
CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads Cont. Locks & Concurrency Benefits
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar Sid Sannapareddy

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Poll: how are you?

❖ How are you enjoying the weather?

2

pollev.com/tqm

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Administrivia

❖ PennOS:

▪ Specifications and team sign-up have been posted

▪ Done in groups of 4

▪ Partner signup due by end of day TODAY

• Those left unassigned will be randomly assigned tomorrow morning (Tuesday the 31st)

▪ Lecture dedicated to PennOS in class tomorrow. Highly recommend you go. Highly
recommend you read some of the spec today.

▪ PennOS Due Dates for milestones to be updated tonight.

3

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency

4

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

5

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads vs. Processes

6

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads vs. Processes

7

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

9

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

10

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

11

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

12

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency

13

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Shared Resources

❖ Some resources are shared between threads and processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

14

Issues arise when we

try to shared things

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different threads access the same
location, and at least one is a write, and they occur one after another

▪ Means that the result of a program can vary depending on chance (which thread ran first?
When did a thread get interrupted?)

15

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

16

if (!milk) {

 buy milk

}

! !

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

17

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

pollev.com/tqm

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

18

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note 

pollev.com/tqm

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, depending on the
specifics of the data structure

❖ Example: two threads try to read from and write to the same shared memory
location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head of the linked list at the
same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
19

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Remember this?

❖ What does this print?

20

Always prints 0, the global

counter is not shared across

processes, so the parent’s

global never changes

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Remember this?

❖ What does this print?

21

Usually 5000

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Previous Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a global, it is seen by other
threads

▪ Processes have separate address spaces, incrementing a global in one process does not
increment it for other processes

❖ NOTE: sharing data between threads is actually kinda unsafe if done wrong (we
are doing it wrong in this example), more on this NOW

22

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread while executing these
three instructions?

❖ Reminder: Each thread has its own registers to work with. Each thread would
have its own R0

23

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

24

LOAD sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

25

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

26

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

27

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

28

LOAD sum_total into R0

ADD R0 R0 #1

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

❖ With this example, we could get 1 as an output instead of 2, even though we
executed ++sum_total twice

29

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Remember this?

❖ What is the minimum
value that could be
printed?

30

pollev.com/tqm

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

31

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

32

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating system to help ensure
synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

33

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

34

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

35

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.c

36

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency

37

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Is there a data race here?

❖ Does this code have a data
race?

▪ Can this program enter an
“invalid” (unexpected or error)
state from having concurrent
memory accesses?

❖ Follow up: Does this code
feel good?

38

pollev.com/tqm
pthread_mutex_t lock;
bool print_ok = false;

void* thrd_fn1(void* arg) {
 pthread_mutex_lock(&lock);
 print_ok = true;
 pthread_mutex_unlock(&lock);
 return NULL;
}

void* thrd_fn2(void* arg) {
 pthread_mutex_lock(&lock);
 if (print_ok) {
 printf("print ok is true\n");
 } else {
 printf("print ok is false\n");
 }
 pthread_mutex_unlock(&lock);
 return NULL;
}

int main() {
 // assume main sets ups the threads & locks, etc.

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

❖ Race-Condition: Where the program has different behaviour depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a race condition

❖ Data-races are a subset of race-conditions

39

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each other to know when
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only produce things once the producer has produced them

❖ Need to make sure this communication has no data race or race condition

40

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency

41

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code,
one with arg = 0, other thread has arg = 1

❖ Each thread tries to increment sum_total. Does this work?

42

int sum_total = 0;

bool flag[2] = {false, false};

int turn = 0

void thread_code(int arg) {

 int me = arg;

 flag[me] = true;

 turn = 1 - me;

 while((flag[1-me] == true) && (turn != me)) { }

 ++sum_total;

 flag[me] = false;

}

Check the index of the other thread

pollev.com/tqm

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work? (using an analogy)

▪ Each thread first declares that they want to enter the critical section by setting their flag

▪ Each thread then states (once) that the other should “go first”.

• This is done by setting the turn variable to 1 – me

• One of these assignments to the turn variable will happen last, that is the one that decides who
goes first

▪ One of the thread goes first (decided by the value of turn) and accesses the critical section,
before saying it is done (by changing their flag to false)

43

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value is turn = 1. P0 will get to
run first.

44

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Explanation

flag[0] = true

Thread 0 Thread 1

turn = 1

while(flag[1] == true

 && turn != 0)

flag[1] = true

turn = 0

++sum_total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 1 came after turn = 0
// the turn variable is set to 1

turn = 1

while(flag[0] == true

 && turn != 1)

turn = ?

turn = 1

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be interrupted before or after, but
not “during” when turn may have some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order laid out in the code

46

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Atomicity

❖ Atomicity: An operation or set of operations on some data are atomic if the
operation(s) are indivisible, that no other operation(s) on that same data can
interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.

47

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

49

bool g = false;

int t = 0

void some_func(int arg) {

 t = 5;

 g = true;

}

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

50

bool g = false;

int t = 0

void some_func(int arg) {

 t = 5;

 g = true;

}

NO

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some_func returns

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

▪ Since is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

51

g = true; t = 5;

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

❖ Or: just use a real method of synchronization (we will talk about more of these
in Thursday’s lecture)

52

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency

53

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

54

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Search Engine Architecture

55

query
processor

client
index

file

index
file

index
file

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Search Engine (Pseudocode)

56

doclist Lookup(string word) {

 bucket = hash(word);

 hitlist = file.read(bucket);

 foreach hit in hitlist {

 doclist.append(file.read(hit));

 }

 return doclist;

}

main() {

 SetupServerToReceiveConnections();

 while (1) {

 string query_words[] = GetNextRequest();

 results = Lookup(query_words[0]);

 foreach word in query[1..n] {

 results = results.intersect(Lookup(word));

 }

 send_results(results);

 }

}

pollev.com/tqm

❖ This is pseudo code for
what our single
threaded server does.

❖ When do you think our
code interacts with the
network?

❖ How often does it read
from a file?

❖ Query size = 2
each query “hits” once

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Search Engine (Pseudocode)

57

doclist Lookup(string word) {

 bucket = hash(word);

 hitlist = file.read(bucket);

 foreach hit in hitlist {

 doclist.append(file.read(hit));

 }

 return doclist;

}

main() {

 SetupServerToReceiveConnections();

 while (1) {

 string query_words[] = GetNextRequest();

 results = Lookup(query_words[0]);

 foreach word in query[1..n] {

 results = results.intersect(Lookup(word));

 }

 send_results(results);

 }

}

Disk I/O

Network

I/O

Network

I/O

pollev.com/tqm

❖ This is pseudo code for
what our single
threaded server does.

❖ When do you think our
code interacts with the
network?

❖ How often does it read
from a file?

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Execution Timeline: a Multi-Word Query

58

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query
C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html

59

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

60

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Execution Timeline: To Scale

61

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

Does this look like efficient CPU Utilization?

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Uh-Oh: Handling Multiple Clients

62

query
processor

client

client

client

client

client

index
file

index
file

index
file

What if we have multiple clients (and requests) happening at a time?
How are requests processed? One after the other….

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Uh-Oh: Handling Multiple Clients

63

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

64

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

A Concurrent Implementation

❖ Use multiple threads

▪ As a query arrives, create a new threads to handle it

• The thread reads the query from the network, issues read requests against files, assembles
results and writes to the network

• The thread uses blocking I/O; the thread alternates between consuming CPU cycles and blocking
on I/O

▪ The OS context switches between threads

• While one is blocked on I/O, another can use the CPU

• Multiple threads I/O requests can be issued at once

65

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Multithreaded Server

66

client

server

accept()

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Multithreaded Server

67

client

server

pthread_create()

pthread_detach()

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Multithreaded Server

68

client

server

accept()

client

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Multithreaded Server

69

client

client

server

pthread_create()

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Multithreaded Server

70

client

client

client

client

client

client
server

shared
data

structures

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Multi-threaded Search Engine (Execution)

71

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

*Running with 1 CPU

Note how only one thread

uses any specific resource

at a time

The OS schedules all of

this for us ☺

The CPU is the Central Processing Unit

Other pieces of hardware have their

own small processors to do specialized

work.

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

72

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

73

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads vs. Processes

74

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Threads vs. Processes

75

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching
(Context switching == switching between threads/processes)

▪ Cannot easily share memory between processes – typically
communicate through the file system

76

CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

That’s all!

❖ See you next time!

77

	Default Section
	Slide 1: Threads Cont. Locks & Concurrency Benefits Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Single-Threaded Address Spaces
	Slide 9: Multi-threaded Address Spaces
	Slide 10: POSIX Threads (pthreads)
	Slide 11: Creating and Terminating Threads
	Slide 12: What To Do After Forking Threads?
	Slide 13: Lecture Outline
	Slide 14: Shared Resources
	Slide 15: Data Races
	Slide 16: Data Race Example
	Slide 17: Data Race Example
	Slide 18: Data Race Example
	Slide 19: Threads and Data Races
	Slide 20: Remember this?
	Slide 21: Remember this?
	Slide 22: Previous Demos:
	Slide 23: Increment Data Race
	Slide 24: Increment Data Race
	Slide 25: Increment Data Race
	Slide 26: Increment Data Race
	Slide 27: Increment Data Race
	Slide 28: Increment Data Race
	Slide 29: Increment Data Race
	Slide 30: Remember this?
	Slide 31: Synchronization
	Slide 32: Lock Synchronization
	Slide 33: Lock API
	Slide 34: Milk Example – What is the Critical Section?
	Slide 35: pthreads and Locks
	Slide 36: pthread Mutex Examples
	Slide 37: Lecture Outline
	Slide 38: Is there a data race here?
	Slide 39: Race Condition vs Data Race
	Slide 40: Thread Communication
	Slide 41: Lecture Outline
	Slide 42: Software Synchronization
	Slide 43: Peterson’s Algorithm
	Slide 44: Peterson’s Algorithm
	Slide 45: Explanation
	Slide 46: Peterson’s Assumptions
	Slide 47: Atomicity
	Slide 49: Aside: Instruction & Memory Ordering
	Slide 50: Aside: Instruction & Memory Ordering
	Slide 51: Aside: Instruction & Memory Ordering
	Slide 52: Aside: Memory Barriers
	Slide 53: Lecture Outline
	Slide 54: Building a Web Search Engine
	Slide 55: Search Engine Architecture
	Slide 56: Search Engine (Pseudocode)
	Slide 57: Search Engine (Pseudocode)
	Slide 58: Execution Timeline: a Multi-Word Query
	Slide 59: Numbers Everyone Should Know
	Slide 60: What About I/O-caused Latency?
	Slide 61: Execution Timeline: To Scale
	Slide 62: Uh-Oh: Handling Multiple Clients
	Slide 63: Uh-Oh: Handling Multiple Clients
	Slide 64: Sequential Can Be Inefficient
	Slide 65: A Concurrent Implementation
	Slide 66: Multithreaded Server
	Slide 67: Multithreaded Server
	Slide 68: Multithreaded Server
	Slide 69: Multithreaded Server
	Slide 70: Multithreaded Server
	Slide 71: Multi-threaded Search Engine (Execution)
	Slide 72: Why Threads?
	Slide 73: Threads vs. Processes
	Slide 74: Threads vs. Processes
	Slide 75: Threads vs. Processes
	Slide 76: Alternative: Processes
	Slide 77: That’s all!

