
CIS 4480, Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Groups & Terminal Control
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Maya & Ash & Sid

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Administrivia

2

❖ Congrats on finishing up Shredder & Penn-Vec; how did you feel about it?

▪ Expect Style grading to be out by Friday Evenings!

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Administrivia

❖ All Partners are assigned!

▪ If you need to contact your partner, let us know and we can email both of you

▪ There is one group of three. ☺

▪ Make sure that the group in canvas is correct.

❖ Reminder: Check-in Quiz will be out tomorrow, and due on Monday.

3

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

4

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Groups

❖ Process Groups: A way to associate processes together

▪ Processes groups are never empty.

❖ Convenient process & signal management:
▪ If SIGINT is sent to a process via the keyboard, it is also sent to all processes within its

group by the kernal.

❖ When we create a process via fork(), the child and parent belong to same
process group!

❖ Shell has the notion of a job: “commands” started interactively.

▪ All processes within the same job are in the same group; let’s see what this means.

❖ Relevant for penn-shell

5

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Group ID

❖ Process Group ID is set from an initial PID!

▪ The PGID is equal to the PID of the first forked process in that job!

▪ If the initial process (who’s PID == PGID) is terminated, this PID still can’t be reused.

• That process ID will be reserved until the group is done

❖ int setpgid(pid_t pid, pid_t pgid);

❖ The PGID of the process, pid, is set to pgid.

▪ If pid is zero, then the process ID of the calling process is used.

❖ If pgid is zero, then the PGID of the process specified by pid is made the same
as its process ID.

6

int setpgid(pid_t pid, pid_t pgid);

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Group ID

❖ int setpgid(pid_t pid, pid_t pgid);

❖ Returns the PGID of the process specified by pid.

▪ returns -1 if error occurred.

❖ If pid is zero, the process ID of the calling process is used.

7

pid_t getpgid(pid_t pid);

But why change process groups?

Changing process groups allows you to control who gets what signal and by what means.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Example 1: Same PGID

8

User Processes

OS

./example
 pid = 100

/bin/sleep
 pid = 101

pgid = 100

Both processes
running in shell.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

9

User Processes

OS

CTRL + C

./example
 pid = 100

/bin/sleep
 pid = 101

pgid = 100

Example 1: Same PGID

Both processes
running in shell.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

10

User Processes

OS

CTRL + C

SIGINT is sent to every
Process in the process group

./example
 pid = 100

/bin/sleep
 pid = 101

pgid = 100

Example 1: Same PGID

Both processes
running in shell.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

11

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

Example 2: Different PGIDs

Both processes
running in shell.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

12

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

CTRL + C

SIGINT is sent to every
process in a process group

child is in a separate group

Example 2: Different PGIDs

Both processes
running in shell.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

13

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

CTRL + C

Example 2: Different PGIDs

Both processes
running in shell.Why is the signal only sent to one of

the process groups in the terminal?

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

waitpid & kill with PGIDs

❖ Instead of using a pid to refer to a singular process, you can
pass in -PGID to kill() and waitpid()

❖ Doing so for kill() will send the signal to all processes in the group

❖ Doing so for waitpid() will wait for any process in the group

Wait; why does the PGID need to be negative?

You may find this useful for proj1: penn-shell 14

int kill(pid_t -pgid, int signal);

pid_t waitpid(pid_t pid, int *status, int options);

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Example: pid vs –pgid

15

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100 pgid = 101

parent process on the left and a child
process in its own group on the right

What if the parent forks a second child
and adds it to the other child’s group?

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Example: pid vs –pgid

16

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

/bin/sleep

 pid = 102parent process on the left and a child
process in its own group on the right

What if the parent forks a second child
and adds it to the other child’s group?

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Example: pid vs –pgid

17

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

If the parent calls kill with pid 101 ,
only the child with that pid receives

the signal

/bin/sleep

 pid = 102

kill(101, SIGINT);

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Example: pid vs –pgid

18

User Processes

OS

./example

 pid = 100
/bin/sleep

 pid = 101

pgid = 100
pgid = 101

/bin/sleep

 pid = 102

kill(-101, SIGINT);

If the parent calls kill with pid -101 ,
all children belonging to that group

are killed

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Demo: pgrpg_signals.c

❖ See code demo: pgrp_signals.c

▪ Handler registered for SIGINT in both child and parent

▪ Parent puts child in its own group

▪ CTRL + C is input -> parent signal handler is invoked -> parent relays the signal to the child

▪ What happens if we don’t call kill in parent handler?

▪ What happens if we then don’t put child in its own group?

19

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

20

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

What if the child tried to use the terminal?

❖ Demo!

▪ Let’s try to write a program so that the child does “cat”

• (read from stdin, echo it to stdout until EOF)

• First let’s see what cat is supposed to do.

21

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

What if the child tried to use the terminal?

❖ Demo!

▪ Let’s try to write a program so that the child does “cat”

• (read from stdin, echo it to stdout until EOF)

• First let’s see what cat is supposed to do.

22

It doesn’t work.
Let’s try to peel back the layers to see why it doesn’t.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Sessions

❖ A Session is a collection of process groups

▪ A session can be attached to a controlling terminal

• However, only one process group within the session can have control of the terminal

▪ Or not attached to any terminal (daemon’s)

❖ You can think of a session as mostly associated with a “login” or instance of a
terminal application. Each login/terminal is a singular session

❖ Within a session (that has a controlling terminal) there are

▪ Background processes

• These do not have have access to the terminal, and can not read from it.

▪ Foreground processes

• These can read and write to their hearts content. 23

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Foreground Process Groups

❖ Foreground process groups (i.e., Foreground Jobs) can read from STDIN and
the processes in that group receive the signals from the keyboard

❖ A foreground group (the shell truly) can make another group the foreground
with the function:

❖ Tcsetpgrp
▪ fd is a file descriptor associated with the controlling terminal (STDIN_FILENO)

▪ Sets the process group specified by pgrp to be the foreground process group

• Essentially, this process group (or job from the perspective of the shell), is the star of the show.

▪ -1 returned on error, 0 when successful

24

int tcsetpgrp(int fd, pid_t pgrp);

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Background in the shell

❖ To start a background job in the shell (and in penn-shell) run the command
with a & at the end.
▪ sleep 10 &

❖ While a command is running in the background, we can run other commands
in the shell
▪ So, while another command is using the terminal for Input, the background jobs/processes

can not.

❖ Can use the jobs command to see the status of the jobs we have started

25

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process Groups and Controlling the Terminal

❖ When you make a process have it’s own process group, it no longer has the
ability to read from the terminal.

▪ It no longer is the process group who controls the terminal…

❖ So, yes, jobs need to have their own groups, but they also need to navigate
control of the terminal.
▪ (This kinda makes sense. You don’t want 100 processes trying to read the terminal at the

same time. What if what is in the terminal isn’t for them? (aka, what if it is your super
secret password (whyamiinthiscourse) that you’re typing in?)

26

int setpgid(pid_t pid, pid_t pgid);

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Background Process
❖ If a background process tries to read from stdin, the OS sends the signal
SIGTTIN to the background process

▪ The Disposition of SIGTTIN is to suspend/stop the program.

▪ Check it out for yourself: cat &

❖ If a process in the background background calls tcsetpgrp(), the OS will
send the entire process group a SIGTTOU signal.

▪ If the calling process is blocking or ignoring SIGTTOU signals, the process shall be allowed
to perform the operation, and no signal is sent…might be important…

❖ Writing to stdout from the background is ok, but can be configured so that
background processes get SIGTTOU

▪ The Dispositon of SIGTTOU is to Stop the program.

▪ Check it out for yourself: cat file.txt & (this is totally fine.)

27

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Let’s try to fix our code from before!

❖ See code demo: cat.c

▪ Let’s try to fix our process group code so that it can run cat ☺

• Remember, printing to the terminal is fine. It’s reading that causes the issues.

• So, we’ll go ahead and see if this holds true!

▪ How can we make the parent take back the terminal control?

• If a process is done running in the foreground, then penn-shell should resume control.

28

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Is there a race condition here?

29

pollev.com/cis5480

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

31

Race Condition: setpgid();

❖ You can not change the PGID of a process after it has been exec’d.

▪ Trying to do so will result in a failed setgpid with error: EACCES

❖ This is because we are at the mercy of the schedular
▪ We don’t know if a child will be exec’d before the parent can change it’s PGID.

❖ To be safe, we must call PGID from both the parent and the child.

Caveat: remember, the initial process is the one who is the PGID of the entire group. You must keep track of this.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Demo: tc.c

❖ What is the intention of this code? Does it do what it intends to do? How can
we fix it?

32

pollev.com/cis5480

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Demo: tc_loop.c

❖ See code demo: tc_loop.c

▪ The code from the poll

▪ Let's try to fix it…

▪ How can we make the parent take back the terminal control?

33

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

34

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Stopped Jobs

❖ Processes can be in a state slightly different than being blocked. // This is
relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not run on the CPU until it is
resumed by the SIGCONT signal

▪ Other signals can still stop a program by default, like SIGTSTP or SIGTTOU

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it

35

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

blocked
Terminated

stopped

SIGTSTP
(ctrl + Z)

SIGCONT
received

“sometimes called suspended”

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Lecture Outline

❖ Process Groups
▪ setpgid()

❖ Terminal Control
▪ tcsetpgrp()

❖ SIGSTOP

❖ Project 1: Synch vs Asynch wait
▪ SIGCHLD

37

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Penn-shell

❖ Part of what you do in HW1 (after the milestone) is to make a shell that
manages process groups in the foreground and background

❖ This means your code will have to handle multiple process groups at once,
keeping track of the state of all of them.

❖ Need to maintain a linked list of the current jobs to handle job control

38

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

"Normal" approach Pseudo Code

❖ Discuss: what does this do?

❖ Is there a flaw in this?
Not in correctness but
maybe

▪ Responsiveness

▪ Resource utilization

▪ etc.

39

int main(int argc, char* argv[]) {
 while(...) {
 printf(PROMPT);

 getline(&user_input);

 pid = fork_exec(user_input);

 waitpid(pid, &wstatus, 0);

 for (pid_t p : background) {
 // check status of background
 waitpid(p, &wstatus, WNOHANG);
 // if there is an update,
 // need to update the lists…
 }
 // re-prompt user
 }
}

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Analysis: "Normal"

❖ The “normal”: check background processes before re-prompting the user

▪ may not be responsive to background processes finishing

▪ Consider we have many background processes then the user runs
sleep 1000000 in the foreground...

▪ those background processes will not be reaped until foreground finishes

40

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

"Polling" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to the previous attempt?

41

int main(int argc, char* argv[]) {
 while(...) {
 printf(PROMPT);
 getline(&user_input);
 pid = fork_exec(user_input);

 while (waitpid(pid, &wstatus, WNOHANG) == 0) {
 for (pid_t p : background) {
 // check status of background
 waitpid(p, &wstatus, WNOHANG);
 // if there is an update,
 // need to update the lists…
 }
 }
 // re-prompt user
 }
}

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Analysis: Polling

❖ Polling is a term used to describe when we check to see if something is ready,
but do not block if it is not ready

❖ This approach is more responsive than the previous one…

❖ but it busy waits… consuming CPU cycles…

42

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Aside: SIGCHLD

❖ This approach registers SIGCHLD as a handler, SIGCHLD is a signal that is
sent when a child process stops or is terminated

▪ Is ignored by default

43

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

"async" approach Pseudo Code

❖ Discuss: what does this do?

❖ How does this compare to
the previous attempt?

44

void handler(int signo) {
 for (pid_t p : background) {
 // check status of background
 waitpid(p, &wstatus, WNOHANG);
 // if there is an update,
 // need to update the lists…
 }
}
int main(int argc, char* argv[]) {
 //setting stuff up…
 sigaction(SIGCHLD, &sigact_handler, NULL);
 while(...) {
 printf(PROMPT);
 getline(&user_input);
 pid = fork_exec(user_input);
 waitpid(pid, &wstatus, 0);
 // re-prompt user
 }
}

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Analysis: Async

❖ This approach registers SIGCHLD as a handler, SIGCHLD is a signal that is
sent when a child process stops or is terminated

▪ Is ignored by default

❖ This allows us to respond quickly to the background children terminating

❖ No busy waiting! Main process instead is mostly blocked waiting on the
foreground job

❖ Must use signal handlers and handle critical sections ☺

❖ Handling this ASYNC is your extra credit
pass the normal autograder first PLEASE

45Eventually ASYNC will be the standard assignment as it’s the most useful to implement.

CIS 4480 , Summer 2025L06: Process Groups & Terminal ControlUniversity of Pennsylvania

Reminder: sigsuspend()

❖ Another way to approach handling async is to use sigsuspend()
▪ May be a little harder to reason about; I find it to be a bit more intuitive…

▪ Forces you not to call waitpid unless you need to.

• Optimal shell will have one function with waitpid inside of it, called only when necessary.

▪ Don’t have to do much in the signal handler if this is the case!

46

You finally have everything you need for shell. Yay.

	Default Section
	Slide 1: Process Groups & Terminal Control Computer Operating Systems, Summer 2025
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Process Groups
	Slide 6: Process Group ID
	Slide 7: Process Group ID
	Slide 8: Example 1: Same PGID
	Slide 9: Example 1: Same PGID
	Slide 10: Example 1: Same PGID
	Slide 11: Example 2: Different PGIDs
	Slide 12: Example 2: Different PGIDs
	Slide 13: Example 2: Different PGIDs
	Slide 14: waitpid & kill with PGIDs
	Slide 15: Example: pid vs –pgid
	Slide 16: Example: pid vs –pgid
	Slide 17: Example: pid vs –pgid
	Slide 18: Example: pid vs –pgid
	Slide 19: Demo: pgrpg_signals.c
	Slide 20: Lecture Outline
	Slide 21: What if the child tried to use the terminal?
	Slide 22: What if the child tried to use the terminal?
	Slide 23: Sessions
	Slide 24: Foreground Process Groups
	Slide 25: Background in the shell
	Slide 26: Process Groups and Controlling the Terminal
	Slide 27: Background Process
	Slide 28: Let’s try to fix our code from before!
	Slide 29: Is there a race condition here?
	Slide 31: Race Condition: setpgid();
	Slide 32: Demo: tc.c
	Slide 33: Demo: tc_loop.c
	Slide 34: Lecture Outline
	Slide 35: Stopped Jobs
	Slide 36: Process State Lifetime
	Slide 37: Lecture Outline
	Slide 38: Penn-shell
	Slide 39: "Normal" approach Pseudo Code
	Slide 40: Analysis: "Normal"
	Slide 41: "Polling" approach Pseudo Code
	Slide 42: Analysis: Polling
	Slide 43: Aside: SIGCHLD
	Slide 44: "async" approach Pseudo Code
	Slide 45: Analysis: Async
	Slide 46: Reminder: sigsuspend()

