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Poll: how are you?

❖ How is PennOS going?
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Administrivia

❖ PennOS

▪ Milestone 1 posted!

• Demo materials online (check MS1 section of pennos assignment)

▪ Need to meet with your TAs next week before end of next week (7/18)

• No late tokens – try to contact your TAs early to ensure you have a time to demo

• Give us >= 24hr notice for any changes in meeting time
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Lecture Outline

❖ Producer/Consumer 

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms
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Synchronization So Far

❖ Before, we used mutexes or disabled interrupts to make accesses to a shared 
data structure indivisible

❖ Example: Adding all values in an array of ints using 2 threads

o Divide the array in half

o First thread adds the first half of array

o Second thread adds the second half of array

o As long as we protect the global variable (sum), it doesn't matter which thread accesses 
sum first.
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Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will remove data from the shared data structure and process it

❖ We need to make sure that the threads play nice 
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Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will remove data from the shared data structure and process it

❖ We need to make sure that the threads play nice 
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Poll: how are you?
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❖ Does this work?

❖ Assume that two threads are 
created, one assigned to 
produce_thread and one 
assigned to consume_thread

❖ Assume that Vec *buf was 
properly initialized in main()

Vec *buf;

void* producer_thread(void *arg) {
while (true) {

int *random = malloc(sizeof(int));
*random = rand();
usleep(10000);
vec_push_back(buf, random); 

}
}

void* consumer_thread(void *arg) {
while (true) {

printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);

}
}
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Poll: how are you?
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❖ We now added a mutex to 
protect access to buf

❖ What's wrong? How do we fix 
it?

❖ Assume that buf and the 
mutex vec_lock was properly 
initialized in main()

Vec *buf;
pthread_mutex_t vec_lock;

void* producer_thread(void *arg) {
while (true) {

int *random = malloc(sizeof(int));
*random = rand();
pthread_mutex_lock(&vec_lock);
vec_push_back(buf, random); 
pthread_mutex_unlock(&vec_lock);
usleep(10000);

}
}
void* consumer_thread(void *arg) {

while (true) {
pthread_mutex_lock(&vec_lock);
while(vec_is_empty(buf)) { // do nothing
}
printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec_lock);

}
}
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Poll: how are you?
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discuss

❖ Our code is officially working, 
but I think there's an issue 
that needs to be addressed.

❖ What might be not ideal about 
this code? (Hint: inefficiency)

void* producer_thread(void *arg) {
while (true) {

int *random = malloc(sizeof(int));
*random = rand();
pthread_mutex_lock(&vec_lock);
vec_push_back(buf, random); 
pthread_mutex_unlock(&vec_lock);
usleep(10000);

}
}
void* consumer_thread(void *arg) {

while (true) {
pthread_mutex_lock(&vec_lock);
while(vec_is_empty(buf)) { 

pthread_mutex_unlock(&vec_lock);
pthread_mutex_lock(&vec_lock);

}
printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec_lock);

}
}
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Thread Communication: Naïve Solution

❖ In the Producer-Consumer problem, the consumer must wait for the producer 
to add something to the buffer

❖ How does the Producer Thread alert the Consumer Thread?

❖ Possible solution: “Spinning”
▪ Infinitely loop until the producer thread notifies that the consumer thread can print

▪ Use top to check CPU usage (Helpful for PennOS!)

❖ Alternative: Condition variables
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Lecture Outline

❖ Producer/Consumer 

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms
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Condition Variables

❖ Variables that allow for a thread to wait until they are notified to resume

❖ Avoids spinning by blocking/suspending the waiting thread

❖ Done in the context of mutual exclusion

▪ A thread must already have a lock, which it will temporarily release while waiting

▪ Once notified, the thread will re-acquire a lock and resume execution
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pthreads and Condition Variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖  
▪ “Uninitializes” a condition variable – clean up when done
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int pthread_cond_init(pthread_cond_t* cond,

                const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);
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pthreads and Condition Variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition variable. Once unblocked (by 
one of the functions below), function will return and calling thread will have the mutex 
locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition
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int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

                pthread_mutex_t* mutex);
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Condition Variables and the Producer (our example)
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Producer Thread Start

Acquire Lock

vec_push_back()

Release Lock

Signal Consumer Thread
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Condition Variables and the Producer(our example)
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Condition Variables and the Consumer (our example)
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Consumer Thread Start

Acquire Lock

Vector Length > 0 ?

pop_front() and print() Release Lock

Wait for Producer's Signal

Acquire Lock

Release Lock

True False

pthread_cond_wait()
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Condition Variables: Other Considerations

❖ In our example, we had an "unlimited buffer"

❖ What else would we need to handle if our buffer was an array (fixed size)?

❖ What if we had multiple producers and/or consumers?
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Multiple Consumers

❖ Situation: one producer and two consumers sharing 1 vector

o Producer pushes values onto the vector

o Consumer removes values from the vector

❖ Producer and Consumer function implementation is the same except we use 
pthread_cond_broadcast() to send a signal to wake up both consumer threads

20
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Merge Sort Algorithmic Analysis

❖ Does this work if there was 
1 producer and 2 consumer 
threads?

21
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void* consumer_thread(void *arg) {
while (true) {

pthread_mutex_lock(&vec_lock);
if(vec_is_empty(buf)) { 

pthread_cond_wait(&vec_cond, &vec_lock);
}
// at this point, we have the lock
// print first element, then delete
printf("%d\n", *(int*)vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec_lock);

}
return NULL;

}
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Multiple Consumers – What Happens?

❖ When producer calls 
pthread_cond_broadcast(), there is one 
value inside the vector

❖ The consumer who first returns from 
pthread_cond_wait() will remove the 
value from the vector and print

❖ The second consumer will try to do the 
same, and then panic!
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Multiple Consumers Solution
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Consumer Thread Start

Acquire Lock

Vector Length > 0 ?

pop_front() and print() Release Lock

Wait for Producer's Signal

Acquire Lock

Release Lock

True False
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Spurious Wakeups

❖ It's possible that when a thread wakes up due to pthread_cond_signal() or 
pthread_cond_broadcast(), that the condition it originally waited for is not 
satisfied at the time of wakeup

❖ This is known as a "spurious wakeup," and it creates a race condition

o If you have two threads that received the broadcast signal, one thread "wins" and the 
other experiences the spurious wakeup

❖ This is why we have to check the predicate condition after 
pthread_cond_wait() returns
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Lecture Outline

❖ Producer/Consumer 

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms
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Why Would We Write Multithreaded Code?

❖ Make the program run faster

❖ Handle multiple tasks at the same time

❖ That's it.

26
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Why Wouldn't We Want to Write Multithreaded Code?

❖ Guaranteed complexity

o Takes longer to develop than single-thread code

o Difficult to read and maintain

❖ May not give us the speedup we desire
o Speedup could be a negligible difference (or sometimes slower!)

o Cost benefit analysis: development time versus running time

❖ Especially not worth it when:

o Functions are fast (light computation)

o Data structures are not big
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Limitations of Parallelization

❖ Hardware limits: 

o Number of hardware threads

o Number of cores

❖ Memory layout may be bad -> frequent cache misses
o Runtime more dependent on I/O than CPU

❖ Thread overhead contributes to the percentage of sequential code 
o More sequential code runtime = less time spent running parallel code

28

Good Practice: make it work first, figure out optimizations later
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Amdahl's Law

❖ How much speedup if we optimize a portion of the code?

❖ Speedup = 

o P = percent of runtime spent on parallelized code

o N = number of threads

o If speedup = 2, then the parallelized version of the code is 2x faster than the original code

29
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Amdahl's Law

❖ Total runtime of program = 1

❖ Total runtime of program = Parallel + Sequential = P + (1 – P)

❖ On a single thread: Speedup = 1 / ((1 – 0) + 0 / 1) = 1

30
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How Fast?

❖ How much speedup will we experience when we use

o 4 threads on 50% parallelized code?  1.6 times

o 1,000,000 threads on 50% parallelized code? 1.999998 times

31
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How Fast?

❖ How much speedup will we experience when we use

o 4 threads on 50% parallelized code?  1.6 times

o 1,000,000 threads on 50% parallelized code? 1.999998 times

o 4 threads on 90% parallelized code? 3.1 times

o 1,000,000 threads on 90% parallelized code? 9.9999 times

32
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Amdahl's Limit

❖ Recall: Speedup =

❖ As the number of threads (N) goes up, P/N approaches 0

❖ Then, speedup becomes dependent on the percentage of sequential execution

❖ Impossible to have 100% parallelized code
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Lecture Outline

❖ Producer/Consumer 

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms
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Parallel Algorithms 

❖ One interesting applications of threads is for faster algorithms

❖ Common Example: Merge sort
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4Output array
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex
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Merge Sort: Core Ideas
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1 2 3 4 5 6Output array
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78
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Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

❖ We recurse log2(N) times, each recursive “layer” does O(N) work 

52

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  merge_sort(arr, lo, mid);  // sort the bottom half

  merge_sort(arr, mid, hi);  // sort the upper half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

53

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}



CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 54

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm
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Parallel Algos:

❖ We can define T(n) to be the running time of our algorithm

❖ We can split up our work between two parts, the part done sequentially, and 
the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array 

• This is a recursive definition

❖ If we start recurring…
▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

55

Will not test you on this
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Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)
▪ This parallel merge sort is O(n), but there are further optimizations that can be done to 

reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I am just giving you a 
sneak peek

56

Will not test you on this
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