
CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

File System Intro
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Sid Maya

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Poll: how are you?

❖ Anything you’d like me to explain from last lecture?

2

pollev.com/cis5480

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Lecture Outline

❖ Intro to File System

▪ User Perspective

▪ Blocks

❖ Disk Allocation
▪ Contiguous

▪ Linked List

3

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Files

❖ You have interacted with files before.

❖ Files have names to identify them e.g. "Hello.txt"

❖ Files can be opened, read, written to, saved, deleted, etc..

❖ A file can store image data, programs, text, etc.

❖ Files can also be called non-volatile storage

▪ This data persists when the computer is powered off, as long as the data is actually written
to the file

▪ Data that is in memory is volatile.

• it is lost if the power goes out.

• If you shoot your computer

• Your sibling trips over the power chord (that’s how old I am).

4

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Directories

❖ A directory is a special type of file that contains a list of other files (and
directories) that are “inside” of it

❖ A directory is also named

❖ For most cases, we can use the word Directory and Folder interchangeably

5

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Hierarchical File System

❖ Files on a computer are structured as a Hierarchical File System

❖ Directories can contain other Directories

▪ Subdirectory is used to describe a directory contained in another

▪ Parent and Child are often
used to describe the
relationship between a
subdirectory and the
directory it is in.

▪ With one directory being
the “overall root” or
“overall parent”

6

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

File System: User Level STD API

❖ C stdio API: core functionalities (with File Structs)

❖ These core functionality of these functions should be self-explanatory. If you
need to use these, use man pages to lookup the exact details

7

FILE* fopen(char *pathname, char *mode);

size_t fread(void *ptr, size_t size,size_t nmemb, FILE* stream);

size_t fwrite(void *ptr, size_t size,size_t nmemb, FILE* stream);

int fclose(FILE *stream);

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

File System: User Level STD API

❖ C stdio API: core functionalities (with File Structs)

In addition to the above, we also have another common feature: moving to an
arbitrary position in the file

8

FILE* fopen(char *pathname, char *mode);

size_t fread(void *ptr, size_t size,size_t nmemb, FILE* stream);

size_t fwrite(void *ptr, size_t size,size_t nmemb, FILE* stream);

int fclose(FILE *stream);

int fseek(FILE *stream, long offset, int whence);

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” or sequence of bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

9

A N A R C H Y i s a w o r d w h

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” or sequence of bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

10

A N A R C H Y i s a w o r d w h

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” or sequence of bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

▪ As we read chars, we “move forward” to the next chars in the file

• Now we know we are changing the cursor for that open file…

11

A N A R C H Y i s a w o r d w h

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

User Perspective: A stream of bytes

❖ As a user, we have the idea of a file as being a “stream” or sequence of bytes.

▪ a continuous sequence of data made available over time.

▪ There are many kinds of streams, for now we are talking about files

❖ From our perspective, a file stream looks like this:

▪ A sequence of characters that come one after the other

▪ When we open a file, we start at the beginning of the file stream

▪ As we read chars, we “move forward” to the next chars in the file

❖ This is not just a C thing; this is probably what you have done in Java and other
languages.
▪ It is a hardware thing

12

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

File System

❖ File System: A system composed of algorithms and data structures for how
data is stored, organized & retrieved from a storage medium.

▪ E.g. how the operating system organizes the physical medium (Hard Disk, SSD, Tape,
Floppy Disk, etc) to make the interface/abstraction we saw in the previous slides

13

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

The File System Foundations

❖ So, we have this complicated system of:

▪ various files of different lengths

▪ Files that can be written, read, extended, shrunk, deleted, copied…

▪ Directories that contain files and other directories which can contain other directories etc.

• Directories can be of various sizes

▪ Files can have different permissions (executable, read, write)

▪ Files of the same name can exist in different directories

▪ We want to try and support all of this, and have it run relatively fast

❖ What does the operating system get to implement this?

14

int the_filesystem[REALY_REALLY_BIG];

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Not quite just an array of ints..

❖ From the OS perspective, it has to create and manage a file system with this

❖ This is not fully true

▪ The “unit” size of elements in the array is not an int (typically 4 bytes) but instead a block

• 512 or 4096 bytes, depending on the implementation and hardware

▪ The OS does not get to directly index into the array, it invokes functions (outside of
itself) that can read or write specific blocks.

15

int the_filesystem[REALY_REALLY_BIG];

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Storage Mediums Interface: Blocks
❖ A block is a fixed number of contiguous bytes

▪ Usually, 4096 bytes or 512 bytes

❖ Storage Mediums can be thought of as a giant collection of blocks.
▪ The file system has to organize these blocks (and the bytes inside of them) to make the

abstractions we talked about. Otherwise, there would just be data with no clear
separation of files

❖ A block is the unit of work for a file system

▪ Read and write operations to storage mediums (e.g. disk) are done in multiples of their
respective block size

• So even if you want to change (1 byte) within a file, you must write an entire block of the file

• The smallest space a file takes up on disk is 1 block

16

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Operating System Perspective: Blocks

❖ The stream model is very convenient for user level programs, but hardware
works in terms of blocks.

❖ The file system breaks files up into blocks so that it can be stored into the
storage hardware.
▪ When the operating system interfaces with hardware, it works in terms of blocks.

▪ When the OS operates on a file, it reads/writes an entire block at a time

▪ The user still sees the file as a stream abstraction, can work with bytes instead of blocks

17

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Operating System Perspective: Blocks

❖ User perspective: A sequence of bytes

❖ More details: these bytes are broken up into a series of logical blocks

18

E v e r ' s t e p y o u t a k e i s f o r e v e r .

0th Block

for this file

1st Block

for this file

2nd Block

for this file

3rd Block

for this file

These blocks are logically next to each other, but may not
be contiguous in physical memory.

E v e r ' s t e p y o u t a k e i s f o r e v e r .

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Building up to a full filesystem

❖ Lets start with a simple abstraction:

▪ We have disk that contains many blocks

▪ We want to store a few files and just one block per file (so each file is at max ~4096 bytes)

❖ How do we know where a certain file is on disk?
▪ One Directory, The Root Directory ”/”

❖ How do we know which blocks are free?
▪ Bit map of what is free and what is not free

19

free free File D free File B free free File A free free File C File E

Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Solution: Directories

❖ We can solve one of these problems with the introduction of directories.

❖ A directory is essentially like a file

▪ We will store its data on disk inside of blocks (like a file)

❖ The directory content format is known to the file system.
▪ The file system might maintain a list of directory entries

▪ Each directory entry contains the name of the file, the first block number of the file, and
some other information

20

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Solution: Directories

❖ The directory content format is known to the file system.

▪ Contains a list of directory entries

▪ Each directory entry contains the name of the file, the first block number of the file, and
some other information

21

Directory:

File Name Block Number

A 7

B 4

C 10

D 2

E 11

Where does this directory go?
Where do we store its information?
How do we know where the directory is in disk?

Remember: a directory stores its data in blocks in disk too

free free File D free File B free free File A free free File C File E

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Solution: Root Directory

❖ Solution: we have an overall root directory that we always put in the same
place (Block 1 or Block 0)

22

free Root Dir File D free File B free free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory:

File Name Block Number

A 7

B 4

C 10

D 2

E 11

How do we know which blocks are free?

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Bitmap

❖ We can have a bitmap (similar to a bitset) stored in disk to keep track of which
blocks are free and which ones are not.

❖ If we have N blocks, then we need N bits (1 bit per block) to keep track of this
information. If a bit is 1 the corresponding block is free, 0 means it is in use.

❖ It is also useful to stick this in the front of the disk, at a fixed location

23

Bit-
map

Root
Dir

File D free File B free free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Expanding on our model

❖ What we have works, what happens if we want files that are more than 1 block
big?

❖ Let’s say File B wants to be two blocks long instead of 1 block long

❖ What is the simplest thing we can do?

24

Bit-
map

Root
Dir

File D free File B free free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Contiguous Allocation

❖ Solution: let B expand into the block next to it on disk. It is a free block and we can
take it

❖ Only other change we need to make is probably have each directory entry also store
the number of blocks in the file

❖ This way of allocating blocks to a file is called Contigious allocation. Each file occupies
a contiguous region of blocks 25

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory: File Name Block # length

… … …

B 4 2

… … …

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Contiguous Allocation: Random Access

❖ What if wanted to read the second block of File B?

▪ How many blocks would we need to read from disk?

• Assume we have not read anything in to the OS yet

26

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory: File Name Block # length

… … …

B 4 2

… … …

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Contiguous Allocation: Random Access

❖ What if wanted to read the second block of File B?

▪ How many blocks would we need to read from disk?

27

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Directory: File Name Block # length

… … …

B 4 2

… … …

pollev.com/cis5480

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Contiguous allocation: problems

❖ Let’s say File C wants to be two blocks long instead of 1 block long

▪ What do we do?

❖ What if instead File D wants to be 5 blocks long?

❖ If we wanted to extend the file but the next block is taken, we either give up or
have to rearrange other files in the file system.

❖ Analysis: this doesn’t work very well for files that may grow over time. There is
fragmentation that can’t be used unless we move files around, which takes a
lot of time :/

29

Bit-
map

Root
Dir

File D free File B Also
File B

free File A free free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Do blocks need to be contiguous?

❖ Logically (from the user view) a file is contiguous.

❖ The user never directly interfaces with disk, the operating system just has to
provide the data in the blocks in order

❖ The operating system is maintaining the abstraction for the user. The user
asks for the 3rd block of a file, and the operating system will figure out which
physical block it is.

❖ Sort of similar to virtual vs physical address translation (haha more on that later) 30

File A B0 File A B1 File A B2 File A B3 File A B4Logical File:

Block 1 EMPTY Block 3 Block 2 Block 0 Block 4 EMPTY

PB 0 PB 1 PB 2 PB 3 PB 4 PB 5 PB 6

Physical Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Implicit Linked List Allocation

❖ We can have each block reserve some bits at the end that are pointers to the
next block in the file,

▪ or a special value to mark that there is no “next block”

❖ NOTE: when we say “pointer” here, it is not the same as a memory pointer.
This is a “disk pointer”, meaning it refers to a place in disk and NOT a place in
memory

❖ Root directory still holds the first block number for a file in that file’s file entry.

31

Bit-
map

Root
Dir

File D free File B Also
File B

File D
Blk 2

File A File C
Blk 2

free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Implicit Linked List Allocation

❖ What if I want to grow File D by 2 blocks?

▪ Scan the bitmap to find which blocks are free

▪ Allocate the blocks and set up pointers to them

32

Bit-
map

Root
Dir

File D free File B Also
File B

File D
Blk 2

File A File C
Blk 2

free File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

Bit-
map

Root
Dir

File D File D
Blk 3

File B Also
File B

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Linked List Allocation: Random Access

❖ Let’s say I wanted to read the 4th block of file D.
How many block reads would be needed? Why?

▪ You can assume we already know where the file begins (we have already read the
directory entry for the file)

33

Bit-
map

Root
Dir

File D File D
Blk 3

File B Also
File B

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

pollev.com/cis5480

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Seek Time

❖ To seek in a file is to move to a different position in the file. If we want to move
from one place on the hardware to another, that takes a VERY long time
(relatively)

❖ HDD (Hard Disk Drives) consist of a spinning disk and an arm that hovers over
the disk to read data

❖ Video: https://yewtu.be/watch?v=p-JJp-oLx58

▪ Start at 6:48 ish

❖ Since this is a physical operation,
much slower (relatively) than
electronic operations

35

https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Linked Allocation Analysis

❖ Linked List Pros:

▪ Growing a file is more feasible

▪ Fragmentation issues are less present

❖ Linked List Cons:
▪ Reading can take a lots of seeks to different parts of disk.

Seeks take up time 

▪ This con is big enough to warrant a different allocation scheme.
Computer science typically cares A LOT about how quick something is

36

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Linked List via FAT

❖ We can still have a linked-list “style” approach, we just need a way to make
looking up the blocks of a file quicker. We don’t want to access disk so many
times if we can help it. O(N) look up to traverse all blocks in the file…

❖ What can we do instead of accessing disk?

▪ What if we could access memory instead?

37

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Memory Hierarchy

38

Files systems are really

really really slow compared

to accessing memory

I’ll talk about

caches later

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT (File Allocation Table)

❖ Instead of this:

❖ We can instead store the pointers or “links” in a table in memory to get…

39

Bit-
map

Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Disk:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

❖ This table is called the
 File Allocation Table (FAT)

❖ This table is in memory when it is running

❖ Table stored in disk initially, loaded into
memory when computer is booted.

❖ Replaces the bitmap

▪ Why can it do that?

pollev.com/cis5480

FAT (File Allocation Table)

40

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT Lookup

❖ Let’s say I wanted to read the 4th block
of file D.
How many block reads would be
needed? Why?

▪ You can assume we already know where
the file begins (we have already read the
directory entry for the file)

41

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

pollev.com/cis5480

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT Walkthrough

43

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

??? ??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

❖ The FAT is the reason why the
operating system knows which block is
used for which purpose

❖ If we wanted to read the 4th block from
file D:

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT Walkthrough

44

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

❖ The FAT is the reason why the
operating system knows which block is
used for which purpose

❖ If we wanted to read the 4th block from
file D:

▪ Read the directory entry for File D to see
that it starts at block 2

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT Walkthrough

45

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

??? ??? ??? File D
Blk 1

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

❖ The FAT is the reason why the
operating system knows which block is
used for which purpose

❖ If we wanted to read the 4th block from
file D:

▪ Lookup next block in the FAT. We go to FAT
entry #2 and the “next” says where the next
block is (physical block 6)

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT Walkthrough

46

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

❖ The FAT is the reason why the
operating system knows which block is
used for which purpose

❖ If we wanted to read the 4th block from
file D:

▪ Lookup next block in the FAT. We go to FAT
entry #6 and the “next” says where the next
block is (physical block 3)

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT Walkthrough

47

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? File D
Blk 3

??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

❖ The FAT is the reason why the
operating system knows which block is
used for which purpose

❖ If we wanted to read the 4th block from
file D:

▪ Lookup next block in the FAT. We go to FAT
entry #3 and the “next” says where the next
block is (physical block 9)

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT Walkthrough

48

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D
Blk 0

File D
Blk 2

??? ??? File D
Blk 1

??? ??? File D
Blk 3

??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

❖ The FAT is the reason why the
operating system knows which block is
used for which purpose

❖ If we wanted to read the 4th block from
file D:

▪ The FAT entry for block 9 has a special value
for “next” to indicate it is the last block in
the file

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Linked List via FAT

❖ FAT is logically very similar as a linked list, we just store the links somewhere
else that can be conveniently stored in memory

❖ Since the links are in memory, we can find the Nth block of a file with much
fewer disk accesses

❖ Disk accesses take a long time, so this is good ☺

49

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Expanding or shrinking files in FAT

❖ If we want to extend a file in FAT what steps do we need to take?

❖ Hint: FAT is in memory, what are the big differences between Disk and
Memory?

50

pollev.com/cis5480

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT is great ☺*

❖ FAT has allowed us to have non-contiguous blocks for a file.

❖ At the same time, we only need one disk read to access the Nth block of a file

❖ What could go wrong with this?

▪ FAT is really big and is in memory, so memory consumption goes up 

52

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

FAT (The Table) size

❖ A FAT is similar to a bitmap

▪ A bitmap needs 1 bit per block

▪ A FAT needs ~16-bits per block 

❖ At least we don’t need bitmap anymore!

❖ Grows a lot as the size of disk grows
▪ As the disk grows, there are more blocks in the disk. We need more FAT entries, and each

entry needs more bits. (To hold the block number. # of bits for block # grows to support
more blocks)

▪ The File Allocation Table may be bigger than one block

▪ we need to keep the FAT in memory to keep accesses fast, memory consumption goes up!

▪ FAT got fazed out for I-nodes (next lecture) because of this (thank god I hate FAT)

53

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

PennOS FAT size

❖ When you create a file system with PennFAT, you specify the number of blocks
the File Allocation Table takes up and the size of a block.

❖ Let’s say l want to create a FAT that spans 4 blocks, a block is 4096 (212) bytes,
and an entry in the table is 2 bytes.

▪ How many entries do I have?

54

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

pollev.com/cis5480

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

PennOS FAT Details

❖ If we have N entries in the File Allocation Table, we only have N – 1
references to data blocks in the FAT

❖ The first File Allocation Table entry FAT[0] holds meta data about
the FAT, so it doesn’t refer/point to a “real” block

❖ An entry is 16-bits, which is 2 bytes.

❖ Consider the example 2-byte value: 0x2004
▪ We can split this into two bytes for FAT[0]

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

56

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

PennOS FAT[0] MSB

❖ The first FAT entry FAT[0] holds meta data about the FAT, so it
doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The MSB is size of the File Allocation Table in units of blocks
▪ in this example, the FAT is 32 blocks

57

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

PennOS FAT[0] LSB

❖ The first FAT entry FAT[0] holds meta data about the FAT, so it
doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The LSB is between 0 and 4, and
specifies the size of the blocks for
the file system

58

LSB Block Size

0 256

1 512

2 1,024

3 2,048

4 4,096

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

PennOS FAT Entry Special Values

❖ A PennFAT entry is 16-bits and only contains the block number of the next
block in the file.

❖ There are two special values a PennFAT entry can hold

❖ 0x0000 (0 in decimal)
▪ Indicate the block is free.

▪ We start indexing into our blocks in the data region starting with index 1

❖ 0xFFFF (65535 as unsigned, -1 as signed)

▪ Indicates that there is no block after this logically in the file

▪ That this is the last block in the file

59

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

PennOS root Directory

❖ PennFAT has a special value for FAT[1] as well.

❖ It still corresponds to a data block, but that data block is the first block of the
root directory

❖ This means we always know where the root directory starts. (at index 1 into
the data region), and from there we can find all other files

▪ …pathname resolution soon…

60

Disk:

FAT FAT FAT FAT Root
Blk 0

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

CIS 4480, Summer 2025L07: File System IntroUniversity of Pennsylvania

Think About How You’d like to Design your Penn-FAT ☺

61

	Default Section
	Slide 1: File System Intro Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Lecture Outline
	Slide 4: Files
	Slide 5: Directories
	Slide 6: Hierarchical File System
	Slide 7: File System: User Level STD API
	Slide 8: File System: User Level STD API
	Slide 9: User Perspective: A stream of bytes
	Slide 10: User Perspective: A stream of bytes
	Slide 11: User Perspective: A stream of bytes
	Slide 12: User Perspective: A stream of bytes
	Slide 13: File System
	Slide 14: The File System Foundations
	Slide 15: Not quite just an array of ints..
	Slide 16: Storage Mediums Interface: Blocks
	Slide 17: Operating System Perspective: Blocks
	Slide 18: Operating System Perspective: Blocks
	Slide 19: Building up to a full filesystem
	Slide 20: Solution: Directories
	Slide 21: Solution: Directories
	Slide 22: Solution: Root Directory
	Slide 23: Bitmap
	Slide 24: Expanding on our model
	Slide 25: Contiguous Allocation
	Slide 26: Contiguous Allocation: Random Access
	Slide 27: Contiguous Allocation: Random Access
	Slide 29: Contiguous allocation: problems
	Slide 30: Do blocks need to be contiguous?
	Slide 31: Implicit Linked List Allocation
	Slide 32: Implicit Linked List Allocation
	Slide 33: Linked List Allocation: Random Access
	Slide 35: Seek Time
	Slide 36: Linked Allocation Analysis
	Slide 37: Linked List via FAT
	Slide 38: Memory Hierarchy
	Slide 39: FAT (File Allocation Table)
	Slide 40: FAT (File Allocation Table)
	Slide 41: FAT Lookup
	Slide 43: FAT Walkthrough
	Slide 44: FAT Walkthrough
	Slide 45: FAT Walkthrough
	Slide 46: FAT Walkthrough
	Slide 47: FAT Walkthrough
	Slide 48: FAT Walkthrough
	Slide 49: Linked List via FAT
	Slide 50: Expanding or shrinking files in FAT
	Slide 52: FAT is great *
	Slide 53: FAT (The Table) size
	Slide 54: PennOS FAT size
	Slide 56: PennOS FAT Details
	Slide 57: PennOS FAT[0] MSB
	Slide 58: PennOS FAT[0] LSB
	Slide 59: PennOS FAT Entry Special Values
	Slide 60: PennOS root Directory
	Slide 61: Think About How You’d like to Design your Penn-FAT 

