University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Processes (cont.): exec, wait, signal
Computer Systems Programming, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

@ Poll Everyw here pollev.com/tqm

+» How is penn-vector going?

" | haven’t started

" | have read the spec

= |’ve setup the container
= |'ve started writing code

= |'ve started writing code and | am pretty sure
| understand what is going on

" I’'m done!

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Administrivia

% First Assignment (HWO0O penn-vector)
= Released already!
= “Due” Tonight 06/02
= Extended to be due the same time as HWO1 (Friday the 6t")
" Mostly a C refresher

+» Pre semester Survey
" Anonymous
= Short!
= Due Wednesday the 4t

« Some OH later today 3:30 — 7pm (Levine 307)

CIS 5480, Summer 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Administrivia

+» Second Assignment (HWO1 penn-shredder)
= Releases after today’s lecture
= Due Friday this week 06/06
" |ntro to system calls, processes, etc.
= Short Q&A and demo at end of class ©

« First Check-in
= Releases Wednesday
= Due before lecture on the 9t"

University of Pennsylvania

Lecture Outline

+ Processes & Fork Refresher
%~ exec

+» Wwait & process states

%~ Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

Processes & Fork Summary

+» Processes are instances of programs that:

= Each have their own independent address space

® Each process is scheduled by the OS

- Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

" Processes are created by fork() system call

- Only difference between processes is their process id and
the return value from fork() each process gets

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

@ Poll Everyw here pollev.com/tqm

int global num = 1;
< How many

void function () {

global num++; numbers are
} printf ("$d\n", global num); printed? What
number(s) get
int main () { .
R printed from
?
G o) %‘\ each process:
function () ;
id = fork () ;
if (id == 0) {
function () ;

}
return EXIT SUCCESS;

}

lobal num += 2;
printf ("$d\n", global num);
urn EXIT SUCCESS;

\})

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

@ Poll Everyw here pollev.com/tqm

+» How many timesis ":)" printed?

int main(int argc, char* argv([]) {
for (int i = 0; i < 4; i++) { \,7
fork () ; -
| £

printf (":)\n"); C>

return EXIT SUCCESS; %/
}

University of Pennsylvania

Lecture Outline

+ Processes & Fork Refresher
> exec

+» Wwait & process states

%~ Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

exec*()

+~ Loads in a new program for execution

+» PC, SP, registers, and memory are all reset so that the specified program can
run

10

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

execve()

a \)
“1nt execwve (const char *file,

char* const argv /(]

\ char* const envpl]):)

+» Duplicates the action of the shell (terminal) in terms of finding the
command/program to run

» Argv is an array of char¥*, the same kind of argv that is passed tomain () ina
C program
" argv[0] MUST have the same contents as the file parameter

= argv must have NULL as the last entry of the array
» Just passinanarrayof { NULL }; asenvp
» Returns -1 on error. Does NOT return on success

11

University of Pennsylvania

Exec Visualization

LO2: Fork, Exec, Wait, Signals, penn-shredder

+» Exec takes a process and discards or “resets” most of it

SP

PC==

Stack

Shared Libraries

Stack

SP==

1
T

PC=

Shared Libraries

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

example.cc

v

T

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

other.cc

NOTE that the following
DO change

- The stack

- The heap

- Globals

- Loaded code

- Registers

NOTE that the following
do NOT change

- Process ID

- Open files

- The kernel

CIS 5480, Summer 2025

12

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Aside: Exiting a Process

RS vold exit(i1nt status);

= Causes the current process to exit normally
= Automatically called by main () when main returns
= Exits with a return status (e.g. EXIT SUCCESS or EXIT FAILURE)

« This is the same int returned by main ()

= The exit status is accessible by the parent process with wait () orwaitpid (). (more
on these functions next lecture)

13

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Exec Demo

+ See exec example.c

= Brief code demo to see how exec works
" What happens when we call exec?
= What happens to allocated memory when we call exec?

14

University of Pennsylvania

0 Poll Everywhere

LO2: Fork, Exec, Wait, Signals, penn-shredder

pollev.com/tqm

CIS 5480, Summer 2025

int main(int argc, char* argv([]) {
char* envp[] = { NULL };
// fork a process to exec clang

pid t clang pid = fork();

1f (clang pid == 0) {
// we are the child
char* clang argv[] = {"/bin/clang", "-o",
"hello","hello world.c", NULL};
execve (clang argv[0], clang argv, envp);
exit (EXIT FAILURE) ;
}

// fork to run the compiled program

pid t hello pid = fork();

if (hello pid == 0) {
// the process created by fork
char* hello argv[] = {"./hello", NULL};
execve (hello argv[0], hello argv, envp);
exit (EXIT FAILURE);

}
return EXIT SUCCESS;

This code is broken. It compiles, but it
doesn’t do what we want. It is trying to
compile some code and then run it.

Why is this broken?

" Clangis a C compiler

= Assume exec’ing the compiler works
(hello_world.c compiles correctly)

= Assume | gave the correct args to exec in
both cases

htograder.c

15

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

@ Poll Everyw here pollev.com/tqm

This code is broken. It

main() compiles, but it
l doesn’t do what we
fork
orkl T execve(compile hello_world) want. Why?
|
exit()
fork() " ClangisaC
T~ execve(run hello_world) compiler
| = Assume it compiles
| exit()
= Assume | gave the
exit()

correct args to exec

16

University of Pennsylvania

0 Poll Everywhere

LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

pollev.com/tqm

+ In each of these, how oftenis " :) \n'" printed? Assume functions don’t fail

[int main(int argc, char* argvi]) {) int main(int argc, char* argvil) { |

// we are the child

char* argv[] = {"/bin/echo",

"hello",
NULL} ;
execve (argv[0], argv, envp):;

printf(":) \n");

return EXIT SUCCESS;

char* envp[] = { NULL }; char* envp[] = { NULL };
pid t pid = fork(); pid t pid = fork();
if (pid == 0) { if (pid == 0) {

// we are the child

return EXIT SUCCESS;
}

printf(":) \n");

return EXIT_SUCCESS;

17

University of Pennsylvania

Lecture Outline

+ Processes & Fork Refresher
%~ exec

+» Wait & process states

%~ Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

18

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

From a previous poll:

(int main (int argc, char* argv([]) { . : .
et envpll 2 { i)i This code is broken. It compiles, but
it doesn’t always do what we want.
// fork a process to exec clang
pid t clang pid = fork(); Why‘p
1f (clang pid == 0) {
// we are the child
char* clang argv[] = {"/bin/clang", "-o", . CIang is g Ccompiler
"hello","hello world.c", NULL};
execve (clang argv[0], clang argv, envp); B Assume it Compiles
exit (EXIT FAILURE) ;
| = Assume | gave the correct args to
exec
// fork to run the compiled program
pid t hello pid = fork();
if (hello pid == 0) {
// the process created by fork
char* hello argv[] = {"./hello", NULL};
execve (hello argv[0], hello argv, envp);
exit (EXIT FAILURE) ;
}
return BALE SUCCESS; broken_autograder.c
J J 19

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

“waiting” for updates on a Process

Usual change n status

NS 1] I * d
» |pid t wait(int *wstatus); <+ “tormvated”

= Calling process waits for any child process to change status
- Also cleans up the child process if it was a zombie/terminated
= Gets the exit status of child process through output parameter wstatus

= Returns process ID of child who was waited for or =1 on error

20

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Execution Blocking

« When a process calls wait () and there is a process to wait on, the calling
process blocks

+ |f a process blocks or is blocking it is not scheduled for execution.

® |t is not run until some condition “unblocks” it

" Forwait (), it unblocks once there is a status update in a child

21

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Fixed code from broken_autograder.c

rint main (int argc, char* argv([]) {
char* envp[] = { NULL };
// fork a process to exec clang
pid t clang pid = fork():;

1f (clang pid == 0) {
// we are the child
char* clang argv[] = {"/bin/clang", "-o",

"hello","hello world.c", NULL};
execve (clang argv[0], clang argv, envp);
exit(EXIT_FAILURE);

}

wait (NULL); // should error check, not enough slide space
// fork to run the compiled program
pid t hello pid = fork();

if (hello pid == 0) {
// the process created by fork
char* hello argv([] = {"./hello", NULL};

execve (hello argv[0], hello argv, envp);
exit(EXIT_FAILURE);

}

return EXIT SUCCESS;

s

autograder.c)

CIS 5480, Summer 2025

22

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Demo: wait example

+ Seewalt example.c

" Brief demo to see how a process blocks when it calls wait()
= Makes use of fork (), execve (), andwait ()

« Execution timeline:

Child exec’s sleep 10

Child exits
< J
Program starts \
> @ R Y o ——
fork () Parent Parent is blocked Parent is unblocked
calls wait finishes wait ()

exits

23

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

discuss

+~ Can a child finish before parent calls wait?

24

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

What if the child finishes first?

+ In the timeline | drew, the parent called wait before the child executed.
= |n the program, it is extremely likely this happens if the child is calling sleep 10

" What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

25

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Process Tables & Process Control Blocks

+ The operating system maintains a table of all processes that aren’t “completely
done”

+» Each process in this table has a process control block (PCB) to hold information
about it.

+» A PCB can contain:
" Process ID
= Parent Process ID
® Child process IDs
" Process Group ID
= Status (e.g. running/zombie/etc)
= Other things (file descriptors, register values, etc)

26

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

Zombie Process

+» Answer: processes that are terminated become “zombies”
m Zombie processes deallocate their address space, don’t run anymore
= still “exists”, has a PCB still, so that a parent can check its status one final time

= |f the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

27

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Diagram: wait_example.c

User Processes

0S
Process Table

28

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

./wait example

pid

100

SP=>

Stack

I

t

Shared Libraries

t

Heap [malloc/free)

nead.f:{;l: .S:;ments
v
PCB: wait_example
Process Table id = 100

100

__—| status = running
-]

CIS 5480, Summer 2025

29

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Diagram: wait_example.c

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

30

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Diagram: wait_example.c

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

Shared Lbraries f or k ()

t

Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

31

University of Pennsylvania

Diagram: wait_example.c

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

./wait example
= 100

pid

Py Stack

(12 =4 Read-Only Segments

I

t
Shared Libraries
1
Heap [malloc/free)
Read/Write Segments
.data, .bss

.text, .rodata

f or k () Shared Lbraries

./wait example

pid = 101
B

[SPl=> Stack

I

1

Heap (mallac/free)

> Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

Process Table

100

101

//

PCB: wait_example
id = 100
status = running

PCB: wait_example
id = 101
status = running

CIS 5480, Summer 2025

32

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

./wait example

pid = 100
[os el tproectea |

Py Stack

I

t
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments

walt (&status)

./wait example

pid = 101
(o]

[SPl=> Stack

I

1
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

PCB: wait_example
Process Table id

100 11— | status = blocked

= 100

101

PCB: wait_example
id
status = running

= 101

CIS 5480, Summer 2025

33

University of Pennsylvania

Diagram: wait_example.c

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

./wait example
= 100

pid

Py Stack

(12 =4 Read-Only Segments

wait (&status) exec (/

I

t
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

./wait example

pid = 101
(o]

[SPl=> Stack

I

1
Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
-data, .bss

(|2 =4 Read-Only Segments
-text, .rodata

bin/sleep)

Process Table

100

101

//

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIS 5480, Summer 2025

34

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

./wait example /bin/sleep
pid = 100 pid = 101
[ostammisroteemar
[SPI=> Stack
I Stack
! 5 Shared Libraries
Shared Libraries
Heap {ma'\lm;/free) Heap (malloc/free)
nead.f:{;l: .S:‘?;ments Read,.':\fﬂr:;? .ﬁmen:
I =2 Read-Only Segments = “"a_‘:::r""gzg:e"‘
text, .rodata

walt (&status) exec (/bin/sleep)

PCB: wait_example
Process Table id = 100

100 ,,f””’ status = blocked

101

PCB: /bin/sleep
id = 101
status = running

CIS 5480, Summer 2025

35

University of Pennsylvania

Diagram: wait_example.c

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

./wait example /bin/sleep
pid = 100 pid = 101

I

t
Shared Libraries
t
Heap [malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

Stack

Shared Libraries

Heap (malloc/free)

Read-Only Segment
PC=> -text, .rodata

walt (&status) exit ()

Process Table

101

100 J—

PCB: wait_example
id = 100
status = blocked

PCB: /bin/sleep
id = 101
status = running

CIS 5480, Summer 2025

36

University of Pennsylvania

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

./wait example

pid = 100
[08 e proteced |

Py Stack

I

t

Shared Libraries

t

Heap [malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

walt (&status)

Process Table

100 J—

PCB: wait_example
id = 100
status = blocked

101

PCB: /bin/sleep
id = 101
status = ZOMBIE

CIS 5480, Summer 2025

37

University of Pennsylvania

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

./wait example

pid = 100
[08 e proteced |

Py Stack

I

t

Shared Libraries

t

Heap [malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

walt (&status) <

Process Table

100 J—

PCB: wait_example
id = 100

status = RUNNING

—
\

101

PCB: /bin/sleep
id = 101
status = ZOMBIE

/

CIS 5480, Summer 2025

38

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Diagram: wait_example.c

User Processes | . /wait example
pid = 100
[ostammisroteemar

Py Stack

I

t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss

(12 =4 Read-Only Segments
.text, .rodata

OS PCB: wait_example
Process Table id = 100

100 1—| status = RUNNING

39

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

./wait example

pid

= 100

SP=>

Stack

I

t

Shared Libraries

t

Heap [malloc/free)

nead,f:{;l:; .s:‘émenu
1P =2 Matg‘:\ﬁmenu
exit ()
PCB: wait_example
Process Table id = 100

100

] —"| status = RUNNING

CIS 5480, Summer 2025

40

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

Process Table

CIS 5480, Summer 2025

./wailt example
Is reaped by its
parent. Iv our
example, that is the
terminal shell

41

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

Demo: state example

+ See state example.c
" Brief code demo to see the various states of a process
« Running
- Zombie

« Terminated

" Makesuseof sleep (), waitpid () andexit ()!

= Aside: sleep ()

takes in an integer number of seconds and blocks till those seconds
have passed

42

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

More: waitpid()

2 pid t waitpid(pid t pid, 1nt *wstatus,
int options);

= Calling process waits for a child process (specified by pid) to exit
- Also cleans up the child process
= Gets the exit status of child process through output parameter wstatus

= options are optional, passin O for default options in most cases
= Returns process ID of child who was waited for or =1 on error

43

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

wait() status

» status output fromwait () can be passed to a macro to see what changed
WIFEXITED () | true iff the child exited nomrally

WIFSIGNALED () [true iff the child was signaled to exit

WIFSTOPPED () [true iff the child stopped

WIFCONTINUED () |true iff child continued

+ See examplein state check.c

44

University of Pennsylvania

Lecture Outline

exec

wait & process states
Hardware interrupts
Software signals
Process States updated
penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

45

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Control Flow

% Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,

Time Inst
inst,
<shutdown>

CIS 5480, Summer 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

@ Poll Everywhere pollev.com/tqm
The bge instruction is being / 11 t0, 5 # load immediate 5 into tO0 \
executed for the first time, 11 tl, 2 # load immediate 2 into tl

ich i ion i 11 2, load immediate 0 into t2
which instruction is executed . t2, 0 # load immediate 0 into

next? _LOOP
add t2, t2, 1 # t2 = t2 + 1
o A. sub t0, t0, tl # t0 = t0 - t1I
bge t0, x0, .LOOP # GOTO .loop if t0 > O

+ B. add D

5 .END # GOTO .END
« C. sub N # (infinite loop))
e D.]

» E. I’'m not sure

47

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Altering the Control Flow

+» Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return

React to changes in program state

+ Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

+» System needs mechanisms for “exceptional control flow”

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Exceptional Control Flow

+ Exists at all levels of a computer system

+ Low level mechanisms — what we will be looking at today

= 1. Hardware Interrupts

« Change in control flow in response to a system event
(i.e., change in system state)

- Implemented using combination of hardware and OS software

+ Higher level mechanisms

= 2. Process context switch
- Implemented by OS software and hardware timer

= 3.Signals
- Implemented by OS software

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Interrupts

+ An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0

request completes, typing Ctrl-C

User code

Event —— | _current
| _next

<

Exception

Kernel code

* Return to |_current
* Return to |_next
* Abort

| Exception processing
by exception handler

CIS 5480, Summer 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Interrupt Tables

Interrupt
Numbers
Code for + Each type of event has a
interrupt handler O unigque number k
Interrupt CanE e
vIable :))
. interrupt handler 1 + k=index into table
. Todle o (a.k.a. interrupt vector)
1| @ .
interrupt handler 2
2
+ Handler k is called each time
interrupt k occurs
1 @ | code for

interrupt handler n-1

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Asynchronous Interrupts

+» Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
" Handler returns to “next” instruction

+» Examples:
" Timer interrupt
- Every few ms, an external timer chip triggers an interrupt
- Used by the kernel to take back control from user programs
= |/O interrupt from external device
- Hitting Ctrl-C at the keyboard

« Arrival of a packet from a network
- Arrival of data from a disk

CIS 5480, Summer 2025

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Synchronous Interrupts

+ Caused by events that occur as a result of executing an

Instruction: FUN FACT: the terminology and defiitions aren’+

" Traps fully agreed upon. Many people may use these
: interchangeably
- Intentional

- Examples: system calls, breakpoint traps, special instructions
- Returns control to “next” instruction

" Faults
- Unintentional but theoretically recoverable

- Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

- Either re-executes faulting (“current”) instruction or aborts
" Aborts

« Unintentional and unrecoverable

- Examples: illegal instruction, parity error, machine check
- Aborts current program

CIS 5480, Summer 2025

University of Pennsylvania

Lecture Outline

+ Processes & Fork Refresher
%~ exec

+» Wwait & process states

%~ Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

54

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Signals

% A Process can be interrupted with various types of signals

® This interruption can occur in the middle of most code

+» Each signal type has a different meaning, number associated with it, and a way
it is handled

« These are different from an interrupt, but similar idea

= signals are “higher level” and apply to a process. The kernel / some process will deliver the

signal.

Interrupts are lower level mechanisms that cause the hardware to poke the kernel and
respond

= Some interrupts lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

55

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Signals

% A Process can be interrupted with various types of signals

® This interruption can occur in the middle of most code

+» Each signal type has a different meaning, number associated with it, and a way
it is handled

« Examples:

= | sSTGCHLD — Default: ignore

" | SIGINT Default: terminate the process
/

= | SIGKILL

" | SIGALRM
"|SIGSEGV | ——— Default: terminate & core dump

56

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

sigaction ()

%~ You can change how a certain signal is handled

+|1nt sigaction(int signum, struct sigaction* act,
struct sigaction* old);

% Signum specifies a signal

» Usesthe struct sigaction type to specify which signal handler to run
and other options for how the signal should be handled

» Returns previous handler & behaviour for that signal through the old output
parameter

+ Some signals like SIG_KILL and SIG_STOP can’t be handled differently

57

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Signal handlers

typedef void (*sighandler t) (1int);

+~ A function that takes in as parameter, the signal number that raised this
handler. Return type is void

» |s automatically called when your process is interrupted by a signal

» Can manipulate global state

» If you change signal behaviour within the handler, it will be undone when you
return

+ Signal handlers set by a process will be retained in any children that are
created

58

University of Pennsylvania

struct sigaction

LO2: Fork, Exec, Wait, Signals, penn-shredder

+» Has 5 different fields to specify the behaviour of how a signal should be
handled. For our case, we only care about sa_handler and sa flags

-

= (for now)

struct sigaction {
vold (*sa handler) (1nt);
vold (*sa sigaction) (int,
sigset t sa mask;
int sa flags;
vold (*sa restorer) (void);

g

siginfo t *, void *);

CIS 5480, Summer 2025

59

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

struct sigaction

[struct sigaction {)
vold (*sa handler) (1nt);
int sa flags;

b7
. J

+» Set sa_handler equal to the signal handler we want to use
" Set sa handler to SIG_ IGN to ignore the signal
" Set sa _handler to SIG DFL for default behaviour

+ Inthisclass: set sa_flags to SA RESTART

" This makes it so that system calls are automatically restart/continue if they are interrupted
by a signal.

60

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Demo ctric.c

« Seectrlc.c

" Brief code demo to see how to use a signal handler
= Blocks the ctrl + c signal: SIGINT

= Note: will have to terminate the process with the ki1l command in the terminal, use ps
—u to fine the process id

61

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

alarm()

+ Alarm |unsigned int alarm(unsigned int seconds);

- Delivers the SIGALRM signal to the calling process after the specified number
of seconds

» Default SIGALRM behaviour: terminate the process

» How to cancel alarms?

= | leave this as an exercise for you: try reading the man pages

» HINT FOR EXTRA CREDIT: What is the default behaviour of SIGALRM? Can you
take advantadge of the default behaviour? 62

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

discuss

+ Finish this program
+~ After 15 seconds, print a message and then exit
+» Can’t use the sleep () function, must use alarm/()

int main(int argc, char* argv[]) {
alarm(150) ;

return EXIT_SUCCESS;
}

+ Currently: program calls alarm then immediately exits

63

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Demo no_sleep.c

+ Seeno sleep.c
= “Sleeps” for 10 seconds without sleeping, using alarm
" Brief code demo to see how to use a signal handler & alarm
= Signal handler manipulates global state

64

CIS 5480, Summer 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

kill ()

% Can send specific signals to a specific process manually
é[int kill (pid t pid, int sig);

+~ pid: specifies the process
+ sig: specifies the signal

kill (child, SIGKILL);]

+ If for some reason kill() is not recognized and you #include everything you
need: Put this at the top of your penn-shredder.c file (before #includes) to use

kill () [#define _POSIX C_SOURCE 1 |

65

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Non blocking wait w/ waitpid ()

+|p1d t waitpid(pid t pid, i1nt *wstatus,
int options);

= Can pass in WNOHANG for options to make waitpid () not block or “hang”.

= Returns process ID of child who was waited for or =1 on error
or O if there are no updates in children processes and WNOHANG was passed in

66

LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Demo impatient.c

+» See 1mpatient.c

= Parent forks a child, checks if it finishes every second for 5
seconds, if child doesn’t finish send SIGKILL

" | OOKS SIMILAR TO WHAT YOU ARE DIONG IN
penn-shredder. DO NOT COPY THIS

. waitpid () IS NOT ALLOWED

« USING sleep () AND alarm()
TOGETHER CAN CAUSE ISSUES

67

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

SIGCHLD handler

+» Whenever a child process updates, a STIGCHLD signal is received, and by
default ignored.

» You can write a signal handler for STIGCHLD, and use that to help handle

children update statuses: allowing the parent process to do other things
instead of callingwait () orwaitpid()

» Relevant for proj2: penn-shell

68

University of Pennsylvania

Lecture Outline

+ Processes & Fork Refresher
%~ exec

+» Wwait & process states

%~ Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

69

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Summer 2025

Process State Lifetime

Process creation

Selected by the
e.g. fork ()

kernel to run

Process finished

Ready

~_ _—

After running for a bit
it is another processes “turn”

Terminated

University of Pennsylvania

Lecture Outline

+ Processes & Fork Refresher
%~ exec

+» Wwait & process states

%~ Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Summer 2025

71

	Default Section
	Slide 1: Processes (cont.): exec, wait, signal Computer Systems Programming, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Processes & Fork Summary
	Slide 7
	Slide 8
	Slide 9: Lecture Outline
	Slide 10: exec*()
	Slide 11: execve()
	Slide 12: Exec Visualization
	Slide 13: Aside: Exiting a Process
	Slide 14: Exec Demo
	Slide 15: Any questions so far?
	Slide 16: Any questions so far?
	Slide 17: Poll: how are you?
	Slide 18: Lecture Outline
	Slide 19: From a previous poll:
	Slide 20: “waiting” for updates on a Process
	Slide 21: Execution Blocking
	Slide 22: Fixed code from broken_autograder.c
	Slide 23: Demo: wait_example
	Slide 24: Poll: how are you?
	Slide 25: What if the child finishes first?
	Slide 26: Process Tables & Process Control Blocks
	Slide 27: Zombie Process
	Slide 28: Diagram: wait_example.c
	Slide 29: Diagram: wait_example.c
	Slide 30: Diagram: wait_example.c
	Slide 31: Diagram: wait_example.c
	Slide 32: Diagram: wait_example.c
	Slide 33: Diagram: wait_example.c
	Slide 34: Diagram: wait_example.c
	Slide 35: Diagram: wait_example.c
	Slide 36: Diagram: wait_example.c
	Slide 37: Diagram: wait_example.c
	Slide 38: Diagram: wait_example.c
	Slide 39: Diagram: wait_example.c
	Slide 40: Diagram: wait_example.c
	Slide 41: Diagram: wait_example.c
	Slide 42: Demo: state_example
	Slide 43: More: waitpid()
	Slide 44: wait() status
	Slide 45: Lecture Outline
	Slide 46: Control Flow
	Slide 47
	Slide 48: Altering the Control Flow
	Slide 49: Exceptional Control Flow
	Slide 50: Interrupts
	Slide 51: Interrupt Tables
	Slide 52: Asynchronous Interrupts
	Slide 53: Synchronous Interrupts
	Slide 54: Lecture Outline
	Slide 55: Signals
	Slide 56: Signals
	Slide 57: sigaction()
	Slide 58: Signal handlers
	Slide 59: struct sigaction
	Slide 60: struct sigaction
	Slide 61: Demo ctrlc.c
	Slide 62: alarm()
	Slide 63: Poll: how are you?
	Slide 64: Demo no_sleep.c
	Slide 65: kill()
	Slide 66: Non blocking wait w/ waitpid()
	Slide 67: Demo impatient.c
	Slide 68: SIGCHLD handler
	Slide 69: Lecture Outline
	Slide 70: Process State Lifetime
	Slide 71: Lecture Outline

