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Initial/PennID:

1 Files, Files, and Files [17 Points]

Take a look at the following block of code, which forks a child process, establishes a pipe between the parent
and child, and transmits the entire contents of a file through the pipe using the function write file pipe.

You may assume that your PennShell is the only running process that references the controlling terminal
prior to it executing the following code as a single job.

1 const char *argv[] = {"./myprogram", NULL};
2

3 int main(){
4

5 char *file_name_str = "my_file.txt"; // question 2.3 getline(....);
6 int file_fd = open(file_name_str, O_RDONLY);
7

8 int pipe_arr[2];
9 pipe2(pipe_arr, O_CLOEXEC);

10

11 pid_t child = fork(); //Line 11
12

13 if(child == 0){
14 close(file_fd);

15 dup2(pipe_arr[0], STDIN_FILENO); //line 15

16 execvp(argv[0], argv);

17 exit(EXIT_FAILURE);

18 }

19

20 close(pipe_arr[0]);

21

22 write_file_pipe(pipe_arr[1], file_fd);

23

24 close(file_fd);

25 close(pipe_arr[1]);

26

27 waitpid(-1, NULL, 0);

28 printf("Finished waiting for child. \n");
29

30 }

Problem continues onto the next page
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(a) How many descriptors? [5 Points]

The job is executed by your PennShell in the foreground. By the time we reach line 11 (i.e. right before
the fork but haven’t executed it), how many file descriptor(s) are in use by this foreground job? Justify
your answer.

Solution. At the start, we have three in usage, STDIN FILENO, STDOUT FILENO, and STDERR FILENO.
With the open call, we add one more for the file. And finally, the pipe requires two. So in total, 6.

(b) How many can write? How many can read? [6 Points]

The job is executed by your PennShell in the foreground. By the time line 11 (i.e. the fork) is executed
successfully, how many processes are allowed to write to the terminal? How many are able to read from
it? Justify your answer. Assume the parent and child have not gone further than the fork.

Solution. First, we count the total number of processes running within this session:

1. Penn-Shell (the shell)

2. The Parent process (which is the original job)

3. The Child process (which is forked from the original job)

Since the child process is created via fork(), it inherits the same Process Group ID as its parent.

By default, any process within the same session can print to the terminal. Therefore, a total of
three processes can write to it, including Penn-Shell, the parent process, and the child process. For
example, executing cat file.txt & runs without issue because background processes can write to
the terminal.

Since the job is running in the foreground, the entire process group retains terminal control via
tcsetpgid, allowing them to read from the terminal without issue. However, this terminal control
handoff is managed by the initial shell process (Penn-Shell). Consequently, Penn-Shell itself is not
allowed to read from the terminal unless it explicitly regains control using its own tcsetpgid call.

Thus, only two processes—the original job (the parent) and the child—can read from the terminal.

NOTE: This exam does not focus on extremely minute details. Even if the PennShell implemen-
tation ignores or blocks SIGTTIN and/or SIGTTOU, this does not mean it will still be able to read
from the terminal. While the process may ignore or block SIGTTIN sent by the kernel, the read
operation will still fail with an EIO error.

If the response states that ”three processes can read because PennShell ignores/blocks SIGTTIN,” full
credit will still be awarded even if it is wrong.
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(c) get(in)line PennShell Partner [6 Points]

Your PennShell partner wants to make your life harder! (Go figure.) Instead of hardcoding which file to open,
they suggest using getline(...) to prompt the user for a filename. They then modify the code accordingly
and run the job in the background.

What should happen when this job is run? Explain.

Solution. The key here is knowing that using getline you are reading from STDIN which by default
refers to the terminal for the session. When a background process attempts to read from the terminal
that it does not have control of (via tcsetpgrp) then it is sent a SIGTTIN from the kernal and it is
stopped. As long as you said it stops then you get full points!
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2 A Set of Signals is Called a sigset t [16 Points]

As a senior software engineer at your highly lucrative company, you’re responsible for mentoring an intern.
Additionally, your team is in charge of developing a New Operating System. The New Operating System
makes preemption of a task more easily controllable by user code by having the kernel send two new signals,
SIGSLEEP and SIGWAKE, at any time. These signals cause a process to suspend itself immediately
(SIGSLEEP) or resume execution (SIGWAKE) under all circumstances. While these signals can be blocked,
they cannot be ’ignored’.

A SIGWAKE is always preceded by a SIGSLEEP. If a process receives a SIGSLEEP, it is guaranteed to receive
a SIGWAKE at some unknown future time. If both SIGWAKE and SIGSLEEP are pending signals (blocked),
they are not delivered to the process and are discarded. Additionally, the only way to continue a process
suspended via SIGSLEEP is with a SIGWAKE.

Your intern writes this code to demonstrate that signals work in the new operating system. The code
overview is as follows:

• Install a handler for tested signal.
• Block the signal, tested signal.
• Send the process that signal using kill.
• Unblock the signal.
• Install a handler for SIGALRM.
• Call wait for alarm to wait for the alarm that the tested signal’s handler registered.

void signal_handler(int sig); //Calls ALARM(10);
void alrm_signal_handler(int sig); //Writes to the terminal "Alarm caught!".

void test_signal_mask(int signal) {
sigset_t new_set;
sigemptyset(&new_set);

sigaddset(&new_set, signal);

sigprocmask(SIG_BLOCK, &new_set, NULL);

kill(0, signal); // Send the signal to itself

sigprocmask(SIG_UNBLOCK, &new_set, NULL);

}

//This function should RETURN ONLY IF and WHEN A SIGALRM IS RECEIVED.

// An alarm should be registered (by the tested signal's handler) to make this function return.
void wait_for_alarm() {

sigset_t set;
sigfillset(&set); //Adds all signals to the set

sigdelset(&set, SIGALRM);// Removes SIGALRM from the set

sigsuspend(&set); // suspend execution with a specified mask till a signal is recieved

}

int main(){
int tested_signal = SIGINT; // Can be most signals. NOT SIGALRM, SIGSLEEP or SIGWAKE
install_handler(tested_signal, signal_handler); // installs handler with sigaction

test_signal_mask(tested_signal);

install_handler(SIGALRM, alrm_signal_handler); // installs handler with sigaction

wait_for_alarm();

}
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Your intern’s code is supposed to always print ’Alarm caught!’ and then terminate. However, after executing
your intern’s code, sometimes ’Alarm caught!’ is correctly written to the terminal and exits; at other times,
the program is terminated seemingly at random, and sometimes it hangs after printing ’Alarm caught!’.”

What seems to be the issue(s) in the intern’s code? Explain and give the possible fix(es). You can assume
that the code compiles and that the only signals blocked in the handlers are the signals that triggered
them.

Solution. This is more of a walkthrough. A detailed description was not expected on the exam. There
are three possible outcomes; let’s examine them:

’Alarm caught!’ is correctly written to the terminal and exits. If something can execute correctly
without modifying the code, that strongly indicates a race condition. The key factor here is the timing
of execution. The other two outcomes provide more insight into this behavior.

”...the program is terminated seemingly at random.” The only sources of randomness in this context
are SIGWAKE and SIGALRM. While kernel/OS scheduling introduces some variability, the alarm is set
for 10 seconds—a long duration from the computer’s perspective—so it is reasonable to assume that
the program reaches sigsuspend before the alarm expires. If the program terminates at random, only
one signal can be responsible: SIGALRM.

SIGSLEEP and SIGWAKE do not terminate processes; they only stop or resume them. However, SIGALRM
has a default disposition that terminates the process upon reception. A handler is installed for SIGALRM,
but the crucial question is: when is it installed?

Since the handler is installed after the alarm is set, there exists a period where the alarm is active,
but the default disposition has not yet been overridden. Additionally, the interval between SIGSLEEP
and SIGWAKE is both unknown in duration and timing. A SIGSLEEP could arrive immediately after a
SIGWAKE, creating a delay longer than the alarm interval.

Fix: Install the SIGALRM handler before calling ALARM(10). This ensures that the default termination
behavior is overridden by the time the alarm is set.

”...sometimes it hangs after printing ’Alarm caught!’” In this scenario, the SIGALRM handler is
correctly installed, the alarm(10) executes as expected, and SIGALRM is received. So, what causes
the program to hang?

The only way a process can hang in this case is on sigsuspend. However, SIGALRM should allow
the program to exit from sigsuspend. The issue arises when the SIGSLEEP - SIGWAKE interval is
longer than the alarm interval and occurs before the program enters sigsuspend.

If the alarm triggers before reaching sigsuspend, the signal is handled, and the program proceeds.
But because sigsuspend blocks everything except SIGALRM, and SIGALRM has already been received,
the program will never receive another one. As a result, it remains indefinitely suspended.

Fix: Block SIGSLEEP and SIGWAKE before calling ALARM(10) and unblock them after exiting
sigsuspend. This prevents unwanted delays that might cause the alarm signal to be handled too
early.

Expected student solution:

The presence of a race condition prevents SIGALRM from being properly synchronized with the rest
of the program. The desired behavior is for SIGALRM to trigger its handler rather than its default
termination behavior, which explains the random terminations. To ensure this, the SIGALRM handler
should be installed before calling ALARM(10), ideally at the same time as installing the handler for
the tested signal. continues on next page.
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Additionally, the program might hang if it reaches sigsuspend after the alarm has been set, the handler
installed, and the alarm triggered. This situation only occurs if SIGSLEEP and SIGWAKE introduce a
delay longer than 10 seconds between setting the alarm and entering sigsuspend.

Fix: Block SIGSLEEP and SIGWAKE before calling ALARM(10) and unblock them after exiting
sigsuspend. With these changes, the program functions correctly.
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3 Extending the Linux File System ext2 [24 Points]

We have seen that filesystems, such as ext2, are more complex than they initially appear. In this question, you
will design an enhanced version of ext2 called PennExt, focusing on secure block management.

(a) Why Wipe Blocks? [3 Points]

Before you begin designing PennExt, it is crucial to consider the implications of leaving old data intact on
newly allocated blocks. When implementing a kernel, your job isn’t to just write a kernel that maintains
processes and files, but also to ensure the security within processes and file accesses.

What security and privacy risks could arise if blocks are not wiped before being reallocated to a new
file?

Solution. Allocating blocks that were previously used by other files without clearing them poses a
security and privacy risk, as those blocks may still contain sensitive information. This risk is especially
concerning in environments where multiple users share the same file system or storage device.

Without a deep understanding of the file system interface, one could speculate that it might be possible
to increase the size of a file without writing to it and then read existing data left in those blocks.
Regardless of the specific mechanism, users should never be able to access data that does not belong
to them (or more specifically, do not have permission to read from).

(b) Free Blocks [7 Points]

In a basic design, free blocks could be tracked with a bitmap spanning multiple blocks. However, you are
restricted from introducing any new data structures and must rely on ext2’s existing reserved inodes (10 in
total, with the second inode always being the root).

How can you leverage these reserved inodes to manage free blocks? Where exactly would these block
references be stored, and how would you maintain and update them?

Solution. Since there are nine free reserved inodes, one or more of them could be used to track blocks
that have become unused. Typically, inodes track data blocks associated with regular files, such as
‘generic.txt‘. However, nothing prevents the creation of a hidden file (e.g., unusedblocks.inode)
managed by the kernel and file system.

This special file would store the block numbers of unused blocks. When a block becomes unused, its
number would be appended to this file. When an unused block is needed, the required number of free
block numbers can be read from this file, allocated to a new file, and then removed from the list. The
data blocks of this special file can function as singly indirect blocks containing references to unused
data blocks, mimicking an inherent aspect of the filesystem without the need to add any superfluous
data structures or abstractions.
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(c) When Writing, How Long Do You Wait? [3 Points]

Files can be truncated or deleted in several ways, such as by calling OPEN with the O TRUNC flag, which
reduces a file’s size by truncating it, or by using the ftruncate function, which you may not have
encountered before.

In your design, blocks must be wiped using erase(block number) before being returned to the free list.
Since there is only a single structure tracking free blocks, blocks must be erased and re-added to the free list
immediately; otherwise, they will be lost.

Assume that when a file is truncated (reducing its number of blocks) or deleted, its blocks are immediately
erased and returned to the free list. Why might this approach be suboptimal?

Solution. This approach is suboptimal because it significantly increases overhead when a file is
truncated or resized to a smaller size. The waiting time for I/O operations increases further if blocks
need to be cleared before being added to the unused-block structure. File systems and kernels must
remain responsive and efficient and not block for longer than absolutely necessary. Additionally, users
should not experience any noticeable delays due to these behind-the-scenes operations, which should
remain abstracted away.

(d) But, is there a solution? [9 Points]

You can mitigate the trade-off by using the kernel when it is idle. The kernel can execute a synchronize()
function that synchronizes the file system so that all unused blocks that previously held file data are wiped
and added to your free list design from part (b).

What would you need to add to your design in (part b) to make this synchronize() feasible? Explain
how your approach alleviates the drawbacks from the previous question.

Solution.

In part b, the design used a reserved inode (or a set of them) to track unused data blocks. The data
blocks of these reserved inodes acted as singly indirect blocks, storing the block numbers of available
but uncleared blocks.

To introduce the functionality of clearing unused blocks in the background—either when the kernel
or file system is idle—and synchronizing the file system efficiently, two separate inodes (or sets of
inodes) must be used to maintain two distinct lists:

1. Blocks that have been recently marked as free/unused but are still uncleared (i.e. dirty).

2. Blocks that have been cleared/empty/ready-to-use.

To achieve this, an additional hidden file, dirty unused blocks.inode, can be introduced. This file’s
data blocks serve as singly indirect blocks containing the block numbers of dirty (uncleared) unused
blocks. The original hidden file from part b can be renamed to cleared unused blocks.inode,
where its data blocks continue to store the numbers of cleared and available blocks, meaning they are
ready to be allocated to files.

When a block is newly marked as unused and is still dirty, it is appended todirty unused blocks.inode.
This approach significantly reduces overhead, as it simplifies to appending data to a file rather than
immediately clearing blocks.

continues on next page.
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When the kernel or file system is idle (or if the number of cleared and unused data blocks reaches
zero), synchronize() can be executed. During this process:

1. The data blocks in dirty unused blocks.inode are read to extract block numbers.

2. Those blocks are cleared.

3. The corresponding entries are removed from dirty unused blocks.inode.

4. The cleared block numbers are added to cleared unused blocks.inode, making them avail-
able for allocation.

Allocating these blocks to files then simply requires:

1. Reading block numbers from cleared unused blocks.inode.

2. Removing them from the file.

3. Adding references to these blocks in another inode’s data block list.

And with that, the system efficiently manages unused block clearing while minimizing performance
overhead. (We were not looking for submissions that were this verbose, this solution is this long
for explanatory purposes in case you wanted to see a more complete response.)

(e) How do we know what these inodes do? [2 Points]

Finally, before your new system design hits production, you need to indicate the functionality these inodes
now implore. Where in the file system would you need to mark this change? Briefly explain your answer.
Hint: In which block?

Solution. We can indicate the change in the super-block, as this is where the information about the
file system is maintained, including the functionality of the reserved inodes.
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4 Threads are cooooooooooooool [10 Points]

Consider the following code.

int global_counter = 0;

void* thread_main(void* arg) {
while (global_counter < 2) {
global_counter += 1;

}

return NULL;
}

Assume that two threads are running the function thread main and return from the function
normally. Additionally, there are no hardware or compiler optimizations that occur.

(a) Minimum [4 Points]

What is the minimum value that global counter can be after both threads finish? Briefly justify your answer.

Solution. The minimum possible value of global counter is 2. This can be deduced from the
fact that exiting the while loop requires global counter to be at least 2. In a strictly sequential
execution, thread A would first increment global counter to 2 and exit, after which thread B
would increment it to 3 before exiting. However, it is possible for global counter to remain at 2 due
to interleaving operations between the two threads.

To understand this, consider breaking down the increment operation into its fundamental steps:

1. Load the value of global counter from memory into a register.

2. Increment the value stored in the register.

3. Store the incremented value back into memory at the address of global counter.

Now, consider the following interleaving of instructions between thread A and thread B, both
starting when global counter is initially 1:

# Thread A # Thread B

LOAD R1, global_counter

LOAD R2, global_counter # Both threads load 1

ADD R1, R1, 1

ADD R2, R2, 1 # Both increment to 2

STORE global_counter, R1

STORE global_counter, R2 # Both write back 2

Both threads independently read the initial value (1) into their respective registers. They each increment
their local copy to 2 and then write it back to memory. Since both store the same value (2), the final
result in memory remains 2 instead of 3. As a result, both threads exit, leaving global counter at
its minimum possible final value of 2.

(b) Maximum [6 Points]

What is the maximum value that global counter can be after both threads finish? Briefly justify your answer.
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Solution. Building off the explanation in the previous part, the maximum possible value of global counter
is 3. We can see this by coming up with a possible interleaved sequence of instructions between the
two threads. Consider the following interleaving of instructions between thread A and thread B,
both starting when global counter is initially 1 and both are at the entry point of the while loop:

# Thread A # Thread B

LOAD R1, global_counter

ADD R1, R1, 1

STORE global_counter, R1

LOAD R2, global_counter # Thread B load 2

ADD R2, R2, 1 # Increment to 3

STORE global_counter, R2 # Thread B writes back 3

# Then it exits.

Unlike the previous case,thread A completes its increment operation first, updatingglobal counter
to 2 before thread B executes its load instruction. When thread B then loads the value from memory,
it sees the updated value (2), increments it to 3, and writes it back. Since thread B was the last to
update global counter, the final stored value in memory is 3. This interleaving represents the
maximum possible final value of global counter.

Again, we weren’t looking for justifications that were this verbose. It’s here more for completeness.
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5 I want to schedule more sleep time [30 Points]

Let’s introduce a new scheduling algorithm, Shortest Remaining Time First (SRTF), which is a
preemptive version of Shortest Job First (SJF).

Shortest Remaining Time First works as follows:

• The first task received becomes the current running task.
• The current running task is the only one that is making progress and thus it’s ”remaining time” gets

smaller (since it is currently being executed)
• The current running task is pre-empted if a new task with shorter remaining time arrives. Otherwise,

the run current task runs to completion or till it willingly gives up the CPU.

Consider the table of tasks below:

Note that task D is a special ”reoccurring” task. It runs for only 1 unit of time before it gets blocked on
I/O (e.g. ”finishes”). However, after 3 time units of not running it is received as a task again.

If we were to schedule this with the round robin algorithm with a quantum of 3, we get:

Note how there is a long time between the first time and second time task D ran; it simply became
”runnable” after 3 time units of not running and was re-added to the queue until its turn.
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(a) Let’s Schedule It [20]

Schedule the same tasks that we ran with round robin, but this time with SRTF. You can make the following
assumptions if needed:

• A task can be scheduled to run as soon as it arrives.
• If there are two or more tasks that the scheduler could run with the same remaining time left, then it

chooses the one that comes first alphabetically (e.g. if A and C tied, A would run).

Solution.
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(b) Pros [5 Points]

In general (not specific to this scenario), what is one way SRTF is better than round robin? Please justify
your answer.

Solution. SRTF can be more efficient than Round Robin in scenarios where tasks arrive in bursts with
gaps between arrivals — especially when task lengths vary.

If all jobs arrive at the same time and are of equal length (e.g., 9 units), SRTF simply runs each job
to completion before moving on. With two tasks, for example, it completes the first in 9 ticks and the
second in another 9 ticks, totaling 18 ticks.

Round Robin, however, slices time into fixed quanta (e.g., 3 units). This forces the CPU to frequently
switch between tasks, even when it’s unnecessary. In the same scenario, Round Robin would complete
the first task in 15 ticks and the second in 3 more, still totaling 18 ticks — but with significantly more
context switches. This dramatically increases overhead, especially when the quantum is small or when
task lengths are highly variable. SRTF reduces this overhead by minimizing the number of context
switches, making it more efficient in such cases.

(c) Cons [5 Points]

In general (not specific to this scenario), what is one reason SRTF may be worse than a round robin?
Please justify your answer.

Solution. One critical reason SRTF is worse than round robin is that starvation is possible. If there is
a Task A that takes 10 quantum to run, but the scheduler receives a multitude of short 1-5 quatumns
to run consistently, then there is a good chance that the lengthy job would never run as it has a lower
priority that those with a shorter run time.

There are multile reasons why it could be worse; however, this it probably the most important reason
why it is worse.
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6 The Last Question [3 Points]

What is one bug that you and your partner got stuck on in Penn-Shell? What was the source of the bug? How
did you fix it?

Did you learn anything from that bug? Or, you could just write (or draw) anything you want here. :)

Solution. I cri everi time
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