
CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Concurrency & Parallel Analysis
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Sid Sannapareddy Maya Huizar

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Poll: how are you?

❖ How is PennOS going?

2

pollev.com/ashfujiyama

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ Milestone 1 posted!

• Demo materials online (check MS1 section of pennos assignment)

▪ Need to meet with your TAs next week before end of next week (7/18)

• No late tokens – try to contact your TAs early to ensure you have a time to demo

• Give us >= 24hr notice for any changes in meeting time

3

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Producer/Consumer

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms

4

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Synchronization So Far

❖ Before, we used mutexes or disabled interrupts to make accesses to a shared
data structure indivisible

❖ Example: Adding all values in an array of ints using 2 threads

o Divide the array in half

o First thread adds the first half of array

o Second thread adds the second half of array

o As long as we protect the global variable (sum), it doesn't matter which thread accesses
sum first.

5

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will remove data from the shared data structure and process it

❖ We need to make sure that the threads play nice

6

P C

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will remove data from the shared data structure and process it

❖ We need to make sure that the threads play nice

7

C1

P0

P1

C0

C2

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Poll: how are you?

8

pollev.com/ashfujiyama

❖ Does this work?

❖ Assume that two threads are
created, one assigned to
produce_thread and one
assigned to consume_thread

❖ Assume that Vec *buf was
properly initialized in main()

Vec *buf;

void* producer_thread(void *arg) {
while (true) {

int *random = malloc(sizeof(int));
*random = rand();
usleep(10000);
vec_push_back(buf, random);

}
}

void* consumer_thread(void *arg) {
while (true) {

printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);

}
}

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Poll: how are you?

9

pollev.com/ashfujiyama

❖ We now added a mutex to
protect access to buf

❖ What's wrong? How do we fix
it?

❖ Assume that buf and the
mutex vec_lock was properly
initialized in main()

Vec *buf;
pthread_mutex_t vec_lock;

void* producer_thread(void *arg) {
while (true) {

int *random = malloc(sizeof(int));
*random = rand();
pthread_mutex_lock(&vec_lock);
vec_push_back(buf, random);
pthread_mutex_unlock(&vec_lock);
usleep(10000);

}
}
void* consumer_thread(void *arg) {

while (true) {
pthread_mutex_lock(&vec_lock);
while(vec_is_empty(buf)) { // do nothing
}
printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec_lock);

}
}

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Poll: how are you?

10

discuss

❖ Our code is officially working,
but I think there's an issue
that needs to be addressed.

❖ What might be not ideal about
this code? (Hint: inefficiency)

void* producer_thread(void *arg) {
while (true) {

int *random = malloc(sizeof(int));
*random = rand();
pthread_mutex_lock(&vec_lock);
vec_push_back(buf, random);
pthread_mutex_unlock(&vec_lock);
usleep(10000);

}
}
void* consumer_thread(void *arg) {

while (true) {
pthread_mutex_lock(&vec_lock);
while(vec_is_empty(buf)) {

pthread_mutex_unlock(&vec_lock);
pthread_mutex_lock(&vec_lock);

}
printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec_lock);

}
}

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Thread Communication: Naïve Solution

❖ In the Producer-Consumer problem, the consumer must wait for the producer
to add something to the buffer

❖ How does the Producer Thread alert the Consumer Thread?

❖ Possible solution: “Spinning”
▪ Infinitely loop until the producer thread notifies that the consumer thread can print

▪ Use top to check CPU usage (Helpful for PennOS!)

❖ Alternative: Condition variables

11

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Producer/Consumer

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms

12

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are notified to resume

❖ Avoids spinning by blocking/suspending the waiting thread

❖ Done in the context of mutual exclusion

▪ A thread must already have a lock, which it will temporarily release while waiting

▪ Once notified, the thread will re-acquire a lock and resume execution

13

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

pthreads and Condition Variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖
▪ “Uninitializes” a condition variable – clean up when done

14

int pthread_cond_init(pthread_cond_t* cond,

 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

pthreads and Condition Variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition variable. Once unblocked (by
one of the functions below), function will return and calling thread will have the mutex
locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

15

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

 pthread_mutex_t* mutex);

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Condition Variables and the Producer (our example)

16

Producer Thread Start

Acquire Lock

vec_push_back()

Release Lock

Signal Consumer Thread

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Condition Variables and the Producer(our example)

17

Producer Thread Start

Acquire Lock

vec_push_back()

Release Lock

pthread_cond_signal()

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Condition Variables and the Consumer (our example)

18

Consumer Thread Start

Acquire Lock

Vector Length > 0 ?

pop_front() and print() Release Lock

Wait for Producer's Signal

Acquire Lock

Release Lock

True False

pthread_cond_wait()

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Condition Variables: Other Considerations

❖ In our example, we had an "unlimited buffer"

❖ What else would we need to handle if our buffer was an array (fixed size)?

❖ What if we had multiple producers and/or consumers?

19

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Multiple Consumers

❖ Situation: one producer and two consumers sharing 1 vector

o Producer pushes values onto the vector

o Consumer removes values from the vector

❖ Producer and Consumer function implementation is the same except we use
pthread_cond_broadcast() to send a signal to wake up both consumer threads

20

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ Does this work if there was
1 producer and 2 consumer
threads?

21

pollev.com/ashfujiyama

void* consumer_thread(void *arg) {
while (true) {

pthread_mutex_lock(&vec_lock);
if(vec_is_empty(buf)) {

pthread_cond_wait(&vec_cond, &vec_lock);
}
// at this point, we have the lock
// print first element, then delete
printf("%d\n", *(int*)vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec_lock);

}
return NULL;

}

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Multiple Consumers – What Happens?

❖ When producer calls
pthread_cond_broadcast(), there is one
value inside the vector

❖ The consumer who first returns from
pthread_cond_wait() will remove the
value from the vector and print

❖ The second consumer will try to do the
same, and then panic!

22

Consumer Thread Start

Acquire Lock

Vector Length > 0 ?

pop_front() and print() Release Lock

Wait for Producer's Signal

Acquire Lock

Release Lock

True False

pthread_cond_wait()

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Multiple Consumers Solution

23

Consumer Thread Start

Acquire Lock

Vector Length > 0 ?

pop_front() and print() Release Lock

Wait for Producer's Signal

Acquire Lock

Release Lock

True False

pthread_cond_wait()

Predicate

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Spurious Wakeups

❖ It's possible that when a thread wakes up due to pthread_cond_signal() or
pthread_cond_broadcast(), that the condition it originally waited for is not
satisfied at the time of wakeup

❖ This is known as a "spurious wakeup," and it creates a race condition

o If you have two threads that received the broadcast signal, one thread "wins" and the
other experiences the spurious wakeup

❖ This is why we have to check the predicate condition after
pthread_cond_wait() returns

24

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Producer/Consumer

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms

25

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Why Would We Write Multithreaded Code?

❖ Make the program run faster

❖ Handle multiple tasks at the same time

❖ That's it.

26

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Why Wouldn't We Want to Write Multithreaded Code?

❖ Guaranteed complexity

o Takes longer to develop than single-thread code

o Difficult to read and maintain

❖ May not give us the speedup we desire
o Speedup could be a negligible difference (or sometimes slower!)

o Cost benefit analysis: development time versus running time

❖ Especially not worth it when:

o Functions are fast (light computation)

o Data structures are not big

27

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Limitations of Parallelization

❖ Hardware limits:

o Number of hardware threads

o Number of cores

❖ Memory layout may be bad -> frequent cache misses
o Runtime more dependent on I/O than CPU

❖ Thread overhead contributes to the percentage of sequential code
o More sequential code runtime = less time spent running parallel code

28

Good Practice: make it work first, figure out optimizations later

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Amdahl's Law

❖ How much speedup if we optimize a portion of the code?

❖ Speedup =

o P = percent of runtime spent on parallelized code

o N = number of threads

o If speedup = 2, then the parallelized version of the code is 2x faster than the original code

29

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Amdahl's Law

❖ Total runtime of program = 1

❖ Total runtime of program = Parallel + Sequential = P + (1 – P)

❖ On a single thread: Speedup = 1 / ((1 – 0) + 0 / 1) = 1

30

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

How Fast?

❖ How much speedup will we experience when we use

o 4 threads on 50% parallelized code? 1.6 times

o 1,000,000 threads on 50% parallelized code? 1.999998 times

31

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

How Fast?

❖ How much speedup will we experience when we use

o 4 threads on 50% parallelized code? 1.6 times

o 1,000,000 threads on 50% parallelized code? 1.999998 times

o 4 threads on 90% parallelized code? 3.1 times

o 1,000,000 threads on 90% parallelized code? 9.9999 times

32

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Amdahl's Limit

❖ Recall: Speedup =

❖ As the number of threads (N) goes up, P/N approaches 0

❖ Then, speedup becomes dependent on the percentage of sequential execution

❖ Impossible to have 100% parallelized code

33

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Lecture Outline

❖ Producer/Consumer

❖ Condition Variables

❖ Parallel Analysis & Amdahl's Law

❖ Parallel Algorithms

34

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Parallel Algorithms

❖ One interesting applications of threads is for faster algorithms

❖ Common Example: Merge sort

35

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

❖ We recurse log2(N) times, each recursive “layer” does O(N) work

52

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 merge_sort(arr, lo, mid); // sort the bottom half

 merge_sort(arr, mid, hi); // sort the upper half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

53

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 54

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Parallel Algos:

❖ We can define T(n) to be the running time of our algorithm

❖ We can split up our work between two parts, the part done sequentially, and
the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array

• This is a recursive definition

❖ If we start recurring…
▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

55

Will not test you on this

CIS 4480/5480, Summer 2025L17: Cond & Parallel AnalysisUniversity of Pennsylvania

Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)
▪ This parallel merge sort is O(n), but there are further optimizations that can be done to

reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I am just giving you a
sneak peek

56

Will not test you on this

	Default Section
	Slide 1: Concurrency & Parallel Analysis Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Synchronization So Far
	Slide 6: Producer & Consumer Problem
	Slide 7: Producer & Consumer Problem
	Slide 8: Poll: how are you?
	Slide 9: Poll: how are you?
	Slide 10: Poll: how are you?
	Slide 11: Thread Communication: Naïve Solution
	Slide 12: Lecture Outline
	Slide 13: Condition Variables
	Slide 14: pthreads and Condition Variables
	Slide 15: pthreads and Condition Variables
	Slide 16: Condition Variables and the Producer (our example)
	Slide 17: Condition Variables and the Producer(our example)
	Slide 18: Condition Variables and the Consumer (our example)
	Slide 19: Condition Variables: Other Considerations
	Slide 20: Multiple Consumers
	Slide 21: Merge Sort Algorithmic Analysis
	Slide 22: Multiple Consumers – What Happens?
	Slide 23: Multiple Consumers Solution
	Slide 24: Spurious Wakeups
	Slide 25: Lecture Outline
	Slide 26: Why Would We Write Multithreaded Code?
	Slide 27: Why Wouldn't We Want to Write Multithreaded Code?
	Slide 28: Limitations of Parallelization
	Slide 29: Amdahl's Law
	Slide 30: Amdahl's Law
	Slide 31: How Fast?
	Slide 32: How Fast?
	Slide 33: Amdahl's Limit
	Slide 34: Lecture Outline
	Slide 35: Parallel Algorithms
	Slide 36: Merge Sort: Core Ideas
	Slide 37: Merge Sort: Core Ideas
	Slide 38: Merge Sort: Core Ideas
	Slide 39: Merge Sort: Core Ideas
	Slide 40: Merge Sort: Core Ideas
	Slide 41: Merge Sort: Core Ideas
	Slide 42: Merge Sort: Core Ideas
	Slide 43: Merge Sort: Core Ideas
	Slide 44: Merge Sort: Core Ideas
	Slide 45: Merge Sort: High Level Example
	Slide 46: Merge Sort: High Level Example
	Slide 47: Merge Sort: High Level Example
	Slide 48: Merge Sort: High Level Example
	Slide 49: Merge Sort: High Level Example
	Slide 50: Merge Sort: High Level Example
	Slide 51: Merge Sort: High Level Example
	Slide 52: Merge Sort Algorithmic Analysis
	Slide 53: Merge Sort Algorithmic Analysis
	Slide 54: Merge Sort Algorithmic Analysis
	Slide 55: Parallel Algos:
	Slide 56: Parallel Algos:

