
CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Scheduler & Intro to Threads
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar Sid Sannapareddy

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ How are you doing? Any questions?

2

pollev.com/tqm

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Administrivia

❖ Midterm is Wednesday THIS WEEK Wednesday 7pm to 9pm

▪ Old exams and exam policies are posted on the course website

▪ Review session in class tomorrow!!!!!!!!!!!!!

▪ What we get to in this lecture will be testable.

❖ Penn-shell is out (this shouldn’t be news)!

▪ Extension: Since autograder was down for 12 hours, and there is an exam this week

▪ Full thing is due (This Friday!)

• Can only use ONE late token now: late due date is Sunday the 29th.

▪ Done in partners

• Everything was covered already that you would need…

3

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Administrivia

❖ PennOS:

▪ Specifications and team sign-up to be posted Thursday (day after exam)

▪ Done in groups of 4

▪ Partner signup due by end of day on Monday the 30th

• Those left unassigned will be randomly assigned the next morning (Tuesday the 31st)

▪ Lecture dedicated to PennOS in class on Tuesday the 31st. Highly recommend you go.

4

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants (Cont.)

▪ Linux Scheduler

❖ Threads Intro

▪ Thread High Level

▪ pthreads

▪ Processes vs threads

▪ Thread Interleaving & Sequential Consistency

5

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run until it completes or
until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given time and/or if
another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

6

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only let it run for a fixed amount of time (quantum).

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the queue.

7

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

RR Variant: Multi Level Feedback

8

❖ Each priority level has a ready queue, and a time quantum

❖ Thread enters highest priority queue initially, and lower queue with each
timer interrupt

❖ If a thread voluntarily stops using CPU before time is up, it is moved to
the end of the current queue

❖ Bottom queue is standard Round Robin

❖ Thread in a given queue not scheduled until all higher queues are empty

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Multi Level Feedback Analysis

❖ Threads with high I/O bursts are preferred

▪ Makes higher utilization of the I/O devices

▪ Good for interactive programs (keyboard, terminal, mouse is I/O)

❖ Threads that need the CPU a lot will sink to lower priority, giving shorter
threads a chance to run

❖ Still have to be careful in choosing time quantum

❖ Also have to be careful in choosing how many layers

9

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Multi Level Feedback Variants: Priority

❖ Can assign tasks different priority levels upon initiation that decide which
queue it starts in

▪ E.g. the scheduler should have higher priority than HelloWorld.java

❖ Update the priority based on recent CPU usage rather than overall cpu usage
of a task

▪ Makes sure that priority is consistent with recent behavior

❖ Many others that vary from system to system

10

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants (Cont.)

▪ Linux Scheduler

❖ Threads Intro

▪ Thread High Level

▪ pthreads

▪ Processes vs threads

▪ Thread Interleaving & Sequential Consistency

11

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Multiple Cores

❖ On a modern machine, we have multiple CPU Cores, each can run tasks

▪ Generally each core has its own run-queue

▪ It helps to keep threads in the same process on the same processor

• Threads in the same process use the same memory: lower overhead

• If we want to there are ways to make sure a thread/process is “pinned” to a CPU

– See: Thread Affinity / Processor Affinity / CPU Pinning

❖ There is other stuff to balance tasks across cores, but I am leaving that out for
time ☺

12

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

13

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

14

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3

B 1/3

C 1/3

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

15

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3

C 1/3 1/3 1/3

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

16

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3 1/2

C 1/3 1/3 1/3 1/2

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

17

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3 1/2 1/2

C 1/3 1/3 1/3 1/2 1/2

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

18

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3 1/2 1/2 1 1 1

C 1/3 1/3 1/3 1/2 1/2

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

CFS – Reality

❖ In reality there are things that prevent us from having a “perfect multi-tasking
processor”

▪ Time to context switch

▪ Time for the scheduler run

▪ Time spent running other things in the kernel that don't really belong to a single task

▪ Task may not be pre-emptible sometimes and we need to wait for the task to become pre-
emptible.

▪ Etc.

19

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

CFS – Implementation

❖ CFS maintains a current count for “how long has a task run” called vruntime.

❖ The runtimes of all tasks are stored by the scheduler

❖ Unlike round robin, a thread is not run for a fixed amount of time
▪ Run a task till there is some thing with a lower vruntime

▪ To avoid constantly switching back and forth between two tasks there is a minimum
“granularity” (~2.25 milliseconds iirc)

20

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

CFS – Implementation Details

❖ CFS maintains a current count for “how long has a task run” called vruntime.

❖ The runtimes of all tasks are stored by the scheduler inside of a Red-Black Tree

▪ Red-Black Tree is a Self balancing binary tree

▪ Sorted on the vruntime for each task

▪ Smallest vruntime task is the leftmost node

❖ Adding a node is O(log N) operation

❖ Pointer to leftmost node is maintained,
so looking up is O(1)

21

7

124

5 9 13

Root

min_vruntime

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

CFS – Implementation Details

❖ CFS maintains a current count for “how long has a task run” called vruntime.

❖ On each scheduler “tick” the processor compares the current
running task to the leftmost task

❖ If the min_vruntime is less than the current node
(and granularity has passed) then start
running the minimum task.

22

7

124

5 9 13

Root

min_vruntime

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

CFS – New Tasks

❖ New tasks haven’t run on the CPU, so their vruntime is 0 when they are
created?

▪ No, instead new tasks start with their vruntime equal to the min_vruntime.

▪ This way fairness is maintained between newer and older tasks.

23

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

CFS – I/O Bound Tasks

❖ CFS will also maintain whether a job is sleeping or blocked. Won’t schedule to
run those tasks and store them in a separate structure.

❖ CFS handles I/O bound tasks pretty well :)

❖ Tasks with many I/O bursts will have small usage of CPU.
So they also have a low vruntime and have higher priority.

24

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

nice

❖ nice

25

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

nice

❖ Linux has a way to set priority with a `nice` value.

▪ Each process starts with a nice value of 0

▪ Nice is clamped to [-20, 19]

❖ The higher your nice score, the “nicer” you are
(the task runs less often thus letting other tasks run instead of it)

❖ Higher nice score -> lower priority

❖ Lower nice score -> higher priority

26

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

CFS – Vruntime

❖ CFS uses vruntime as the dominant metric

▪ V stands for virtual (e.g. not real runtime)

❖ You may have thought:
▪ curr_task->runtime += time_running

▪ This is false

❖ vruntime takes other things (like nice scores) into consideration
▪ curr_task->vruntime += (time_running * weight_based_on_nice)

❖ CFS takes other things into consideration that make it more complex :)

27

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Earliest Eligible Virtual Deadline First (EEVDF)

❖ New Linux scheduler!

▪ Replaced CFS less than a year ago (April 2024)

▪ Still aims for fairness, just with some different metrics

❖ Utilizes a new concept called “lag” (in addition to vruntime)

▪ A measurement for how much time a task is “owed” if it did not get its fair share of time

▪ Tasks that took more CPU time than its fair share have negative “lag”

• Will not be considered “Eligible”. will not be run until lag >= 0

• Sleeping / blocked tasks will not get free lag increases

28

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Earliest Eligible Virtual Deadline First (EEVDF)

❖ Not going over it due to:

▪ Time in lecture, looks like it may be more complex and take longer to explain

▪ It is new! Not as much information out there on it

• I could read the Linux kernel source code, but that takes time :)))))))

❖ Take a look at these articles from LWN.net if you want to learn more about
EEVDF

▪ https://lwn.net/Articles/925371/

▪ https://lwn.net/Articles/969062/

29

https://lwn.net/Articles/925371/
https://lwn.net/Articles/969062/

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Consideration: Interactive Tasks

❖ There is still ongoing work to make schedulers that are better

▪ “Better” either in general or to specific situations

❖ Example: People are already working on EEVDF upgrades. VARD scheduler for
SteamOS
 https://youtu.be/xJjZ5tzlHOY?si=lgGNWaQe03qSgCP2&t=1682

30

https://youtu.be/xJjZ5tzlHOY?si=lgGNWaQe03qSgCP2&t=1682

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

31

Another Issue: The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Why did we talk about this?

❖ Scheduling is fundamental towards how computer can multi-task

❖ This is a great example of how “systems” intersects with algorithms :)

❖ It shows up occasionally in the real world :)

▪ Scheduling threads with priority with shared resources can cause a priority inversion,
potentially causing serious errors.

32

What really happened on Mars Rover Pathfinder, Mike Jones.
http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

More

❖ For those curious, there was a LOT left out

❖ RTOS (Real Time Operating Systems)

▪ For real time applications

▪ CRITICAL that data and events meet defined time constraints

▪ Different focus in scheduling. Throughput is de-prioritized

❖ Fair-share scheduling

▪ Equal distribution across different users instead of by processes

❖ Etc.
33

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

More Round Robin Practice

❖ Four processes are executing on one CPU following round robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

34

Solutions at end of slide deck

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

More Round Robin Practice

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

35

Solutions at end of slide deck

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants (Cont.)

▪ Linux Scheduler

❖ Threads Intro

▪ Thread High Level

▪ pthreads

▪ Processes vs threads

▪ Thread Interleaving & Sequential Consistency

36

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

37

thread

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

38

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

39

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

40

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can communicate with each other
through variables and memory

– But, they can interfere with each other – need synchronization for shared resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

41

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

42

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

43

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants (Cont.)

▪ Linux Scheduler

❖ Threads Intro

▪ Thread High Level

▪ pthreads

▪ Processes vs threads

▪ Thread Interleaving & Sequential Consistency

44

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

45

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

46

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

47

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Thread Example

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

▪ Threads execute in parallel

48

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants (Cont.)

▪ Linux Scheduler

❖ Threads Intro

▪ Thread High Level

▪ pthreads

▪ Processes vs threads

▪ Thread Interleaving & Sequential Consistency

49

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

50

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

51

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

52

pollev.com/tqm

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

53

pollev.com/tqm

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a global, it is seen by other
threads

▪ Processes have separate address spaces, incrementing a global in one process does not
increment it for other processes

❖ NOTE: sharing data between threads is actually kinda unsafe if done wrong (we
are doing it wrong in this example), more on this next week

54

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Process Isolation

❖ Process Isolation is a set of mechanisms implemented to protect processes
from each other and protect the kernel from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

55

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd
integers in the matrix

56

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd
integers in the matrix

❖ I can speed this up by giving each thread a part of the matrix to check!

▪ Works with threads since they share memory

57

Diminishing returns

After 4 threads, no

gain in speed

why? Machine run on

only has 4 cores

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Parallelism vs Concurrency

❖ Two commonly used terms (often mistakenly used interchangeably).

❖ Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).

▪ That these tasks are both running within the same period.

❖ Parallelism: when one or more “tasks” run at the same instant in time.

❖ Consider the lifetime of these
threads. Which are concurrent with A?
Which are parallel with A?

58

A

B

C

D

thread

time

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

59

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Context Switching

❖ Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching

▪ Cannot easily share memory between processes – typically communicate through the file
system

60

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants (Cont.)

▪ Linux Scheduler

❖ Threads Intro

▪ Thread High Level

▪ pthreads

▪ Processes vs threads

▪ Thread Interleaving & Sequential Consistency

61

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Polling Question

❖ What are all possible outputs of this program?

62

void* thrd_fn(void* arg) {

 int* ptr = (int*) arg;

 printf("%d\n", *ptr);

 return NULL;

}

int main() {

 pthread_t thd1;

 pthread_t thd2;

 int x = 1;

 pthread_create(&thd1, NULL, thrd_fn, &x);

 x = 2;

 pthread_create(&thd2, NULL, thrd_fn, &x);

 pthread_join(thd1, NULL);

 pthread_join(thd2, NULL);

}

Are these output
possible?

1
2

2
2

1
1

2
1

pollev.com/tqm

For simplicity: assume that there is one CPU
and that “printf” is an atomic/indivisible
operation (we can’t context switch mid printf)

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Visualization

63

int main() {

 int x = 1;

 pthread_create(...);

 x = 2;

 pthread_create(...);

 pthread_join(...);

 pthread_join(...);

}

thrd_fn() {

 printf(*ptr);

 return NULL;

}

thrd_fn() {

 printf(*ptr);

 return NULL;

}

For simplicity: assume that there is one CPU
and that “printf” is an atomic/indivisible
operation (we can’t context switch mid printf)

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

64

int x

main()

1

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

65

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

1

thd1

int* ptr

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

66

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

2

thd1

int* ptr

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

67

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

2

thd1

int* ptr

thd2

int* ptr

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Sequential Consistency

❖ Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the
program order.

68

int x = 1

main()

create thd1

x = 2

create thd2

Within main(), x is set to 1 before thread 1 is created
then thread 1 is created
then x is set to 2
then thread 2 is created

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

69

int x = 1

main() thd1 thd2

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

70

int x = 1

main() thd1 thd2

create thd1

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

71

int x = 1

main() thd1 thd2

create thd1

x = 2

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

72

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

73

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

74

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running.

This is also why total.c malloc’d individual
integers for each thread.
Though it could have also just made an array on the stack

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

That’s all!

❖ See you next time!

75

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

More Round Robin Practice

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest

76

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

More Round Robin Practice

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

77

CIS 4480/5480, Summer 2025L11: Scheduling (Fin.) & ThreadsUniversity of Pennsylvania

More Round Robin Practice

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

78

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

	Default Section
	Slide 1: Scheduler & Intro to Threads Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Types of Scheduling Algorithms
	Slide 7: Round Robin
	Slide 8: RR Variant: Multi Level Feedback
	Slide 9: Multi Level Feedback Analysis
	Slide 10: Multi Level Feedback Variants: Priority
	Slide 11: Lecture Outline
	Slide 12: Multiple Cores
	Slide 13: "Completely Fair Scheduling"
	Slide 14: "Completely Fair Scheduling"
	Slide 15: "Completely Fair Scheduling"
	Slide 16: "Completely Fair Scheduling"
	Slide 17: "Completely Fair Scheduling"
	Slide 18: "Completely Fair Scheduling"
	Slide 19: CFS – Reality
	Slide 20: CFS – Implementation
	Slide 21: CFS – Implementation Details
	Slide 22: CFS – Implementation Details
	Slide 23: CFS – New Tasks
	Slide 24: CFS – I/O Bound Tasks
	Slide 25: nice
	Slide 26: nice
	Slide 27: CFS – Vruntime
	Slide 28: Earliest Eligible Virtual Deadline First (EEVDF)
	Slide 29: Earliest Eligible Virtual Deadline First (EEVDF)
	Slide 30: Consideration: Interactive Tasks
	Slide 31: Another Issue: The Priority Inversion Problem
	Slide 32: Why did we talk about this?
	Slide 33: More
	Slide 34: More Round Robin Practice
	Slide 35: More Round Robin Practice
	Slide 36: Lecture Outline
	Slide 37: Introducing Threads
	Slide 38: Threads vs. Processes
	Slide 39: Threads vs. Processes
	Slide 40: Threads vs. Processes
	Slide 41: Threads
	Slide 42: Single-Threaded Address Spaces
	Slide 43: Multi-threaded Address Spaces
	Slide 44: Lecture Outline
	Slide 45: POSIX Threads (pthreads)
	Slide 46: Creating and Terminating Threads
	Slide 47: What To Do After Forking Threads?
	Slide 48: Thread Example
	Slide 49: Lecture Outline
	Slide 50: Threads vs. Processes
	Slide 51: Threads vs. Processes
	Slide 52: Poll: how are you?
	Slide 53: Poll: how are you?
	Slide 54: Demos:
	Slide 55: Process Isolation
	Slide 56: Parallelism
	Slide 57: Parallelism
	Slide 58: Parallelism vs Concurrency
	Slide 59: How fast is fork()?
	Slide 60: Context Switching
	Slide 61: Lecture Outline
	Slide 62: Polling Question
	Slide 63: Visualization
	Slide 64: Visualization: Memory
	Slide 65: Visualization: Memory
	Slide 66: Visualization: Memory
	Slide 67: Visualization: Memory
	Slide 68: Sequential Consistency
	Slide 69: Visualization: Ordering
	Slide 70: Visualization: Ordering
	Slide 71: Visualization: Ordering
	Slide 72: Visualization: Ordering
	Slide 73: Visualization: Ordering
	Slide 74: Visualization: Ordering
	Slide 75: That’s all!
	Slide 76: More Round Robin Practice
	Slide 77: More Round Robin Practice
	Slide 78: More Round Robin Practice

