* arg) {

  f = open("file.txt", O_RDONLY);

  while (!f.eof()) {

     string data_read = f.read(10 chars);

     data = data_read;

  }

}

void* second_thread(void* arg) {

  while (true) {

    if (data.size() != 0) {

      print(data);

    }

    data = "";

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Deadlock

❖ Consider we are working with a data base that has N numbered blocks. 
Multiple threads can access the data base and before they perform an 
operation, the thread first acquires the lock for the blocks it needs.

▪ Example: Thread1 accesses B3, B5 and B1. Thread2 may want to access B3, B9, B6. Here is 
some example pseudo code:

86

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to acquire the same lock twice

▪ Someone proposes we fix this by locking the whole database instead of locking at the 
block level. What downsides does this have? Does it even avoid deadlocks?

▪ How can we fix this
(without locking
the whole database
if that even works)?

87

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Deadlock

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to acquire the same lock twice

• Thread 1 wants B2 and B4. Thread 2 also wants B2 and B4, but lists them in a different order. 
Thread 1 gets B2, Thread 2 get B4, and we deadlock.

88

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Deadlock

▪ Someone proposes we fix this by locking the whole database instead of locking at the 
block level. What downsides does this have? Does it even avoid deadlocks?

• This works, but now our data base is run entirely sequentially for these transactions even if 
two thread have completely separate blocks they operate on, they cannot run in parallel.

89

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIS 4480/5480, Summer 2025Final Exam ReviewUniversity of Pennsylvania

Deadlock

▪ How can we fix this (without locking the whole database
if that even works)? 

▪ Have each thread acquire the locks in a strict increasing numerical order. This prevents 
any cycles from happening

90

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}


	Default Section
	Slide 1: Final Exam Review (Pt. 3) Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Disclaimer
	Slide 4: Disclaimer
	Slide 5: New Problems Added
	Slide 6: Practice Problems
	Slide 10: Processes vs Threads
	Slide 11: Processes vs Threads
	Slide 12: Threads and Exec
	Slide 13: Threads and Exec
	Slide 14: Processes vs Threads
	Slide 15: Processes vs Threads
	Slide 16: Processes vs Threads
	Slide 17: Processes vs Threads
	Slide 18: Processes vs Threads
	Slide 19: Processes vs Threads
	Slide 20: Processes vs Threads
	Slide 21: Processes vs Threads
	Slide 22: Processes vs Threads
	Slide 23: Kernal Signal Handlers
	Slide 24: Kernal Signal Handlers
	Slide 25: Memory Allocation
	Slide 26: Memory Allocation
	Slide 27: Memory Allocation
	Slide 28: Memory Allocation
	Slide 29: Memory Allocation
	Slide 30: Memory Allocation
	Slide 31: Memory Allocation
	Slide 32: Memory Allocation
	Slide 33: Memory Allocation
	Slide 34: Slab Slob Slub 
	Slide 35: Slab Slob Slub 
	Slide 36: Slab Slob Slub
	Slide 37: Slab Slob Slub 
	Slide 38: Slab Slob Slub 
	Slide 39: Caches
	Slide 40: Caches
	Slide 41: Caches
	Slide 42: Caches
	Slide 43: Caches
	Slide 44: Caches Q2
	Slide 45: Caches Q2
	Slide 46: Caches Q3
	Slide 47: Caches Q3
	Slide 48: Scheduling
	Slide 49: Scheduling
	Slide 50: Scheduling
	Slide 51: Scheduling
	Slide 52: Scheduling
	Slide 53: File System Navigation
	Slide 54: File System Navigation
	Slide 55: Largest File Possible
	Slide 56: Largest File Possible
	Slide 57: Largest File Possible
	Slide 58: Largest File Possible
	Slide 59: File System Block Allocation
	Slide 60: File System Block Allocation
	Slide 64: Processes and Virtual Memory
	Slide 65: Processes and Virtual Memory
	Slide 66: Page Tables Q1
	Slide 67: Page Tables Q1
	Slide 68: Page Tables Q2
	Slide 69: Page Tables Q2
	Slide 70: Page Tables Q2
	Slide 71: Page Replacement Policy
	Slide 72: Page Replacement Policy
	Slide 73: Inverted Page Table
	Slide 74: Inverted Page Table
	Slide 75: Inverted Page Table
	Slide 76: Inverted Page Table
	Slide 77: Inverted Page Table
	Slide 78: Threads & Data Races
	Slide 79: Threads & Data Races
	Slide 80: Threads & Data Races
	Slide 81: Threads & Data Races
	Slide 82: Threads & Data Races
	Slide 83: Threads & Data Races
	Slide 84: Threads & Data Races
	Slide 85: Threads & Data Races
	Slide 86: Deadlock
	Slide 87: Deadlock
	Slide 88: Deadlock
	Slide 89: Deadlock
	Slide 90: Deadlock


