
CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS Lecture
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar Sid Sannapareddy

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Administrivia

❖ PennOS:

▪ PennOS Due Dates milestones updated

▪ Groups have been assigned

▪ TA’s have been assigned to groups

▪ You have the first milestone, which needs to be done before end of day Tuesday the 8th.

▪ Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

❖ I will post videos later containing some demos of a functioning PennOS.

2

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Lecture Outline

❖ PennOS Overview

❖ Scheduling & Process Life Cycle

❖ Spthreads

❖ PennOS Shell

❖ PennFAT FS

❖ Kernel Functions vs System Calls vs User Level Functions

❖ Evaluation Overview

3

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Projects so far

❖ Penn Shredder

▪ Mini Shell with Signal Handling

❖ Penn Shell

▪ Redirections and Pipelines

▪ Process Groups and Terminal Control

▪ Job Control

❖ NEW: PennOS

▪ You need to make the system calls that things like Penn-shell use

▪ E.g. you will make your own “fork”

4

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS Diagram

5

PennOS is made of many components that run as a single process

Sleep 2 …

User programs (and the scheduler) run as
separate threads in the process

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS as a Guest OS

6

Sleep 2

PennOS runs as a single process on your operating system

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS Components

❖ Specification has many components, but if you want to split the work, the
cleanest divide is between:

▪ The file system

• FAT

• System Wide file table

• Process level file descriptors

• System calls for interacting with a file

• FAT shell

▪ The kernel

• Scheduler

• Signals

• System calls that relate to processes directly (wait, fork, etc.)

• shell

7DO NOT ASSIGN ONE PERSON TO THE SHELL. Shell is VERY dependent on the kernel. Kernel people should also make shell

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Brief Demo

❖ Brief Demo of how to run PennOS and how it is a single process

❖ It runs as a single process, we can see this with ps

❖ We use ps –h to see the individual threads in our PennOS

8

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS Abstraction

❖ Since we want you to build the OS yourself, you are mostly forbidden from
using anything in the POSIX interface

▪ E.g. you should never call “fork” we are making our own version of it

❖ There are some instances where it is allowed, but it is only allowed at the
lowest level, when there is no alternative:

▪ E.g. the read function should only be used at the lowest level of the file system to interact
with our “file system” on the host machine. No user or PennOS system call should ever
directly call these functions.

▪ E.g. the thread functions should only be used at the lowest level of your scheduler/kernel.
No user or PennOS system call should ever directly call these functions.

9

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Lecture Outline

❖ PennOS Overview

❖ Scheduling & Process Life Cycle

❖ Spthreads

❖ PennOS Shell

❖ PennFAT FS

❖ Kernel Functions vs System Calls vs User Level Functions

❖ Evaluation Overview

10

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Scheduling in PennOS

❖ Algorithm: round-robin with three different queues

▪ Each queue acts like normal round robin within the queue

▪ Unlike some round robin variants, we do
not have to empty Queue 0 before
we move on to other Queues.

❖ Exponential Relationship:

▪ Queue 0 scheduled 1.5 times more
frequently than Queue 1

▪ Queue 1 scheduled 1.5 times more
frequent than Queue 2

▪ YOU MUST DO THIS DETERMINISTICLY
(no random number generation)

11

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Process Life Cycle

12

In our model, “running” and “ready” states are the same state.
If a thread is running or is ready to run, we just call it “running”.

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Spthread is the unit of Scheduling

❖ Leverage suspend + continue to execute one spthread at a time

13

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Process Control Block

❖ Should have:

▪ handle to the spthread

▪ PID, parent PID, child PID(s)

▪ open file descriptors

▪ priority level

▪ process state

▪ Probably a bunch more

❖ What is needed in a PCB to
support waitpid()? What
about sleep()?

▪ Really think about this for
milestone 1!

14

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Implementation Tips:

❖ We provide a file called sched_demo.c

▪ Implements basic scheduling of spthreads.

▪ READ IT AND UNDERSTAND IT

▪ Probably mimic the design of it for your real scheduler

❖ DO NOT PUT THE SCHEDULER IN A SIGNAL HANDLER

❖ We recommend putting very little in your signal handler. The best signal
handlers either do nothing or only increment a counter.

• If you want to increment a counter or something, declare the counter of type:
volatile sig_atomic_t

This is the only data type that is guaranteed to be signal safe by the standard.

❖ YOUR SCHEDULER CANNOT USE RANDOM NUMBER GENERATION
15

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS Signals

❖ You need to implement our own “signals” for PennOS.

❖ Instead of registering handlers, signaling a PennOS process indicates to
PennOS that it should take some action related to the signaled thread, such as
change the state of a thread to stopped or running.

❖ You should use the kill, or pthread_kill.

❖ You will have to use sigaction to register handlers to catch signals (CTRL + C
and CTRL + Z) from the terminal but your PennOS should somewhere manually
handle the “stopping” and “terminating” of the thread.

❖ You will also likely make use of setitimer and sigsuspend for the scheduler ticks
16

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Other Tips:
❖ With the description of setitimer(), it just says that sigalarm is delivered

to the process, not necessarily the calling thread. To make sure siglaram goes
to the scheduler, you may want to make it so that all threads (spthread or
otherwise) that aren’t the scheduler call something like:
pthread_sigmask(SIG_BLOCK, SIGALARM)

▪ Which will block SIGALARM in that thread.

▪ If you want code to always be executed by a thread, a nice way to do it is via a wrapper
around the start routine. See spthread.c if you want some inspiration

❖ If you are having issues with the scheduler not running you can try running
▪ strace –e 'trace=!all' ./bin/pennos

▪ You may have to install strace: sudo apt install strace

▪ This will print out every time a signal is sent to your pennos

▪ (Usual fix is the pthread_sigmask thing above) 17

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Lecture Outline

❖ PennOS Overview

❖ Scheduling & Process Life Cycle

❖ Spthreads

❖ PennOS Shell

❖ PennFAT FS

❖ Kernel Functions vs System Calls vs User Level Functions

❖ Evaluation Overview

18

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

POSIX Threads

❖ User-level thread management API

❖ Isolate code execution with distinct threads

❖ Resource sharing (within sameaddress space)

❖ Concurrent execution

❖ Pros: efficient, lightweight, simple

❖ What are the cons?

19

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

pthread_cancel

❖ Provides us a way to “terminate” a thread.

❖ Notably, it does not terminate the thread immediately, it sends a “cancellation
REQUEST”. The thread is not cancelled until it hits a cancellation point.

❖ Read the comments in spthread.h for spthread_cancel to see more.

20

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

How pthreads work

21

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Spthread

❖ Wrapper around pthread, provided by us

❖ Provides additional tooling to:

❖ Create, then immediately suspend the thread

❖ Suspend a thread

❖ Continue (unsuspend) a thread

22

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Spthread is the unit of Scheduling

❖ Leverage suspend + continue to execute one spthread at a time

23

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Spthreads + Shared Resources

❖ Unlike normal threads, we aren’t going to use a lock to protect resources.

❖ Instead, we will use a way to “block pre-emption” of a thread to make sure it is
the only one running. We will talk about this in the next lecture.

❖ spthread_disable_interrupts_self();

❖ spthread_enable_interrupts_self();

24

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Lecture Outline

❖ PennOS Overview

❖ Scheduling & Process Life Cycle

❖ Spthreads

❖ PennOS Shell

❖ PennFAT FS

❖ Kernel Functions vs System Calls vs User Level Functions

❖ Evaluation Overview

25

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Shell Requirements

❖ Synchronous child waiting

❖ Redirection

❖ Parsing

❖ Terminal Signaling

❖ Terminal Control

26

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Shell Functions

❖ Basic interaction with PennOS

❖ Two types:

▪ Functions that run as separate processes

▪ Functions that run as shell subroutines

27

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Built-ins Running as Processes

❖ cat

❖ sleep

❖ busy

❖ ls

❖ touch

❖ mv

❖ cp

❖ rm

❖ ps

28

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Built-ins Running as Subroutines

❖ nice

❖ nice_pid

❖ man

❖ bg

❖ fg

❖ jobs

❖ logout

29

Quick aside: Why?
Think about why it might be problematic/difficult to run
these commands from a separate process
Consider the kernel structure & process lifecycle

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Shell Scripts

❖ Your shell will need to support scripts:

30

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Should I re-use Penn-Shell?

❖ Probably not, but you can take inspiration from it and copy *parts* of it.

❖ Some of it will have to change to support PennOS. Notably the system calls you
make are different and behave a little differently.

▪ Fork is very different than the s_spawn function we have you use

▪ You don’t have to support piping

▪ Signals are different entirely

31

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Shell Abstraction

❖ Your PennOS shell should use the same layer of abstraction as the penn-shell
you made.

▪ Did your penn-shell access the OS scheduler queues?

▪ In penn-shell did you have access to the PCB?

32

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Lecture Outline

❖ PennOS Overview

❖ Scheduling & Process Life Cycle

❖ Spthreads

❖ PennOS Shell

❖ PennFAT FS

❖ Kernel Functions vs System Calls vs User Level Functions

❖ Evaluation Overview

33

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

What is a File System

❖ A File System is a collection of data structures and methods an operating
system uses to structure and organize data and allow for consistent
storage and retrieval of information

▪ Basic unit: a file

❖ A file (a sequence of data) is stored in a file system as a sequence of data-
containing blocks

34

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

What is FAT?

❖ FAT stands for file allocation table, which is an architecture for organizing and
referring to files and blocks in a file system.

❖ There exist many methods for organizing file systems, for example:

▪ FAT (DOS, Windows)

▪ Mac OS X

▪ ext{1,2,3,4} (Linux)

▪ NTFS (Windows)

35

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

❖ This table is called the
 File Allocation Table (FAT)

❖ This table is in memory when it is running

❖ Table stored in disk initially, loaded into
memory when computer is booted.

FAT (File Allocation Table)

36

Disk:

Block # Next

0 BITMAP/SPECIAL

1 END

2 6

3 9

4 END

5 EMPTY / UNUSED

6 3

7 END

8 END

9 END

10 8

11 END

FAT Root
Dir

File D File D
Blk 3

File B Empt
y

File D
Blk 2

File A File C
Blk 2

File D
Blk 4

File C File E

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

File Alignment

❖ Files are distributed along blocks

❖ Note: this is the logical view of a file. From the user of the file, all data in the
file is contiguous, but it is really split up across three blocks that may not
actually be contiguous.

37

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

FAT File System Layout

❖ FAT region and DATA region

▪ The FAT region is an array of unsigned, little endian, 16-bit entries

▪ The DATA region contains the actual data blocks of files & directories

38

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS FAT Details

❖ If we have N entries in the File Allocation Table, we only have N – 1
references to data blocks in the FAT

❖ The first File Allocation Table entry FAT[0] holds meta data about
the FAT, so it doesn’t refer/point to a “real” block

❖ An entry is 16-bits, which is 2 bytes.

❖ Consider the example 2-byte value: 0x2004
▪ We can split this into two bytes for FAT[0]

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

39

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS FAT[0] MSB

❖ The first FAT entry FAT[0] holds meta data about the FAT, so it
doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The MSB is size of the File Allocation Table in units of blocks

▪ in this example, the FAT is 32 blocks

40

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS FAT[0] LSB

❖ The first FAT entry FAT[0] holds meta data about the FAT, so it
doesn’t correspond to a “real” block

❖ Consider the example 2-byte value: 0x2004

▪ We can split this into two bytes

▪ The MSB (Most Significant Byte) 0x20 -> 32 in decimal

▪ The LSB (Least Significant Byte) 0x04 -> 4 in decimal

❖ The LSB is between 0 and 4, and
specifies the size of the blocks for
the file system

41

LSB Block Size

0 256

1 512

2 1,024

3 2,048

4 4,096

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS FAT Entry Special Values

❖ A PennFAT entry is 16-bits and only contains the block number of the next
block in the file.

❖ There are two special values a PennFAT entry can hold

❖ 0x0000 (0 in decimal)

▪ Indicate the block is free.

▪ We start indexing into our blocks in the data region starting with index 1

❖ 0xFFFF (65535 as unsigned, -1 as signed)

▪ Indicates that there is no block after this logically in the file

▪ That this is the last block in the file

42

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

FAT first-entry examples

43

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

FAT first-entry examples

44

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Example FAT

45

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

PennOS root Directory

❖ PennFAT has a special value for FAT[1] as well.

❖ It still corresponds to a data block, but that data block is the first block of the
root directory

❖ This means we always know where the root directory starts. (at index 1 into
the data region), and from there we can find all other files

▪ …pathname resolution soon…

46

Disk:

FAT FAT FAT FAT Root
Blk 0

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region

Block index 1 in the data region

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Data Region

❖ Each FAT entry represents a file block in data region
Data Region size = block size * (# of FAT entries - 1)

▪ b/c first FAT entry (fat[0]) is metadata - block numbering begins at 1:

❖ block numbering begins at 1:

▪ block 1 – always the first block of the root directory

▪ other blocks – data for files, additional blocks of the root directory, subdirectories
(extra credit)

47

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

What is a Directory?

❖ A directory is a file consisting of entries that describe the files in the directory.

❖ Each entry includes the file name and other information about the file.

❖ The root directory is the top-level directory.

48

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Directory Entry

❖ Fixed size of 64 bytes each. Should contain AT LEAST:

❖ Notably: the file name is 32 bytes (null terminated) and the first item in
the directory entry.

▪ legal characters: [A-Za-z0-9._-] (POSIX portable filename character set) letters, digits, . _ -

❖ first byte (char) special values:

49

char name[32];

uint32_t size;

uint16_t first_block;

uint8_t type;

uint8_t perm;

time_t mtime;

// The remaining 16 bytes are reserved (e.g., for extra credits)

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Directory entry (cont.)

❖ file size: 4 bytes

❖ first block number: 2 bytes (unsigned)

❖ file type: 1 byte

❖ file permission: 1 byte

❖ timestamp: 8 bytes returned by time(2)

❖ remaining 16 bytes: reserved for E.C
(If you don’t have EC you may have to pad
the struct out to be 64 bytes) 50

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Example

❖ fat[0] = 0x2002

▪ 32 blocks of 1024 bytes in FAT

❖ First block of Data Region is first
block of root directory

❖ Correspondingly, fat[1] refers to
that Block 1. That file (root
directory) end on block 1, so
fat[1] has value of 0xFFFF

51

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Creating a File

52

After creating an empty file called
“bar”.

Note that the file bar starts at size
= 0 and does not have a data
block allocated to it until its size
grows

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Writing to a File

❖ After writing
“hello\n” to the file.

❖ FAT gets updated to
represent the new
block allocated to a
file

❖ Directory entry also
gets updated

53

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Removing the file

❖ After removing the file
“Bar”

❖ Notably all we did was set
the first byte of the
directory entry to 1 and
file contents are still in a
data block.

▪ “Lazy deletion”

▪ You don’t have to follow this
strictly

54

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Standalone PennFAT

❖ Milestone 1

❖ Implementation of kernel-level functions (k_functions)

▪ k_functions deal with and manage the global system-wide file table.

❖ Simple shell for reading, parsing, and executing File system modification
routines

❖ System-wide Global File Descriptor Table

55

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Kernel-Level Functions

❖ Interacting directly with the filesystem you created

❖ Also interacts directly with the system-wide Global FD Table

❖ k_write(int fd, const char* str, int n)

▪ Access the file associated with file descriptor fd

• (which is an index into global system-wide table)

▪ Write up to n bytes of str
• literally modify the binary filesystem you created.

56

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Tip: defining new types

❖ You may find it useful to define new types to make a clearer distinction for
whether a variable is a file descriptor for:

▪ The system wide file descriptor table

▪ The per-process file descriptor table

❖ Typedef to the rescue!

▪ May be tempted to do this:
but still allows for easy conversion between two types accidentally… 

▪ If we define one or both as structs, it is a bit clunkier to use but also harder to accidentally
convert from one to another.

57

sys_fd x = 5;
proc_fd y = x; // no compiler warnig or error

typedef int sys_fd;
typedef int proc_fd;

typedef struct {
 int fd;
} sys_fd;

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Standalone Routines

❖ Special Commands

▪ mfks, mount, unmount

▪ These can be implemented using C System Calls

❖ Standard Routines

▪ touch, mv, rm, cat, cp, chmod, ls

▪ These should ONLY use k_functions unless interacting with the HOST filesystem

❖ Your filesystem: PennFAT binary file you created
HOST filesystem: Your docker filesystem

58

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Standalone Routines

❖ cat FILE … [-w OUTPUT_FILE] - get input from multiple FILE(s), output to
stdout or OUTPUT_FILE if specified

❖ The following would be logical flow of cat

▪ k_open(FILEs)

▪ k_read(FILEs)

▪ k_write(stdout / OUTPUT_FILE)

▪ k_close(FILEs)

59

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Standalone Routines

❖ cp [-h] SOURCE DEST - copy contents from SOURCE to DEST in pennfat file
system. If -h flag exists, copy from HOST filesystem

❖ The following would be logical flow of cp

❖ If -h flag:

▪ read(SOURCE) ← Note this is C sys-call

▪ k_write(DEST)

❖ else

▪ k_read(SOURCE)

▪ k_write(DEST)

60

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

IMPORTANT IMPORTANT IMPORTANT

❖ PennOS Advice:

▪ In your FAT code you may do something like this:

• Sometimes though, the write and lseek will return a success, but it won’t actually write to your
file system

• Most commonly happens with blocks near the end of the FAT
(as in blocks not in the allocation table but show up shortly after the end of the allocation table)

• Most likely related to an issue between mmap and write

• Shows up inconsistently!

• What’s the fix?
Just do it twice, that usually
fixes it.

• Or: don’t use mmap
61

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

IMPORTANT IMPORTANT IMPORTANT

❖ If you mmap, you can’t mmap the whole fs. You are only allowed to mmap the
FAT region, not the data region.

62

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Lecture Outline

❖ PennOS Overview

❖ Scheduling & Process Life Cycle

❖ Spthreads

❖ PennOS Shell

❖ PennFAT FS

❖ Kernel Functions vs System Calls vs User Level Functions

❖ Evaluation Overview

63

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

User, System, and Kernel Abstractions

❖ User Land - What an actual user interacts with

▪ Functions that aren’t directly interacting with the OS.
E.g. if you made your own print function or string utility functions

• String utility doesn’t deal with the OS at all

• Print function uses your system_call “s_write” function to handle the OS.

❖ Kernel Land - What happens ‘under the hood’

▪ Deals with the nitty gritty details that the user doesn’t need to know about

❖ System Call Land - The API calls to connect user land with kernel land

▪ Similar to the system calls you see available to you in linux and in the past homework
assignments.

64

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

User, System, and Kernel Abstractions (Rationale sort of)

❖ One way to think about whether something is user /system call / kernel is
thinking about who is invoking the function and what info they need to know.

❖ User level: minimal or no knowledge of the underlying operating system

❖ System call: some level of the operating system abstraction needs to be
understood and deals with the “public” aspects of it

▪ Process level file descriptors are “public” parts of the OS interface

❖ Kernel level functions: deeper knowledge of the OS is needed. Invoker of the
function either passes in or gets something “private” to the OS.

▪ System wide file descriptors and the PCB are “private”
65

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Maintaining the Abstraction

66

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Error Handling

❖ make your own errno.h with your own P_ERRNO variable
▪ Declare this P_ERRNO variable _Thread_local

▪ Thread local variables are seemingly global, but there is a unique global per thread.

▪ This makes sure that errno is not accidentally a data-race across threads.

❖ Make your own u_perror function to report errno issues

❖ Have global ERRNO macros

❖ Call u_perror for PennOS system call errors like s_open, s_spawn

❖ Call perror(3) for any host OS system call error like malloc(3), open(2)
 (should not happen often)

67

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Lecture Outline

❖ PennOS Overview

❖ Scheduling & Process Life Cycle

❖ Spthreads

❖ PennOS Shell

❖ PennFAT FS

❖ Kernel Functions vs System Calls vs User Level Functions

❖ Evaluation Overview

68

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Approximate Grading Breakdown

❖ 5% Documentation

❖ 45% Kernel/Scheduler

❖ 35% File System

❖ 15% Shell

69

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Due Dates

❖ Milestone 0: by July 8th

❖ Milestone 1: July 14th through 18th

❖ Final Submission: July 25th

❖ Demo: Anytime after you have submitted your final submission

▪ We will ask you to pull the latest commit of your git repository that is before the
submission deadline.

▪ If you need to make a fix, you can “hotfix” it in the demo if needed for a minor deduction

❖ PRO TIP: give yourself more time for the integration than you think you need.

70

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

Documentation

❖ Required to provide a Companion Document

▪ Consider this like APUE or K-and-R

▪ Describes how OS is built and how to use it

▪ Recommended to use Doxygen (Look into this sooner rather than later so you
don’t have to spend the last minute writing a bunch of comments. Comments will
also help you and your teammates reason about and learn code)

❖ README

▪ Describes implementation and design choices

71

CIS 4480/5480, Summer 2025L14: PennOS LectureUniversity of Pennsylvania

That’s all!

❖ See you next time!

72

	Default Section
	Slide 1: PennOS Lecture Computer Operating Systems, Summer 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Projects so far
	Slide 5: PennOS Diagram
	Slide 6: PennOS as a Guest OS
	Slide 7: PennOS Components
	Slide 8: Brief Demo
	Slide 9: PennOS Abstraction
	Slide 10: Lecture Outline
	Slide 11: Scheduling in PennOS
	Slide 12: Process Life Cycle
	Slide 13: Spthread is the unit of Scheduling
	Slide 14: Process Control Block
	Slide 15: Implementation Tips:
	Slide 16: PennOS Signals
	Slide 17: Other Tips:
	Slide 18: Lecture Outline
	Slide 19: POSIX Threads
	Slide 20: pthread_cancel
	Slide 21: How pthreads work
	Slide 22: Spthread
	Slide 23: Spthread is the unit of Scheduling
	Slide 24: Spthreads + Shared Resources
	Slide 25: Lecture Outline
	Slide 26: Shell Requirements
	Slide 27: Shell Functions
	Slide 28: Built-ins Running as Processes
	Slide 29: Built-ins Running as Subroutines
	Slide 30: Shell Scripts
	Slide 31: Should I re-use Penn-Shell?
	Slide 32: Shell Abstraction
	Slide 33: Lecture Outline
	Slide 34: What is a File System
	Slide 35: What is FAT?
	Slide 36: FAT (File Allocation Table)
	Slide 37: File Alignment
	Slide 38: FAT File System Layout
	Slide 39: PennOS FAT Details
	Slide 40: PennOS FAT[0] MSB
	Slide 41: PennOS FAT[0] LSB
	Slide 42: PennOS FAT Entry Special Values
	Slide 43: FAT first-entry examples
	Slide 44: FAT first-entry examples
	Slide 45: Example FAT
	Slide 46: PennOS root Directory
	Slide 47: Data Region
	Slide 48: What is a Directory?
	Slide 49: Directory Entry
	Slide 50: Directory entry (cont.)
	Slide 51: Example
	Slide 52: Creating a File
	Slide 53: Writing to a File
	Slide 54: Removing the file
	Slide 55: Standalone PennFAT
	Slide 56: Kernel-Level Functions
	Slide 57: Tip: defining new types
	Slide 58: Standalone Routines
	Slide 59: Standalone Routines
	Slide 60: Standalone Routines
	Slide 61: IMPORTANT IMPORTANT IMPORTANT
	Slide 62: IMPORTANT IMPORTANT IMPORTANT
	Slide 63: Lecture Outline
	Slide 64: User, System, and Kernel Abstractions
	Slide 65: User, System, and Kernel Abstractions (Rationale sort of)
	Slide 66: Maintaining the Abstraction
	Slide 67: Error Handling
	Slide 68: Lecture Outline
	Slide 69: Approximate Grading Breakdown
	Slide 70: Due Dates
	Slide 71: Documentation
	Slide 72: That’s all!

