
CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Deadlock & Dining with my Phils
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Maya Huizar Sid Sannapareddy

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Poll: how are you?

❖ Any planned courses for Fall 2025? Any Questions about PennOS?

2

pollev.com/tqm

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ Groups have been assigned

▪ TA’s have been assigned to groups

▪ You have the first milestone, which needs to be done before end of day Tuesday the 8th.
TOMORROW

▪ Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

❖ Videos containing some demos of a functioning PennOS posted on the
schedule.

3

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Administrivia

❖ PennOS Advice:

▪ Will announce this on Ed as well

▪ In your FAT code you may do something like this:

• Sometimes though, the write and lseek will return a success, but it won’t actually write to your
file system

• Most commonly happens with blocks near the end of the FAT
(as in blocks not in the allocation table but show up shortly after the end of the allocation table)

• Most likely related to an issue between mmap and write

• Shows up inconsistently!

• What’s the fix?
Just do it twice, that usually
fixes it.

4

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Poll: how are you?

❖ Any planned courses for Fall 2025? Any Questions about PennOS?

5

pollev.com/tqm

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four deadlock preconditions

❖ But eliminating even one of the preconditions is often hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early requires rollback of execution

▪ Not always possible to know all resources that an operating system or process will use
upfront

6

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Dining Philosophers

❖ Deadlock Handling

7

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Dining Philosophers

❖ Assume the following situation

▪ There are N philosophers (computer
scientists) that are trying to eat rice.

▪ They only have one chopstick each!

• Need two chopsticks to eat 

▪ Alternate between two states:

• Thinking

• Eating

▪ They are arranged in a circle with a
chopstick between each of them

8

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Dining Philosophers

❖ Philosophers have good table manners

▪ Must acquire two chopsticks to eat

▪ Only one philosopher can have
a chopstick at a time

❖ Useful abstraction / “standard problem”
try to achieve:

▪ Deadlock Free

• No state where no one gets to eat

▪ Starvation Free

• Solution guarantees that all philosophers
occasionally eat

• Ideally maximize parallel eating

9

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

First Solution Attempt

❖ If we number each philosopher 0 – N and then each chopstick is also 0 – N, we
can model the problem with mutexes, each chopstick is a mutex and each
philosopher is a thread
▪ To eat, thread I must acquire lock I and I + 1

▪ This ensures that each chopstick is only in use by one philosopher at a time

10

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each
chopstick is also 0 – N

11

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

pollev.com/tqm

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each
chopstick is also 0 – N

12

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

Deadlock is possible: what happens if all threads pickup their left at the same time?

pollev.com/tqm

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we pass around a token
that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

13

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we pass around a token
that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

14

No

Not parallel, just sequential eating 
Everyone guaranteed gets to eat though ☺

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that controls permission to
pick up chopsticks. Once a philosopher has chopsticks, they can release the
lock before they eat

❖ In our metaphor, this means that each philosopher “waits in line” to pick up
chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

15

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that controls permission to
pick up chopsticks. Once a philosopher has chopsticks, they can release the
lock before they eat

❖ In our metaphor, this means that each philosopher “waits in line” to pick up
chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

16

No

Not the most parallel, could result in sequential
Not everyone guarantee gets to eat

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it puts down any
chopsticks it has, waits for a little bit and then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired, return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a mutex for some specified
amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?

17

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it puts down any
chopsticks it has, waits for a little bit and then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired, return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a mutex for some specified
amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?

18

No

Possible spinning and starvation

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd numbered philosophers do
things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

19

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd numbered philosophers do
things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

20

No

threads may still possibly starve

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Dining Philosophers

❖ Deadlock Handling

21

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

22

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

23Ostriches don’t actually do this, but it is an old myth

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive to handle, and/or not a
fatal error

❖ Used in real world contexts, there is a real cost to tracking down every possible
deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to do, slows things down

24

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd philosophers

❖ Exhaustive Search Approach

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without restrictions)

25

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Detection

❖ If we can’t guarantee deadlocks won’t happen, we can instead try to detect a
deadlock just before it will happen and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata and graph theory

▪ The intervention/recovery. We typically want some sort of way to “recover” to a safe state
when we detect a deadlock is going to happen

26

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Detection Algorithms

❖ The common idea is to think of the threads and resources as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem with many solutions.

27

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Detection Example

❖ Consider the following example with 5 threads and 5 resources that require
mutual exclusion is this a deadlock?

▪ Thread 1 has R2 but wants R1

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

28

pollev.com/tqm

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow pointing at the resource
from the thread trying to acquire it

29

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

30

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

31

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

32

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

33

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

34

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

35

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Alternate graph

❖ Instead of also representing resources as nodes, we can have a “wait for”
graph, showing how threads are waiting on each other

36

T1

T5

T2

T4

T3

Wait For Graph

T1 is waiting for a

resource held by T2

and T4 is waiting on T1

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Recovery after Detection

❖ Preemption:

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is detected then go back to
the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no deadlock

▪ Not safe, but it is simple

37

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock issues, but there is a
cost to memory and CPU to store the necessary information and check for
deadlock

❖ This is why sometimes the ostrich algorithm is preferred

38

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Avoidance

❖ Instead of detecting a deadlock when it happens and having expensive
rollbacks, we may want to instead avoid deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the request. The calling thread can
try again later

• If there is no deadlock, then the thread can acquire the resources and complete its task

▪ The calling thread later releases resources as they are done with them

39

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources need to be acquired before
an action is taken by a thread, could hurt parallelizability

• Consider a thread that does a very expensive computation with many shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may need it cannot access it

40

CIS 4480/5480, Summer 2025L16: DeadlockUniversity of Pennsylvania

Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple copies of resources, or a
finite number of people can access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can watch if you want to
know more

41

	Default Section
	Slide 1: Deadlock & Dining with my Phils Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Poll: how are you?
	Slide 6: Deadlock Prevention Summary
	Slide 7: Lecture Outline
	Slide 8: Dining Philosophers
	Slide 9: Dining Philosophers
	Slide 10: First Solution Attempt
	Slide 11: Producer Consumer Example
	Slide 12: Producer Consumer Example
	Slide 13: Second Attempt: Round Robin
	Slide 14: Second Attempt: Round Robin
	Slide 15: Third Attempt: Global Mutex
	Slide 16: Third Attempt: Global Mutex
	Slide 17: Fourth Attempt: More Human Approach
	Slide 18: Fourth Attempt: More Human Approach
	Slide 19: Fifth Attempt: Break the Symmetry
	Slide 20: Fifth Attempt: Break the Symmetry
	Slide 21: Lecture Outline
	Slide 22: Deadlock Handling: Ostrich Algorithm
	Slide 23: Deadlock Handling: Ostrich Algorithm
	Slide 24: Deadlock Handling: Ostrich Algorithm
	Slide 25: Deadlock Handling: Prevention
	Slide 26: Detection
	Slide 27: Detection Algorithms
	Slide 28: Deadlock Detection Example
	Slide 29: Resource Allocation Graph
	Slide 30: Resource Allocation Graph Example
	Slide 31: Resource Allocation Graph Example
	Slide 32: Resource Allocation Graph Example
	Slide 33: Resource Allocation Graph Example
	Slide 34: Resource Allocation Graph Example
	Slide 35: Resource Allocation Graph Example
	Slide 36: Alternate graph
	Slide 37: Recovery after Detection
	Slide 38: Overall Costs
	Slide 39: Avoidance
	Slide 40: Avoidance
	Slide 41: Aside: Bankers Algorithm

