
CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

The Heap, Processes
Computer Systems Programming, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar

The Dish, Stanford California

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 penn-vector)

▪ Released already! Should have everything you need after this lecture

▪ “Due” Monday (Fast Turnaround) next week 06/02

▪ Mostly a C refresher

❖ Pre semester Survey

▪ Anonymous

▪ Short!

▪ Out Tonight at Midnight, Due Wednesday the 4th

2

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Administrivia

❖ Second Assignment (HW01 penn-shredder)

▪ Releases after Monday’s lecture (should have everything you need by then)

▪ Due Friday next week 06/06

▪ Intro to system calls, processes, etc.

▪ Short Q&A and demo in lecture on Monday ☺

3

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Lecture Outline

❖ C “Refresher”

▪ Dynamic Memory vs the Stack

▪ Structs

❖ Processes
▪ Overview

▪ fork()

▪ exec()

4

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Demo: get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

5

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Demo: get_input.c

❖ Two things are wrong with this function. What are they?

❖ How do we fix this function w/o changing the function signature?

6

pollev.com/cis4480

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

// assuming this is how the function is called

char* result = read_stdin();

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Demo: get_input.c

❖ Two things are wrong with this function. What are they?

❖ How do we fix this function w/o changing the function signature?

7

main

The Stack

char* result

pollev.com/cis4480

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

// assuming this is how the function is called

char* result = read_stdin();

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Demo: get_input.c

❖ Two things are wrong with this function. What are they?

❖ How do we fix this function w/o changing the function signature?

8

main

The Stack

read_stdin

str ['H', 'i’, …]

char* result

pollev.com/cis4480

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

// assuming this is how the function is called

char* result = read_stdin();

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Demo: get_input.c

❖ Two things are wrong with this function. What are they?

❖ How do we fix this function w/o changing the function signature?

9

main

The Stack

?????????

char* result

pollev.com/cis4480

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

// assuming this is how the function is called

char* result = read_stdin();

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Memory Allocation

So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main() {

 counter++;

 printf("count = %d\n",counter);

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main() {

 int y = foo(10); // local var

 printf("y = %d\n",y);

 return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

10

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Aside: sizeof

❖ sizeof operator can be applied to a variable or a type and it evaluates to the
size of that type in bytes

❖ Examples:
▪ sizeof(int)– returns the size of an integer

▪ sizeof(double)– returns the size of a double precision number

▪ struct my_struct s;

• sizeof(s) – returns the size of the struct s

▪ my_type *ptr

• sizeof (*ptr) – returns the size of the type pointed to by ptr

❖ Very useful for Dynamic Memory

11

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information to make a final
decision on how much to allocate

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, maybe with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code explicitly deallocates it (manual memory management)

❖ C requires you to manually manage memory

▪ More control, and more headaches 12

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Heap API

❖ Dynamic memory is managed in a location in memory called the "Heap"

▪ The heap is managed by user-level runetime library (libc)

▪ Interface functions found in <stdlib.h>

❖ Most used functions:
▪ void *malloc(size_t size);

• Allocates memory of specified size

▪ void free(void *ptr);

• Deallocates memory

❖ Note: void* is “generic pointer”. It holds an address, but doesn’t specify
what it is pointing at.

❖ Note 2: size_t is the integer type of sizeof()

13

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

malloc()

malloc allocates a block of memory of the requested size

▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need

void *malloc(size_t size);

// allocate a 10-float array

float* arr = malloc(10*sizeof(float));

if (arr == NULL) {

 return errcode;

}

... // do stuff with arr

14

ALWAYS CHECK FOR NULL

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

free()

Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory

• (i.e. something previously returned by malloc)

▪ Freed memory becomes eligible for future allocation

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

15

free(pointer);

float* arr = malloc(10*sizeof(float));

if (arr == NULL)

 return errcode;

... // do stuff with arr

free(arr);

arr = NULL; // Preferred

free(NULL);

p.s. This is a No-Op.

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

❖ malloc:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ free:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

16

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Dynamic Memory Example

17

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr --

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002 Free

0x4003 Free

0x4004 Free

0x4005 Free

0x4006 Free

0x4007 Free

0x4008 USED

0x4009 USED

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Dynamic Memory Example

18

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr --

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002 h USED

0x4003 e USED

0x4004 y USED

0x4005 \0 USED

0x4006 Free

0x4007 Free

0x4008 USED

0x4009 USED

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Dynamic Memory Example

19

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr --

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002 h Free

0x4003 e Free

0x4004 y Free

0x4005 \0 Free

0x4006 Free

0x4007 Free

0x4008 USED

0x4009 USED

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Partially Fixed read_stdin()

20

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str = (char*) malloc(sizeof(char) * MAX_INPUT_SIZE);

 if (str == NULL) {

 return NULL;

 }

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Demo (continued): get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

❖ What was the other issue? (other than not using malloc)

21

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Fully Fixed read_stdin()

22

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str = (char*) malloc(sizeof(char) * MAX_INPUT_SIZE);

 if (str == NULL) {

 return NULL;

 }

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 str[res] = '\0’;

 return str;

}

Reminder: read is a very
exact function in that it
only writes exactly what
there is to read.

The Null-Terminator must
be added manually.

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Poll: Struct Return

❖ Does this function work as intended?

23

typedef struct point_st {
 float x;
 float y;
} Point;

Point make_point() {
 Point p = (Point) {
 .x = 2.0f;
 .y = 1.0f;
 };
 return p;
}

pollev.com/cis4480

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Poll: Pointer to Struct Return

❖ Does this function work as intended?

24

typedef struct point_st {
 float x;
 float y;
} Point;

Point* make_point() {
 Point p = (Point) {
 .x = 2.0f;
 .y = 1.0f;
 };
 Point* ptr = &p;
 return res;
}

pollev.com/cis4480

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Dynamic Memory Pitfalls

❖ Buffer Overflows
▪ E.g. ask for 10 bytes, but write 11 bytes

▪ Could overwrite information needed to manage the heap

▪ Common when forgetting the null-terminator on malloc’d strings

❖ Not checking for NULL

▪ Malloc returns NULL if out of memory

▪ Should check this after every call to malloc

❖ Giving free() a pointer to the middle of an allocated region

▪ Free won’t recognize the block of memory and probably crash

❖ Giving free() a pointer that has already been freed
▪ Will interfere with the management of the heap and likely crash

❖ malloc does NOT initialize memory

▪ There are other functions like calloc that will zero out memory

25

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we malloc something, but don’t free it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
freed

▪ If this happens enough, we run out of heap space and program may slow down and
eventually crash

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all references to it

▪ Affects performance, but avoid memory leaks

▪ Java has this, C doesn’t

26

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Discuss: What is wrong with this code? (Multiple bugs)

27

char* dup_str(char* to_copy) {
 size_t len = strlen(to_copy);
 char* res = malloc(sizeof(char) * len);
 for (size_t i = 0; i < len; i++) {
 res[i] = to_copy[i];
 }
 return res;
}

int main() {
 char* literal = "Hello!";
 char* duplicate = dup_str(literal);
 char* ptr = duplicate;

 while (*ptr != '\0') {
 printf("%s\n", ptr);
 // printf line is fine
 ptr += 1;
 }

 free(duplicate);
 free(ptr);
 free(literal);
}

strlen()
returns the number of characters before the null-terminator

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

static function variables

❖ Functions can declare a variable as static

28

#include <stdio.h> // for printf

#include <stdlib.h> // for EXIT_SUCCESS

int next_num();

int main(int argc, char** argv) {

 printf("%d\n", next_num()); // prints 1

 printf("%d\n", next_num()); // then 2

 printf("%d\n", next_num()); // then 3

 return EXIT_SUCCESS;

}

int next_num() {

 // marking this variable as static means that

 // the value is preserved between calls to the function

 // this allows the function to "remember" things

 static int counter = 0;

 counter++;

 return counter;

}

Can be thought of as a

global variable that is

“private” to a function

This is how some functions

can “remember” things.

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Lecture Outline

❖ C “Refresher”

▪ Dynamic Memory vs the Stack

▪ Structs

❖ Processes
▪ Overview

▪ fork()

▪ exec()

29

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Definition: Process

Definition: An instance of a program that is
being executed (or is ready for execution)

Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

30

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

* This isn’t quite true

more in a future lecture

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors, CMOS, gates, etc.

❖ Once we got to programming, our computer looks something like:

❖ This model is still useful, and can be
used in many settings

31

Computer

Operating System

Process

What is missing/wrong with this?

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…
▪ Memory space

▪ Registers

▪ Resources

32

Computer

Operating System

P1 P2 P3 Pn…

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the hardware

directly

33

OS
(trusted)

HW (trusted)

Pr
o

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

Pr
o

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently

▪ Process executions interleaved (multitasking)

▪ Address spaces managed by virtual memory system (later in course)

▪ Register values for nonexecuting processes saved in memory 35

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Traditional) Reality

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Traditional) Reality

CPU

Registers

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate process

• Scheduling of processors onto cores done by kernel

▪ This is called “Parallelism”

Core 1 Core 2

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Any questions so far?

❖ What I just went through was the big picture of processes. Many details left,
some will be gone over in future lectures

❖ Any questions, comments or concerns so far?

40

pollev.com/cis4480

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Creating New Processes

▪ Creates a new process (the “child”) that is an exact clone* of the current process (the
“parent”)

• *almost everything

▪ The new process has a separate virtual address space from the parent

▪ Returns a pid_t which is an integer type.

41

pid_t fork();

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the memory segments

are (nearly) identical

▪ The new process has copies of the
parent’s data, stack-allocated
variables, open file descriptors, etc.

42

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

43

parent

OS

fork()

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

44

parent child

OS

clone

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

45

parent child

OS

child pid 0

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

46

fork();

printf("Hello!\n");

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

❖ "Hello!\n" is printed twice

47

fork();

printf("Hello!\n");

fork();

printf("Hello!\n");

Parent Process (PID = X) Child Process (PID = Y)

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

48

fork();

fork();

printf("Hello!\n");

pollev.com/cis4480

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

50

int x = 3;

fork();

x++;

printf("%d\n", x);

pollev.com/cis4480

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() example

51

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pollev.com/cis4480

❖ What does this print?

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() example

52

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() example

53

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Prints "Parent" Prints "Child"Which prints first?

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Process States (incomplete)

FOR NOW, we can think of a process
as being in one of three states:

❖ Running

▪ Process is currently executing

❖ Ready

▪ Process is waiting to be executed and will eventually be scheduled (i.e.,
chosen to execute) by the kernel

❖ Terminated
▪ Process is stopped permanently

More states in

future lectures

Scheduler to be covered

in a later lecture

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Process State Lifetime (incomplete)
More states in

future lecturesProcess creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Terminated

Processes can be “interrupted” to

stop running. Through something

like a hardware timer interrupt

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Context Switching

❖ Processes are managed by a shared chunk of memory-resident OS code
called the kernel

▪ Important: the kernel is not a separate process, but rather runs as part of some
existing process.

❖ Control flow passes from one process to another via a context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will run some kernel code
called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it

57

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as non-
deterministic, details handled by the OS.

58

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() example

59

printf("Hello!\n");

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

printf("%d\n", x);

Always prints "Hello"

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() example

60

printf("Hello!\n");

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

printf("%d\n", x);

Always prints "Hello"

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() example

61

printf("Hello!\n");

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

printf("%d\n", x);

Always prints "Hello"

printf("Hello!\n");

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

printf("%d\n", x);

fork()

Child Process (PID = Y)Parent Process (PID = X)

Does NOT print "Hello"

fork_ret = Y fork_ret = 0

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

fork() example

62

printf("Hello!\n");

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

printf("%d\n", x);

Always prints "Hello"

printf("Hello!\n");

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 1234;

} else {

 x = 5678;

}

printf("%d\n", x);

fork()

Child Process (PID = Y)Parent Process (PID = X)

Always prints "5678" Always prints "1234"

fork_ret = Y fork_ret = 0

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait() or waitpid().

63

void exit(int status);

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

❖ How many numbers are printed?

❖ What number(s) get printed from
each process?

64

pollev.com/cis4480

int global_num = 1;

void function() {

 global_num++;

 printf("%d\n", global_num);

}

int main() {

 pid_t id = fork();

 if (id == 0) {

 function();

 id = fork();

 if (id == 0) {

 function();

 }

 return EXIT_SUCCESS;

 }

 global_num += 2;

 printf("%d\n", global_num);

 return EXIT_SUCCESS;

}

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

❖ How many times is ":)" printed?

66

int main(int argc, char* argv[]) {

 for (int i = 0; i < 4; i++) {

 fork();

 }

 printf(":)\n"); // "\n" is similar to endl

 return EXIT_SUCCESS;

}

pollev.com/cis4480

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space (more on that later!)

▪ Each process is scheduled by the OS

• Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

▪ Processes are created by fork() system call

• Only difference between processes is their process id and
the return value from fork() each process gets

68

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Lecture Outline

❖ C “Refresher”

▪ Dynamic Memory vs the Stack

▪ Structs

❖ Processes
▪ Overview

▪ fork()

▪ exec()

69

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ Program Counter (rip in x86, pc in risc-v/arm) , SP, registers, and memory are
all reset so that the specified program can run

70

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of finding the
command/program to run

❖ Argv is an array of char*, the same kind of argv that is passed to main() in a
C program
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

71

int execve(const char *file,

 char* const argv[]

 char* const envp[]);

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

72

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Aside: Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait() or waitpid(). (more
on these functions next lecture)

73

void exit(int status);

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

74

CIS 5480, Summer 2025L01: Heap & ProcessesUniversity of Pennsylvania

Any questions so far?

75

This code is broken. It compiles, but it
doesn’t do what we want. It is trying to
compile some code and then run it.

Why is this broken?

▪ Clang is a C compiler

▪ Assume exec’ing the compiler works
(hello_world.c compiles correctly)

▪ Assume I gave the correct args to exec in
both cases

broken_autograder.c

pollev.com/cis4480

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

	Default Section
	Slide 1: The Heap, Processes Computer Systems Programming, Summer 2025
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Demo: get_input.c
	Slide 6: Demo: get_input.c
	Slide 7: Demo: get_input.c
	Slide 8: Demo: get_input.c
	Slide 9: Demo: get_input.c
	Slide 10: Memory Allocation
	Slide 11: Aside: sizeof
	Slide 12: What is Dynamic Memory Allocation?
	Slide 13: Heap API
	Slide 14: malloc()
	Slide 15: free()
	Slide 16: The Heap
	Slide 17: Dynamic Memory Example
	Slide 18: Dynamic Memory Example
	Slide 19: Dynamic Memory Example
	Slide 20: Partially Fixed read_stdin()
	Slide 21: Demo (continued): get_input.c
	Slide 22: Fully Fixed read_stdin()
	Slide 23: Poll: Struct Return
	Slide 24: Poll: Pointer to Struct Return
	Slide 25: Dynamic Memory Pitfalls
	Slide 26: Memory Leaks
	Slide 27: Discuss: What is wrong with this code? (Multiple bugs)
	Slide 28: static function variables
	Slide 29: Lecture Outline
	Slide 30: Definition: Process
	Slide 31: Computers as we know them now
	Slide 32: Multiple Processes
	Slide 33: OS: Protection System
	Slide 34: Multiprocessing: The Illusion
	Slide 35: Multiprocessing: The (Traditional) Reality
	Slide 36: Multiprocessing: The (Traditional) Reality
	Slide 37: Multiprocessing: The (Traditional) Reality
	Slide 38: Multiprocessing: The (Traditional) Reality
	Slide 39: Multiprocessing: The (Traditional) Reality
	Slide 40: Any questions so far?
	Slide 41: Creating New Processes
	Slide 42: fork() and Address Spaces
	Slide 43: fork()
	Slide 44: fork()
	Slide 45: fork()
	Slide 46: "simple" fork() example
	Slide 47: "simple" fork() example
	Slide 48: "simple" fork() example
	Slide 50: "simple" fork() example
	Slide 51: fork() example
	Slide 52: fork() example
	Slide 53: fork() example
	Slide 54: Process States (incomplete)
	Slide 55: Process State Lifetime (incomplete)
	Slide 56: Context Switching
	Slide 57: OS: The Scheduler
	Slide 58: Scheduler Considerations
	Slide 59: fork() example
	Slide 60: fork() example
	Slide 61: fork() example
	Slide 62: fork() example
	Slide 63: Exiting a Process
	Slide 64
	Slide 66
	Slide 68: Processes & Fork Summary
	Slide 69: Lecture Outline
	Slide 70: exec*()
	Slide 71: execve()
	Slide 72: Exec Visualization
	Slide 73: Aside: Exiting a Process
	Slide 74: Exec Demo
	Slide 75: Any questions so far?

