
CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads Cont. & Deadlock
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar Sid Sannapareddy

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Administrivia

❖ PennOS:

▪ PennOS Due Dates milestones updated

▪ Groups have been assigned

▪ TA’s have been assigned to groups

▪ You have the first milestone, which needs to be done before end of day Tuesday the 8th.

▪ Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

❖ Videos containing some demos of a functioning PennOS posted on the
schedule.

❖ Recitation Tomorrow will help with PennOS and Milestone 0

❖ No OH for Travis on Friday: it is July 4th

2

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Threads & Lock refresher

❖ Spthreads

❖ tsl

❖ Disable interrupts

❖ Deadlock & Preventing Deadlock

3

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

4

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads vs. Processes

5

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads vs. Processes

6

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

7

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

❖ What are the possible outputs
of this code?

9

int global_counter = 5;

void* t_fn(void* arg) {
 int num = * (int*) arg;

 global_counter += num;

 printf("%d\n", global_counter);

 free(num);
 return NULL;

}

int main() {
 pthread_t thds[2];

 for (int i = 0; i < 2; i++) {
 pthread_t temp;
 int* arg = malloc(sizeof(int));
 *arg = i;
 pthread_create(&temp, NULL, t_fn, arg);
 thds[i] = temp;
 }

 for (int i = 0; i < 2; i++) {
 pthread_join(thds[i], NULL);
 }

 return EXIT_SUCCESS;
}

pollev.com/tqm

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

10

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating system to help ensure
synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

11

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

12

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

13

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.c

14

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.c

15

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Threads & Lock refresher

❖ Spthreads

❖ tsl

❖ Disable interrupts

❖ Deadlock & Preventing Deadlock

20

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Key Differences of spthread vs pthread

❖ spthread is something Travis wrote about a year ago.

▪ It does not exist anywhere else

▪ You likely won’t find any documentation on it outside of this course

❖ Main difference:

▪ When you create a thread, it starts “suspended”

▪ Threads can be explicitly continued and suspended

▪ When there is a corresponding spthread function, call that instead of the pthread function

21

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Practice

❖ There are issues here.
What are they?

22

vector(int) vec;

void* s_fn(void* arg) {
 while(true) {
 int num = rand();

 // generate a random number
 vector_push(&vec, num);
 }
 return NULL;

}

pollev.com/tqm

int main() {
 vec = vector_new(int, 10, NULL);

 // initialize a length 10 vector of ints

 spthread_t thds[2];
 spthread_create(&(thds[0]), NULL, s_fn, NULL);
 spthread_create(&(thds[1]), NULL, s_fn, NULL);

 int curr_thread = 0;
 while(vector_len(&vec) < 200) {
 spthread_continue(thds[curr_thread]);
 sleep(1); // sleep for 1 seconds
 spthread_suspend(thds[curr_thread]);

 curr_thread = 1 - curr_thread;
 }
 printf("%d\n", vector_len(&vec));

}

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Practice

❖ Adding a lock causes another
issue, what issue is it?

23

vector(int) vec;
pthread_mutex_t lock;

void* s_fn(void* arg) {
 while(true) {
 int num = rand();
 pthread_mutex_lock(&lock);
 vector_push(&vec, num);
 pthread_mutex_unlock(&lock);
 }
 return NULL;

}

pollev.com/tqm

int main() {
 pthread_mutex_init(&lock, NULL);
 int curr_thread = 0;
 while(true) {
 pthread_mutex_lock(&lock);
 if (vector_len(&vec) < 200) {
 pthread_mutex_unlock(&lock);
 break;
 }
 pthread_mutex_unlock(&lock);
 spthread_continue(thds[curr_thread]);
 sleep(1); // sleep for 1 seconds
 spthread_suspend(thds[curr_thread]);

 curr_thread = 1 - curr_thread;
 }
 printf("%d\n", vector_len(&vec));

}

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Shared Data & spthread

❖ The calls to spthread_suspend and spthread_continue will not
return until that thread actually continues/suspends

❖ This can cause an issue when we use locks to maintain shared memory

❖ What do we do instead?

▪ spthread_disable_interrupts_self

▪ spthread_enable_interrupts_self

24

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Threads & Lock refresher

❖ Spthreads

❖ tsl

❖ Disable interrupts

❖ Deadlock & Preventing Deadlock

25

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

TSL

❖ TSL stands for Test and Set Lock, sometimes just called test-and-set.

❖ TSL is an atomic instruction that is guaranteed to be atomic at the hardware
level

❖ TSL R, M

▪ Pass in a register and a memory location

▪ R gets the value of M

▪ M is set to 1 AFTER setting R

26

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

TSL to implement Mutex

❖ A mutex is pretty much this:

27

pthread_mutex_lock(lock) {

 prev_value = TSL(lock);

 // if prev_value = 1, then it was already locked

 while (prev_value == 1) {

 block();

 prev_value = TSL(lock);

 }

}

pthread_mutex_unlock(lock) {

 lock = 0;

 wakeup_blocked_threads(lock);

}

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Threads & Lock refresher

❖ Spthreads

❖ tsl

❖ Disable interrupts

❖ Deadlock & Preventing Deadlock

28

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Disabling Interrupts

❖ If data races occur when one thread is interrupted while it is accessing some
shared code….

What is we don’t switch to other threads while executing that code?

❖ This can be done by disabling interrupts: no interrupts means that the clock
interrupt won’t go off and interrupt the currently running thread

29

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Disabling Interrupts

❖ Consider that sum_total starts at 0 and two threads try to execute

30

disable_interrupts();

++sum_total;

enable_interrupts();

++sum_total

Thread 0 Thread 1

sum_total = 1

disable_interrupts();

++sum_total;

enable_interrupts();

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Disabling Interrupts

❖ Advantages:

▪ This is one way to fix this issue

❖ Disadvantages

▪ This is usually overkill

▪ This can stop threads that aren’t trying to access the shared resources in the critical
section. May stop threads that are executing other processes entirely

▪ If interrupts disabled for a long time, then other threads will starve

▪ In a multi-core environment, this gets complicated

31

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Threads & Lock refresher

❖ Spthreads

❖ tsl

❖ Disable interrupts

❖ Deadlock & Preventing Deadlock

32

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Liveness

❖ Liveness: A set of properties that ensure that threads execute in a timely
manner, despite any contention on shared resources.

❖ When is called, the calling thread blocks (stops
executing) until it can acquire the lock.

▪ What happens if the thread can never acquire the lock?

33

pthread_mutex_lock();

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads cannot acquire that
lock

❖ See release_locks.c

▪ Example where locks are not released once critical section is completed.

34

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.c

❖ Note: there are many algorithms for detecting/preventing deadlocks

35

Neither thread can make progress 

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it has already
acquired?

❖ See recursive_deadlock.c

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until the lock is released

36

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked if the thread already
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of times it was
acquired

❖ Has its uses, but generally discouraged.

37

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Definition

❖ A computer has multiple threads, finite resources, and the threads want to
acquire those resources

▪ Some of these resources require exclusive access

❖ A thread can acquire resources:

▪ All at once

▪ Accumulate them over time

▪ If it fails to acquire a resource, it will (by default) wait until it is available before doing
anything

❖ Deadlock: Cyclical dependency on resource acquisition so that none of them
can proceed

▪ Even if all unblocked threads release, deadlock will continue
38

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Preconditions for Deadlock

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a resource that is held by
a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly releases it. It cannot be
preempted by the OS or something else to force it to release the resource

▪ Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other
thread must waiting on a resource that forms a chain of dependency

39

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Circular Wait Example

❖ A cycle can exist of more than just two threads:

40

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Poll:

❖ Can a thread deadlock if there is only one thread?

41

Discuss

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention

❖ If we can remove the conditions for deadlock, we could avoid prevent
deadlock from every happening

42

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Preconditions for Deadlock

❖ We are running some code that uses threads, locks, and sometimes deadlocks.
Which of these are most likely to be removed so that we can stop deadlocks.

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a resource that is held by
a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly releases it. It cannot be
preempted by the OS or something else to force it to release the resource

▪ Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other
thread must waiting on a resource that forms a chain of dependency

43

Discuss

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four deadlock preconditions

❖ But eliminating even one of the preconditions is often hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early requires rollback of execution

▪ Not always possible to know all resources that an operating system or process will use
upfront

48

CIS 4480/5480, Summer 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

That’s all!

❖ See you next time!

49

	Default Section
	Slide 1: Threads Cont. & Deadlock Computer Operating Systems, Summer 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Threads vs. Processes
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Single-Threaded Address Spaces
	Slide 8: Multi-threaded Address Spaces
	Slide 9
	Slide 10: Lock Synchronization
	Slide 11: Lock API
	Slide 12: Milk Example – What is the Critical Section?
	Slide 13: pthreads and Locks
	Slide 14: pthread Mutex Examples
	Slide 15: pthread Mutex Examples
	Slide 16: Threads & Mutex
	Slide 18: Threads & Mutex
	Slide 20: Lecture Outline
	Slide 21: Key Differences of spthread vs pthread
	Slide 22: Practice
	Slide 23: Practice
	Slide 24: Shared Data & spthread
	Slide 25: Lecture Outline
	Slide 26: TSL
	Slide 27: TSL to implement Mutex
	Slide 28: Lecture Outline
	Slide 29: Disabling Interrupts
	Slide 30: Disabling Interrupts
	Slide 31: Disabling Interrupts
	Slide 32: Lecture Outline
	Slide 33: Liveness
	Slide 34: Liveness Failure: Releasing locks
	Slide 35: Liveness Failure: Deadlocks
	Slide 36: Liveness Failure: Mutex Recursion
	Slide 37: Aside: Recursive Locks
	Slide 38: Deadlock Definition
	Slide 39: Preconditions for Deadlock
	Slide 40: Circular Wait Example
	Slide 41: Poll:
	Slide 42: Deadlock Prevention
	Slide 43: Preconditions for Deadlock
	Slide 48: Deadlock Prevention Summary
	Slide 49: That’s all!

