University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Threads Cont. & Deadlock

Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar Sid Sannapareddy

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Administrivia

+ PennOS:

PennOS Due Dates milestones updated

Groups have been assigned

TA’s have been assigned to groups

You have the first milestone, which needs to be done before end of day Tuesday the 8th.

Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

+ Videos containing some demos of a functioning PennOS posted on the
schedule.

+ Recitation Tomorrow will help with PennOS and Milestone O

+ No OH for Travis on Friday: it is July 4th

University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

» Threads & Lock refresher

» Spthreads

+ tsl

+ Disable interrupts

+» Deadlock & Preventing Deadlock

CIS 4480/5480, Summer 2025

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

University of Pennsylvania

Threads vs. Processes

Stack

!

parent

I

Shared Libraries

fork ()

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

\ 4

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

% University of Pennsylvania

L15: Threads Cont. & Deadlock

CIS 4480/5480, Summer 2025

Threads vs. Processes

pthread create()

University of Pennsylvania

L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Single-Threaded Address Spaces

SP

pakent

pakent

Stack

parent

|

Shared Libraries

|

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Before creating a thread

" One thread of execution running
in the address space
- One PC, stack, SP

" That main thread invokes a
function to create a new thread
- Typically pthread create ()

L15: Threads Cont. & Deadlock

CIS 4480/5480, Summer 2025

University of Pennsylvania

Multi-threaded Address Spaces

_ + After creating a thread

Stack

parent

SP

pakent

'

Stack ;4

Py =

!
|

Shared Libraries

|

Heap (malloc/free)

Read/Write Segments
.data, .bss

Pl =

pakent

Read-Only Segments
.text, .rodata

" Two threads of execution running
in the address space

« Original thread (parent) and new
thread (child)

- New stack created for child thread

« Child thread has its own values of
the PC and SP

= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

@ Poll Everywhere pollev.com/tqm

+» What are the possible outputs int main() A
of this code? pthread t thds[2];

for (int 1 = 0; 1 < 2; i++) {
pthread t temp;
int global_counter = 5; int* arg = malloc(sizeof(int));
*arg = 1;
void* t_fn(void* arg) { pthread_create(&temp, NULL, t_fn, arg);
int num = * (int*) arg; thds[i] = temp;

¥

global counter += num;

| for (int i = @; 1 < 2; i++) {
printf("%d\n", global_counter); pthread_join(thds[i], NULL);

}
free(num);
return NULL; return EXIT_SUCCESS;

University of Pennsylvania L15: Threads Cont. & Deadlock

Lock Synchronization

+» Use a “Lock” to grant access to a critical section so that only one thread can

operate there at a time

= Executed in an uninterruptible (i.e. atomic) manner

o0

+» Pseudocode:

L)

+» Lock Acquire (

= Wait until the lock is free,
then take it

« Lock Release

= Release the lock

\

// non-critical code

block
lock.acquire () ;_/ iflocked

// critical section
lock.release () ;

// non-critical code

= |f other threads are waiting, wake exactly one up to pass lock to

CIS 4480/5480, Summer 2025

10

CIS 4480/5480, Summer 2025

University of Pennsylvania L15: Threads Cont. & Deadlock

Lock API

% Locks are constructs that are provided by the operating system to help ensure
synchronization
= Often called a mutex or a semaphore

%+ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

+» Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

11

University of Pennsylvania

L15: Threads Cont. & Deadlock

Milk Example — What is the Critical Section?

+ What if we use a lock on the
refrigerator?

" Probably overkill — what if
roommate wanted to get eggs?

+» For performance reasons, only
put what is necessary in the
critical section
"= Only lock the milk

= But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

rfridge.lock()

1f ('milk) {
buy milk

}

fridge.unlock ()

!

'milk lock.lock ()
1f (!'milk) {
buy milk
}
milk lock.unlock ()

CIS 4480/5480, Summer 2025

12

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

pthreads and Locks

% Another term for a lock is a mutex (“mutual exclusion”)
" pthread.h defines datatype pthread mutex t

& | int pthread mutex init(pthread mutex t* mutex,
const pthread mutexattr t* attr);

" |nitializes a mutex with specified attributes

o (int pthread mutex lock (pthread mutex t* mutex); J

= Acquire the lock — blocks if already locked (-blocks when lock is acquired

o (int pthread mutex unlock (pthread mutex t* mutex); J

®= Releases the lock

> (int pthread mutex destroy(pthread mutex t* mutex);)

" “Uninitializes” a mutex — clean up when done

13

University of Pennsylvania

L15: Threads Cont. & Deadlock

CIS 4480/5480, Summer 2025

pthread Mutex Examples

+ See total.c

® Data race between threads

+ See total locking.c

= Adding a mutex fixes our data race

+ How does total locking compare to sequential code andto total?

= Likely slower than both—only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

®= One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

- See total locking better.c

14

University of Pennsylvania

L15: Threads Cont. & Deadlock

CIS 4480/5480, Summer 2025

pthread Mutex Examples

+ See total.c

® Data race between threads

+ See total locking.c

= Adding a mutex fixes our data race

+ How does total locking compare to sequential code andto total?

= Likely slower than both—only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

®= One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

- See total locking better.c

15

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

0 Poll Everywhere pollev.com/tgm

« The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized /7 global variables
2 | pthread mutex t lock;
. . 3 int g = 0;
+ Thread-1 executes line 8 while 2 line % o
Thread-2 executes line 21. 5
) 6 |void funl() {
Choose one: . 7 pthread mutex lock(&lock);
= Could lead to a race condition. 8 g += 3;
= There is no possible race condition. 9 pthread mutex unlock (&lock);
= The situation cannot occur. 10 Kt+;
11 |}
12
« Thread-1 executes line 15 while | et A e B
Thread-2 executes line 15. 15| a += b;
Choose one: o I
= Could lead to a race condition. 18
= There is no possible race condition. 19 | void fun3 () {
= The situation cannot occur. 20 pthread mutex_lock (&lock);
21 g =k + 2;
22 pthread mutex unlock (&lock);
23 |}

16

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

0 Poll Everywhere pollev.com/tgm

« The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized /7 global variables
2 | pthread mutex t lock;
. . 3 int g = 0;
+ Thread-1 executes line 8 while 2 line % o
Thread-2 executes line 14 5
) 6 |void funl() {
Choose one: . 7 pthread mutex lock(&lock);
= Could lead to a race condition. 8 g += 3;
= There is no possible race condition. 9 pthread mutex unlock (&lock);
= The situation cannot occur. 10 Kt+;
11 |}
12
« Thread-1 executes line 14 while | et A e B
Thread-2 executes line 16. 15| a += b;
Choose one: o I
= Could lead to a race condition. 18
= There is no possible race condition. 19 | void fun3 () {
= The situation cannot occur. 20 pthread mutex_lock (&lock);
21 g =k + 2;
22 pthread mutex unlock (&lock);
23 |}

18

University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

+ Threads & Lock refresher

» Spthreads

+ tsl

+ Disable interrupts

+» Deadlock & Preventing Deadlock

CIS 4480/5480, Summer 2025

20

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Key Differences of spthread vs pthread

+» spthread is something Travis wrote about a year ago.
" |t does not exist anywhere else

" You likely won’t find any documentation on it outside of this course

» Main difference:

" When you create a thread, it starts “suspended”
" Threads can be explicitly continued and suspended

" When there is a corresponding spthread function, call that instead of the pthread function

21

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

@ Poll Everywhere pollev.com/tqm

int main() A
«» There are issues here. vec = vector new(int, 10, NULL);

What are they? // initialize a length 10 vector of ints

spthread t thds[2];
vector(int) vec; spthread create(&(thds[©]), NULL, s fn, NULL);
spthread create(&(thds[1]), NULL, s fn, NULL);
void* s fn(void* arg) {
while(true) { int curr_thread = 0;
int num = rand(); while(vector len(&vec) < 200) {
// generate a random number spthread _continue(thds[curr_thread]);
vector_push(&vec, num); sleep(1); // sleep for 1 seconds
} spthread _suspend(thds[curr_thread]);
return NULL;
curr_thread = 1 - curr_thread;

}
printf("%d\n", vector_len(&vec));

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

@ Poll Everywhere pollev.com/tqm

int main() {
+» Adding a lock causes another pthread mutex_init(&lock, NULL);
issue, what issue is it? int curr_thread = @;
while(true) {
pthread mutex lock(&lock);
if (vector _len(&vec) < 200) {
pthread _mutex _unlock(&lock);
break;
}
pthread mutex_unlock(&lock);
spthread continue(thds[curr_thread]);
sleep(1); // sleep for 1 seconds
spthread suspend(thds[curr_thread]);

vector(int) vec;
pthread mutex t lock;

void* s _fn(void* arg) {
while(true) {
int num = rand();
pthread_mutex_lock(&lock);
vector_push(&vec, num);
pthread mutex_unlock(&lock);

}
return NULL;

curr_thread = 1 - curr_thread;

}
} printf("%d\n", vector_len(&vec));

¥

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Shared Data & spthread

+ Thecallsto spthread suspendand spthread continue will not
return until that thread actually continues/suspends

% This can cause an issue when we use locks to maintain shared memory

«» What do we do instead?

= spthread _disable_interrupts_self
= spthread_enable_interrupts_self

24

University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

+ Threads & Lock refresher

» Spthreads

2 tsl

+ Disable interrupts

+» Deadlock & Preventing Deadlock

CIS 4480/5480, Summer 2025

25

University of Pennsylvania

L15: Threads Cont. & Deadlock

TSL

% TSL stands for Test and Set Lock, sometimes just called test-and-set.

+» TSLis an atomic instruction that is guaranteed to be atomic at the hardware
level

+ TSL R, M

® Passin aregister and a memory location
= R gets the value of M

" MissettolAFTER setting R

CIS 4480/5480, Summer 2025

26

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

TSL to implement Mutex

+» A mutex is pretty much this:

(pthread_mutex_lock(lock) {
prev _value = TSL(lock);

// 1f prev value = 1, then it was already locked
while (prev value == 1) {

block () ;

prev value = TSL(lock);

pthread mutex unlock (lock) {
lock = 0;
wakeup blocked threads(lock);
t

. J

27

University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

+ Threads & Lock refresher

» Spthreads

+ tsl

+ Disable interrupts

+» Deadlock & Preventing Deadlock

CIS 4480/5480, Summer 2025

28

L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

University of Pennsylvania

Disabling Interrupts

» If data races occur when one thread is interrupted while it is accessing some
shared code....

What is we don’t switch to other threads while executing that code?

+ This can be done by disabling interrupts: no interrupts means that the clock
interrupt won’t go off and interrupt the currently running thread

29

University of Pennsylvania

L15: Threads Cont. & Deadlock

CIS 4480/5480, Summer 2025

Disabling Interrupts

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total] sum total =1

Thread 0

Thread 1

7

\.

disable interrupts();)

++sum total;
enable interrupts();

J

++sum_tota1 ;

enable interrupts();

\.

\

(disable_interrupts ()

J

30

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Disabling Interrupts

+» Advantages:

® This is one way to fix this issue

+» Disadvantages
" This is usually overkill

® This can stop threads that aren’t trying to access the shared resources in the critical
section. May stop threads that are executing other processes entirely

" |f interrupts disabled for a long time, then other threads will starve
" |n a multi-core environment, this gets complicated

31

University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

+ Threads & Lock refresher

» Spthreads

+ tsl

+ Disable interrupts

+» Deadlock & Preventing Deadlock

CIS 4480/5480, Summer 2025

32

L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

University of Pennsylvania

Liveness

+ Liveness: A set of properties that ensure that threads execute in a timely
manner, despite any contention on shared resources.

» When (pthread mutex lock () ;)is called, the calling thread blocks (stops

executing) until it can acquire the lock.
" What happens if the thread can never acquire the lock?

33

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Liveness Failure: Releasing locks

+ If locks are not released by a thread, then other threads cannot acquire that
lock

+ Seerelease locks.c

= Example where locks are not released once critical section is completed.

34

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Liveness Failure: Deadlocks

+ Consider the case where there are two threads and two locks
®" Thread 1 acquires lockl
" Thread 2 acquires lock2
" Thread 1 attempts to acquire lock2 and blocks
" Thread 2 attempts to acquire lock1 and blocks

Neither thread can make progress @
+ Seemilk deadlock.c

+ Note: there are many algorithms for detecting/preventing deadlocks

35

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Liveness Failure: Mutex Recursion

+ What happens if a thread tries to re-acquire a lock that it has already
acquired?

» See recursive deadlock.c

» By default, a mutex is not re-entrant.

" The thread won’t recognize it already has the lock, and block until the lock is released

36

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Aside: Recursive Locks

» Mutex’s can be configured so that you it can be re-locked if the thread already
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

+~ Acquiring a lock that is already held will succeed

+» To release a lock, it must be released the same number of times it was
acquired

» Has its uses, but generally discouraged.

37

L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

University of Pennsylvania

Deadlock Definition

+ A computer has multiple threads, finite resources, and the threads want to

acquire those resources
= Some of these resources require exclusive access

+» A thread can acquire resources:

= All at once

= Accumulate them over time
= |f it fails to acquire a resource, it will (by default) wait until it is available before doing

anything

+ Deadlock: Cyclical dependency on resource acquisition so that none of them

can proceed
= Even if all unblocked threads release, deadlock will continue s

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Preconditions for Deadlock

+» Deadlock can only happen if these occur simultaneously:
" Mutual Exclusion: at least one resource must be held exclusively by one thread

" Hold and Wait: a thread must be holding a resource, requesting a resource that is held by
a thread, and then waiting for it.

= No preemption: A resource is held by a thread until it explicitly releases it. It cannot be
preempted by the OS or something else to force it to release the resource

= Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other
thread must waiting on a resource that forms a chain of dependency

39

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Circular Wait Example

+ A cycle can exist of more than just two threads:

Thread 2

“,

w@ Thread 3

Has R3

Thread 1

Wants R1

40

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Discuss

+» Can a thread deadlock if there is only one thread?

41

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Deadlock Prevention

+ If we can remove the conditions for deadlock, we could avoid prevent
deadlock from every happening

42

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

Discuss

+» We are running some code that uses threads, locks, and sometimes deadlocks.
Which of these are most likely to be removed so that we can stop deadlocks.

L)

Deadlock can only happen if these occur simultaneously:

Mutual Exclusion: at least one resource must be held exclusively by one thread

Hold and Wait: a thread must be holding a resource, requesting a resource that is held by
a thread, and then waiting for it.

No preemption: A resource is held by a thread until it explicitly releases it. It cannot be
preempted by the OS or something else to force it to release the resource

Circular Wait:

Can be a chain of more than 2 threads

Each thread must be waiting for a resource that is held by another thread. That other
thread must waiting on a resource that forms a chain of dependency

43

University of Pennsylvania L15: Threads Cont. & Deadlock

CIS 4480/5480, Summer 2025

Deadlock Prevention Summary

+ Prevent deadlocks by removing any one of the four deadlock preconditions
+» But eliminating even one of the preconditions is often hard/impossible
" Mutual Exclusion is necessary in a lot of situations

" Forcing a lower priority process to release resources early requires rollback of execution

" Not always possible to know all resources that an operating system or process will use
upfront

48

University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480/5480, Summer 2025

That’s all!

+» See you next time!

49

	Default Section
	Slide 1: Threads Cont. & Deadlock Computer Operating Systems, Summer 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Threads vs. Processes
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Single-Threaded Address Spaces
	Slide 8: Multi-threaded Address Spaces
	Slide 9
	Slide 10: Lock Synchronization
	Slide 11: Lock API
	Slide 12: Milk Example – What is the Critical Section?
	Slide 13: pthreads and Locks
	Slide 14: pthread Mutex Examples
	Slide 15: pthread Mutex Examples
	Slide 16: Threads & Mutex
	Slide 18: Threads & Mutex
	Slide 20: Lecture Outline
	Slide 21: Key Differences of spthread vs pthread
	Slide 22: Practice
	Slide 23: Practice
	Slide 24: Shared Data & spthread
	Slide 25: Lecture Outline
	Slide 26: TSL
	Slide 27: TSL to implement Mutex
	Slide 28: Lecture Outline
	Slide 29: Disabling Interrupts
	Slide 30: Disabling Interrupts
	Slide 31: Disabling Interrupts
	Slide 32: Lecture Outline
	Slide 33: Liveness
	Slide 34: Liveness Failure: Releasing locks
	Slide 35: Liveness Failure: Deadlocks
	Slide 36: Liveness Failure: Mutex Recursion
	Slide 37: Aside: Recursive Locks
	Slide 38: Deadlock Definition
	Slide 39: Preconditions for Deadlock
	Slide 40: Circular Wait Example
	Slide 41: Poll:
	Slide 42: Deadlock Prevention
	Slide 43: Preconditions for Deadlock
	Slide 48: Deadlock Prevention Summary
	Slide 49: That’s all!

