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Poll: how are you?

❖ How are you enjoying the weather?
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Administrivia

❖ PennOS:

▪ Specifications and team sign-up have been posted

▪ Done in groups of 4

▪ Partner signup due by end of day TODAY

• Those left unassigned will be randomly assigned tomorrow morning (Tuesday the 31st)

▪ Lecture dedicated to PennOS in class tomorrow. Highly recommend you go. Highly 
recommend you read some of the spec today.

▪ PennOS Due Dates for milestones to be updated tonight.
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Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
    & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
    & registers

▪ Threads are the unit of scheduling and processes are their 
containers; every process has at least one thread running in it
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Threads vs. Processes
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Threads vs. Processes
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Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running 
in the address space

• One PC, stack, SP

▪ That main thread invokes a 
function to create a new thread

• Typically pthread_create()
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Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running 
in the address space

• Original thread (parent) and new 
thread (child)

• New stack created for child thread

• Child thread has its own values of 
the PC and SP

▪ Both threads share the other 
segments (code, heap, globals)

• They can cooperatively modify 
shared data
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POSIX Threads (pthreads)

❖  The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread 
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

10



CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Creating and Terminating Threads

❖  

▪ Creates a new thread into *thread, with attributes *attr 
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check 
against error constants)

▪ The new thread runs start_routine(arg)
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int pthread_create(

        pthread_t* thread,

        const pthread_attr_t* attr,

        void* (*start_routine)(void*), 

        void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer! 

Takes & returns void* 

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create
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What To Do After Forking Threads?

❖  

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval
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int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child 

thread to exit, gets the child’s 

return value, and child thread is 

cleaned up

start_routine

continues

parentcreate join
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Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency
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Shared Resources

❖ Some resources are shared between threads and processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

14

Issues arise when we 

try to shared things
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Data Races

❖ Two memory accesses form a data race if different threads access the same 
location, and at least one is a write, and they occur one after another

▪ Means that the result of a program can vary depending on chance (which thread ran first? 
When did a thread get interrupted?)

15
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Data Race Example

❖ If your fridge has no milk, 
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:
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if (!milk) {

  

  buy milk

  

}

! !
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

 

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

17

if (!note) {

  if (!milk) {

    leave note

    buy milk

    remove note

  }

}

pollev.com/tqm
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

 

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…
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if (!note) {

  if (!milk) {

    leave note

    buy milk

    remove note

  }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other 

possible scenarios 

that result in 

multiple milks

We can be interrupted

between checking note and 

leaving note 
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Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, depending on the 
specifics of the data structure

❖ Example:  two threads try to read from and write to the same shared memory 
location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head of the linked list at the 
same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
19
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Remember this?

❖ What does this print?

20

Always prints 0, the global 

counter is not shared across 

processes, so the parent’s 

global never changes
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Remember this?

❖ What does this print?

21

Usually 5000
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Previous Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a global, it is seen by other 
threads

▪ Processes have separate address spaces, incrementing a global in one process does not 
increment it for other processes

❖ NOTE: sharing data between threads is actually kinda unsafe if done wrong (we 
are doing it wrong in this example), more on this NOW
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Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread while executing these 
three instructions?

❖ Reminder: Each thread has its own registers to work with. Each thread would 
have its own R0

23

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

++sum_total
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

24

LOAD  sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 
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LOAD  sum_total into R0

++sum_total

LOAD  sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 
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LOAD  sum_total into R0

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 
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LOAD  sum_total into R0

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 
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LOAD  sum_total into R0

ADD   R0 R0 #1

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1



CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

❖ With this example, we could get 1 as an output instead of 2, even though we 
executed ++sum_total twice
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LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD  sum_total into R0

ADD   R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1
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Remember this?

❖ What is the minimum
value that could be
printed?

30
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Synchronization

❖ Synchronization is the act of preventing two (or more) 
concurrently running threads from interfering with each 
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner 
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data 
structures (informally, “nothing bad happens”)

31
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Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can 
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

32

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:
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Lock API

❖ Locks are constructs that are provided by the operating system to help ensure 
synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to ensure that acquiring 
the lock is atomic (more on TSL and memory barriers in a little bit)

33
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Milk Example – What is the Critical Section?

❖ What if we use a lock on the 
refrigerator?

▪ Probably overkill – what if 
roommate wanted to get eggs?

❖ For performance reasons, only 
put what is necessary in the 
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

34

fridge.lock()

if (!milk) {

  buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

  buy milk

}

milk_lock.unlock()
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pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖  

▪ “Uninitializes” a mutex – clean up when done
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int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

                const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired 
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pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with 
checking the lock and switching between threads

▪ One possible fix:  each thread increments a local variable and then adds its value (once!) to 
the shared variable at the end

• See total_locking_better.c

36
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Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency

37
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Is there a data race here?

❖ Does this code have a data 
race?

▪ Can this program enter an 
“invalid” (unexpected or error) 
state from having concurrent 
memory accesses?

❖ Follow up: Does this code 
feel good?

38

pollev.com/tqm
pthread_mutex_t lock;
bool print_ok = false;

void* thrd_fn1(void* arg) {
 pthread_mutex_lock(&lock);
 print_ok = true;
 pthread_mutex_unlock(&lock);
 return NULL;
}

void* thrd_fn2(void* arg) {
 pthread_mutex_lock(&lock);
 if (print_ok) {
  printf("print ok is true\n");
 } else {
  printf("print ok is false\n");
 }
 pthread_mutex_unlock(&lock);
 return NULL;
}

int main() {
 // assume main sets ups the threads & locks, etc.
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Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at 
least one write, that can cause the shared resource to enter an invalid or 
“unexpected” state.

❖ Race-Condition: Where the program has different behaviour depending on the 
ordering of concurrent threads. This can happen even if all accesses to shared 
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a race condition 

❖ Data-races are a subset of race-conditions

39
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Thread Communication

❖ Sometimes threads may need to communicate with each other to know when 
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only produce things once the producer has produced them 

❖ Need to make sure this communication has no data race or race condition

40
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Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency
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Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code,
one with arg = 0, other thread has arg = 1

❖ Each thread tries to increment sum_total. Does this work?

42

int sum_total = 0;

bool flag[2] = {false, false};

int turn = 0

void thread_code(int arg) {

  int me = arg;

  flag[me] = true;

  turn = 1 - me;

  while((flag[1-me] == true) && (turn != me)) { }

  ++sum_total;

  flag[me] = false;

}

Check the index of the other thread 

pollev.com/tqm
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Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work? (using an analogy)

▪ Each thread first declares that they want to enter the critical section by setting their flag

▪ Each thread then states (once) that the other should “go first”.

• This is done by setting the turn variable to 1 – me

• One of these assignments to the turn variable will happen last, that is the one that decides who 
goes first

▪ One of the thread goes first (decided by the value of turn) and accesses the critical section, 
before saying it is done (by changing their flag to false)

43
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Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value is turn = 1. P0 will get to 
run first. 

44
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Explanation

flag[0] = true

Thread 0 Thread 1

turn = 1

while(flag[1] == true 

        && turn != 0)

flag[1] = true

turn = 0

++sum_total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 1 came after turn = 0
// the turn variable is set to 1

turn = 1

while(flag[0] == true 

        && turn != 1)

turn = ?

turn = 1
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Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be interrupted before or after, but 
not “during” when turn may have some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order laid out in the code

46
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Atomicity

❖ Atomicity: An operation or set of operations on some data are atomic if the 
operation(s) are indivisible, that no other operation(s) on that same data can 
interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.

47



CIS 4480/5480, Summer 2025L13: Threads Cont.University of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

49

bool g = false;

int t = 0

void some_func(int arg) {

  t = 5;

  g = true;

}
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Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

50

bool g = false;

int t = 0

void some_func(int arg) {

  t = 5;

  g = true;

}

NO

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

You can be guaranteed that t and g are set before some_func returns
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Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not 
appear that it will affect the semantics of the function

▪ Since                                    is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the 
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

51

g = true; t = 5;
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Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a 
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory 
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the 
CPU

❖ Or: just use a real method of synchronization (we will talk about more of these 
in Thursday’s lecture)

52
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Lecture Outline

❖ Threads Refresher

❖ Mutex

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ Benefits of Concurrency
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Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

54
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Search Engine Architecture

55

query 
processor

client
index 

file

index 
file

index 
file
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Search Engine (Pseudocode)

56

doclist Lookup(string word) {

  bucket = hash(word);

  hitlist = file.read(bucket);

  foreach hit in hitlist {

    doclist.append(file.read(hit));

  }

  return doclist;

}

main() {

  SetupServerToReceiveConnections();

  while (1) {

    string query_words[] = GetNextRequest();

    results = Lookup(query_words[0]);

    foreach word in query[1..n] {

      results = results.intersect(Lookup(word));

    }

    send_results(results);

  }

}

pollev.com/tqm

❖ This is pseudo code for
what our single 
threaded server does.

❖ When do you think our
code interacts with the
network?

❖ How often does it read 
from a file?

❖ Query size = 2
each query “hits” once
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Search Engine (Pseudocode)

57

doclist Lookup(string word) {

  bucket = hash(word);

  hitlist = file.read(bucket);

  foreach hit in hitlist {

    doclist.append(file.read(hit));

  }

  return doclist;

}

main() {

  SetupServerToReceiveConnections();

  while (1) {

    string query_words[] = GetNextRequest();

    results = Lookup(query_words[0]);

    foreach word in query[1..n] {

      results = results.intersect(Lookup(word));

    }

    send_results(results);

  }

}

Disk I/O

Network 

I/O

Network 

I/O

pollev.com/tqm

❖ This is pseudo code for
what our single 
threaded server does.

❖ When do you think our
code interacts with the
network?

❖ How often does it read 
from a file?
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Execution Timeline: a Multi-Word Query

58
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Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html
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What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)
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Execution Timeline: To Scale
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Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

Does this look like efficient CPU Utilization?
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Uh-Oh: Handling Multiple Clients
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What if we have multiple clients (and requests) happening at a time?
How are requests processed? One after the other….
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Uh-Oh: Handling Multiple Clients
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Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.
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A Concurrent Implementation 

❖ Use multiple threads

▪ As a query arrives, create a new threads to handle it

• The thread reads the query from the network, issues read requests against files, assembles 
results and writes to the network

• The thread uses blocking I/O; the thread alternates between consuming CPU cycles and blocking 
on I/O

▪ The OS context switches between threads

• While one is blocked on I/O, another can use the CPU

• Multiple threads I/O requests can be issued at once
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Multithreaded Server
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Multithreaded Server
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pthread_detach()
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Multithreaded Server
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Multithreaded Server
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Multithreaded Server
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Multi-threaded Search Engine (Execution)
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Note how only one thread 

uses any specific resource 

at a time

The OS schedules all of 

this for us ☺

The CPU is the Central Processing Unit

Other pieces of hardware have their 

own small processors to do specialized

work.
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
    & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
    & registers

▪ Threads are the unit of scheduling and processes are their 
containers; every process has at least one thread running in it
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Threads vs. Processes
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Threads vs. Processes
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Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching 
(Context switching == switching between threads/processes)

▪ Cannot easily share memory between processes – typically 
communicate through the file system
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That’s all!

❖ See you next time!

77


	Default Section
	Slide 1: Threads Cont. Locks & Concurrency Benefits Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Single-Threaded Address Spaces
	Slide 9: Multi-threaded Address Spaces
	Slide 10: POSIX Threads (pthreads)
	Slide 11: Creating and Terminating Threads
	Slide 12: What To Do After Forking Threads?
	Slide 13: Lecture Outline
	Slide 14: Shared Resources
	Slide 15: Data Races
	Slide 16: Data Race Example
	Slide 17: Data Race Example
	Slide 18: Data Race Example
	Slide 19: Threads and Data Races
	Slide 20: Remember this?
	Slide 21: Remember this?
	Slide 22: Previous Demos:
	Slide 23: Increment Data Race
	Slide 24: Increment Data Race
	Slide 25: Increment Data Race
	Slide 26: Increment Data Race
	Slide 27: Increment Data Race
	Slide 28: Increment Data Race
	Slide 29: Increment Data Race
	Slide 30: Remember this?
	Slide 31: Synchronization
	Slide 32: Lock Synchronization
	Slide 33: Lock API
	Slide 34: Milk Example – What is the Critical Section?
	Slide 35: pthreads and Locks
	Slide 36: pthread Mutex Examples
	Slide 37: Lecture Outline
	Slide 38: Is there a data race here?
	Slide 39: Race Condition vs Data Race
	Slide 40: Thread Communication
	Slide 41: Lecture Outline
	Slide 42: Software Synchronization
	Slide 43: Peterson’s Algorithm
	Slide 44: Peterson’s Algorithm
	Slide 45: Explanation
	Slide 46: Peterson’s Assumptions
	Slide 47: Atomicity
	Slide 49: Aside: Instruction & Memory Ordering
	Slide 50: Aside: Instruction & Memory Ordering
	Slide 51: Aside: Instruction & Memory Ordering
	Slide 52: Aside: Memory Barriers
	Slide 53: Lecture Outline
	Slide 54: Building a Web Search Engine
	Slide 55: Search Engine Architecture
	Slide 56: Search Engine (Pseudocode)
	Slide 57: Search Engine (Pseudocode)
	Slide 58: Execution Timeline: a Multi-Word Query
	Slide 59: Numbers Everyone Should Know
	Slide 60: What About I/O-caused Latency?
	Slide 61: Execution Timeline: To Scale
	Slide 62: Uh-Oh: Handling Multiple Clients
	Slide 63: Uh-Oh: Handling Multiple Clients
	Slide 64: Sequential Can Be Inefficient
	Slide 65: A Concurrent Implementation 
	Slide 66: Multithreaded Server
	Slide 67: Multithreaded Server
	Slide 68: Multithreaded Server
	Slide 69: Multithreaded Server
	Slide 70: Multithreaded Server
	Slide 71: Multi-threaded Search Engine (Execution)
	Slide 72: Why Threads?
	Slide 73: Threads vs. Processes
	Slide 74: Threads vs. Processes
	Slide 75: Threads vs. Processes
	Slide 76: Alternative: Processes
	Slide 77: That’s all!


