University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Concurrency & Parallel Analysis
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Sid Sannapareddy Maya Huizar



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

@ Poll Everywhere pollev.com/ashfujiyama

+» How is PennQS going?



University of Pennsylvania

L17: Cond & Parallel Analysis

Administrivia

+» PennOS
"= Milestone 1 posted!

- Demo materials online (check MS1 section of pennos assignment)

= Need to meet with your TAs next week before end of next week (7/18)

- No late tokens — try to contact your TAs early to ensure you have a time to demo
« Give us >= 24hr notice for any changes in meeting time

CIS 4480/5480, Summer 2025



University of Pennsylvania L17: Cond & Parallel Analysis

Lecture Outline

+ Producer/Consumer

» Condition Variables

+» Parallel Analysis & Amdahl's Law
+» Parallel Algorithms

CIS 4480/5480, Summer 2025



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Synchronization So Far

+» Before, we used mutexes or disabled interrupts to make accesses to a shared
data structure indivisible

+» Example: Adding all values in an array of ints using 2 threads
O Divide the array in half
O First thread adds the first half of array
O Second thread adds the second half of array

O As long as we protect the global variable (sum), it doesn't matter which thread accesses
sum first.



University of Pennsylvania

L17: Cond & Parallel Analysis

Producer & Consumer Problem

+» Common design pattern in concurrent programming.

" There are at least two threads, at least one producer and at least one consumer.

CIS 4480/5480, Summer 2025

" The producer threads create some data that is then added to a shared data structure

= Consumers will remove data from the shared data structure and process it

+ We need to make sure that the threads play nice

P

)

= C



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Producer & Consumer Problem

+» Common design pattern in concurrent programming.

" There are at least two threads, at least one producer and at least one consumer.
" The producer threads create some data that is then added to a shared data structure

= Consumers will remove data from the shared data structure and process it

+ We need to make sure that the threads play nice




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

@ Poll Everywhere pollev.com/ashfujiyama

Vec *buf;
«» Does this work?
void* producer_thread(void *arg) {
while (true) {
int *random = malloc(sizeof(int));

+ Assume that two threads are *random = rand();
I I 10000);
created, one assighed to usleep(10000);

vec_push_back(buf, random);
produce thread and one }

assigned to consume_thread

void* consumer_thread(void *arg) {
while (true) {
printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);

+~ Assume that Vec *buf was
properly initialized in main()




University of Pennsylvania

@ Poll Everywhere

+» We now added a mutex to
protect access to buf

+» What's wrong? How do we fix
it?
«» Assume that buf and the

mutex vec_lock was properly
initialized inmain()

L17: Cond & Parallel Analysis

Vec *buf;

CIS 4480/5480, Summer 2025

pollev.com/ashfujiyama

pthread_mutex_t vec lock;

void* producer_thread(void *arg) {
while (true) {

}
}

int *random = malloc(sizeof(int));
*random = rand();
pthread_mutex_lock(&vec lock);
vec_push_back(buf, random);
pthread_mutex_unlock(&vec lock);
usleep(10000);

void* consumer_thread(void *arg) {
while (true) {

pthread_mutex_lock(&vec lock);
while(vec_is_empty(buf)) { // do nothing
}

printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec lock);




University of Pennsylvania

@ Poll Everywhere

+ Our code is officially working,
but | think there's an issue
that needs to be addressed.

+» What might be not ideal about

this code? (Hint: inefficiency)

L17: Cond & Parallel Analysis

void* producer_thread(void *arg) {
while (true) {

int *random = malloc(sizeof(int));
*random = rand();
pthread_mutex_lock(&vec lock);
vec_push_back(buf, random);
pthread_mutex_unlock(&vec lock);
usleep(10000);

}
}

void* consumer_thread(void *arg) {
while (true) {
pthread_mutex_lock(&vec lock);
while(vec_is_empty(buf)) {

pthread_mutex_unlock(&vec lock);
pthread_mutex_lock(&vec lock);

}

printf("%d\n", vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec lock);

CIS 4480/5480, Summer 2025

discuss




University of Pennsylvania L17: Cond & Parallel Analysis

Thread Communication: Naive Solution

% In the Producer-Consumer problem, the consumer must wait for the producer
to add something to the buffer

+ How does the Producer Thread alert the Consumer Thread?

- Possible solution: “Spinning”

" |nfinitely loop until the producer thread notifies that the consumer thread can print
= Use top to check CPU usage (Helpful for PennOS!)

« Alternative: Condition variables

CIS 4480/5480, Summer 2025

11



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Lecture Outline

+ Producer/Consumer

» Condition Variables

+» Parallel Analysis & Amdahl's Law
+» Parallel Algorithms

12



University of Pennsylvania

L17: Cond & Parallel Analysis

CIS 4480/5480, Summer 2025

Condition Variables

+ Variables that allow for a thread to wait until they are notified to resume
+» Avoids spinning by blocking/suspending the waiting thread

« Done in the context of mutual exclusion

= A thread must already have a lock, which it will temporarily release while waiting
" Once notified, the thread will re-acquire a lock and resume execution

13



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

pthreads and Condition Variables

+ pthread.h defines datatype pthread cond t

<+ | int pthread cond init (pthread cond t* cond,
const pthread condattr t* attr);

" |nitializes a condition variable with specified attributes

&»(int pthread cond destroy (pthread cond t* cond); J

= “Uninitializes” a condition variable — clean up when done

14



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

pthreads and Condition Variables

+ pthread.h defines datatype pthread cond t

<+ | int pthread cond wait (pthread cond t* cond,
pthread mutex t* mutex);

= Atomically releases the mutex and blocks on the condition variable. Once unblocked (by
one of the functions below), function will return and calling thread will have the mutex
locked

& (int pthread cond signal (pthread cond t* cond); J

" Unblock at least one of the threads on the specified condition

< (int pthread cond broadcast (pthread cond t* cond); J

= Unblock all threads blocked on the specified condition

15



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Condition Variables and the Producer (our example)

Producer Thread Start

Acquire Lock

vec_push_back()

v

Signal Consumer Thread

!
Release Lock

16



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Condition Variables and the Producer(our example)

Producer Thread Start

Acquire Lock

vec_push_back()

v

pthread cond_signal()

!
Release Lock

17



University of Pennsylvania

L17: Cond & Parallel Analysis

CIS 4480/5480, Summer 2025

Condition Variables and the Consumer (our example)

True

Consumer Thread Start

\ 4

Acquire Lock

Vector Length>0?

pop_front() and print()

False

pthread_cond_wait()

}

Release Lock

Release Lock

|

Wait for Producer's Signal

|

Acquire Lock

18




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Condition Variables: Other Considerations

% In our example, we had an "unlimited buffer"

+» What else would we need to handle if our buffer was an array (fixed size)?

+» What if we had multiple producers and/or consumers?

19



L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

University of Pennsylvania

Multiple Consumers

% Situation: one producer and two consumers sharing 1 vector

O Producer pushes values onto the vector
o Consumer removes values from the vector

% Producer and Consumer function implementation is the same except we use
pthread_cond_broadcast() to send a signal to wake up both consumer threads

20



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

@ Poll Everywhere pollev.com/ashfujiyama

<« Does this work if there was void* consumer_thread(void *arg) {

while (true) {
1 prOducer and 2 consumer pthread_mutex_lock(&vec_lock);

threads? if(vec_is_empty(buf)) {
pthread _cond_wait(&vec_cond, &vec_lock);

}

printf("%d\n", *(int*)vec_get(buf, 0));
vec_erase(buf, 0);
pthread_mutex_unlock(&vec_lock);

}
return NULL;




University of Pennsylvania L17: Cond & Parallel Analysis

Multiple Consumers — What Happens?

When producer calls
pthread _cond_broadcast(), there is one
value inside the vector

The consumer who first returns from
pthread_cond_wait() will remove the
value from the vector and print

: True
The second consumer will try to do the

same, and then panic!

CIS 4480/5480, Summer 2025

Consumer Thread Start

\ 4

Acquire Lock

1

Vector Length>0?

False

pthread_cond_wait()

pop_front() and print()

Release Lock

y

|

Release Lock

Wait for Producer's Signal

|

Acquire Lock

22



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Multiple Consumers Solution

Consumer Thread Start

\ 4

Acquire Lock

Predicate I,:> Vector Length>0? 4

True

A

False

pthread_cond_wait()

Release Lock

|

Wait for Producer's Signal

|

Acquire Lock

pop_front() and print()

}

Release Lock

23




L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

University of Pennsylvania

Spurious Wakeups

» It's possible that when a thread wakes up due to pthread cond_signal() or
pthread_cond_broadcast(), that the condition it originally waited for is not

satisfied at the time of wakeup

% This is known as a "spurious wakeup," and it creates a race condition

O If you have two threads that received the broadcast signal, one thread "wins" and the
other experiences the spurious wakeup

% This is why we have to check the predicate condition after
pthread cond_wait() returns

24



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Lecture Outline

+ Producer/Consumer

» Condition Variables

+ Parallel Analysis & Amdahl's Law
+» Parallel Algorithms

25



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Why Would We Write Multithreaded Code?

+» Make the program run faster
+» Handle multiple tasks at the same time
%~ That's it.

26



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Why Wouldn't We Want to Write Multithreaded Code?

» Guaranteed complexity

O Takes longer to develop than single-thread code
O Difficult to read and maintain

» May not give us the speedup we desire
o Speedup could be a negligible difference (or sometimes slower!)

O Cost benefit analysis: development time versus running time

+ Especially not worth it when:

O Functions are fast (light computation)
o Data structures are not big

27



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Limitations of Parallelization

« Hardware limits:
O Number of hardware threads
O Number of cores

%+ Memory layout may be bad -> frequent cache misses
o Runtime more dependent on I/O than CPU

+» Thread overhead contributes to the percentage of sequential code
O More sequential code runtime = less time spent running parallel code

Good Practice: make it work first, figure out optimizations later

28



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Amdahl's Law

+» How much speedup if we optimize a portion of the code?

1
P
(1-P) + -+

% Speedup =

O P = percent of runtime spent on parallelized code
O N = number of threads
O If speedup = 2, then the parallelized version of the code is 2x faster than the original code

29



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Amdahl's Law

+» Total runtime of program=1
+» Total runtime of program = Parallel + Sequential =P + (1 — P)

% On a single thread: Speedup=1/((1-0)+0/1)=1

30



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

How Fast?

+» How much speedup will we experience when we use

O 4 threads on 50% parallelized code? 1.6 times
© 1,000,000 threads on 50% parallelized code? 1.999998 times

31



University of Pennsylvania L17: Cond & Parallel Analysis

How Fast?

+» How much speedup will we experience when we use
O 4 threads on 50% parallelized code? 1.6 times
© 1,000,000 threads on 50% parallelized code? 1.999998 times
O 4 threads on 90% parallelized code? 3.1 times
© 1,000,000 threads on 90% parallelized code? 9.9999 times

CIS 4480/5480, Summer 2025

32



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Amdahl's Limit

1
P
(1-P) + =+

+» Recall: Speedup =

+» As the number of threads (N) goes up, P/N approaches O

+» Then, speedup becomes dependent on the percentage of sequential execution

+» Impossible to have 100% parallelized code

33



University of Pennsylvania L17: Cond & Parallel Analysis

Lecture Outline

+ Producer/Consumer
» Condition Variables
+» Parallel Analysis & Amdahl's Law
+ Parallel Algorithms

CIS 4480/5480, Summer 2025

34



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Parallel Algorithms

+» One interesting applications of threads is for faster algorithms

+» Common Example: Merge sort

35



University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondindex

Output array




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondindex

Output array 1




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondindex

Output array 1 2




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondindex

Output array 1 2 3




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondindex

Output array 1 2 3 4




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 8
firstindex secondindex

Output array 1 2 3 4 5




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 3

| I

firstindex secondindex

Output array 1 2 3 4 5 6




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

1 3 5 6 2 4 7 3

| I

firstindex secondindex

Output array 1 2 3 4 5 6 7




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
% Itis quicker to merge two sorted arrays than sort an unsorted array

® Consider the two sorted arrays:

| I

firstindex secondindex

Output array 1 2 3 4 5 6 7 8




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: High Level Example

20 10 15 54 55 11 78 14




University of Pennsylvania

CIS 4480/5480, Summer 2025

L17: Cond & Parallel Analysis

Merge Sort: High Level Example

20

10

15

54

55

11

78

14

20

10

15

54

55

11

78

14




University of Pennsylvania

L17: Cond & Parallel Analysis

Merge Sort: High Level Example

20 10 15 54 55 11 78 14
20 10 15 54 55 11 78 14
—_—
20 10 15 54 55 11 78

14

CIS 4480/5480, Summer 2025




University of Pennsylvania

L17: Cond & Parallel Analysis

Merge Sort: High Level Example

20 10 15 54 55 11 78 14
20 10 15 54 55 11 78 14
_ —
20 10 15 54 55 11 78 14
= ~N = N = -~ = ™~
20 10 15 54 55 11 78 14

CIS 4480/5480, Summer 2025




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
. —

20 10 15 54 55 11 78 14
= ~N = N = -~ = ~
20 10 15 54 55 11 78 14

N 4 N P4 N P4 N N4




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
_ —
20 10 15 54 55 11 78 14
= ~N = N = -~ = ~
20 10 15 54 55 11 78 14
N L N 7/ N Ve N\ 4
10 20 15 54 11 55 14 78
\ \

10 15 20 54 11 14 55 78




University of Pennsylvania L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
_ =
20 10 15 54 55 11 78 14
— ~ = S = ™S = ~
20 10 15 54 55 11 78 14
N L N 7/ N\ N4 N V4
10 20 15 54 11 55 14 78
\ \
10 15 20 54 11 14 55 78
‘/”//'

10 11 14 15 20 54 55 78




L17: Cond & Parallel Analysis CIS 4480/5480, Summer 2025

University of Pennsylvania

Merge Sort Algorithmic Analysis

+» Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

(void merge sort(int[] arr, int lo, int hi) { )
// lo high start at 0 and arr.length respectively
int mid = (lo + hi) / 2;

// sort the bottom half

merge sort (arr, lo, mid);
// sort the upper half

merge sort (arr, mid, hi);

// combine the upper and lower half into one sorted
// array containing all eles
merge (arr[lo : mid], arr[mid : hi]);

} J

.

+ We recurse log,(N) times, each recursive “layer” does O(N) work

52



University of Pennsylvania

L17: Cond & Parallel Analysis

Merge Sort Algorithmic Analysis

+» We can use threads to speed this up:

L

(void merge sort(int[] arr, int lo, int hi) {

// 1o high start at 0 and arr.length respectively
int mid = (lo + hi) / 2;

// sort bottom half in parallel
pthread create (merge sort(arr, lo, mid));
merge sort(arr, mid, hi); // sort the upper half

pthread join(); // join the thread that did bottom half

// combine the upper and lower half into one sorted
// array containing all eles
merge (arr[lo : mid], arr[mid : hi]);

" Now we are sorting both halves of the array in parallel!

CIS 4480/5480, Summer 2025

53



University of Pennsylvania

@ Poll Everywhere

L17: Cond & Parallel Analysis

+» We can use threads to speed this up:

L

(void merge sort(int[] arr, int lo, int hi) {

// 1o high start at 0 and arr.length respectively
int mid = (lo + hi) / 2;

// sort bottom half in parallel
pthread create (merge sort(arr, lo, mid));
merge sort(arr, mid, hi); // sort the upper half

pthread join(); // join the thread that did bottom half

// combine the upper and lower half into one sorted
// array containing all eles
merge (arr[lo : mid], arr[mid : hi]);

" Now we are sorting both halves of the array in parallel!

= How long does this take to run?
" How much work is being done?

CIS 4480/5480, Summer 2025

pollev.com/tqm

54



University of Pennsylvania L17: Cond & Parallel Analysis

CIS 4480/5480, Summer 2025

Will t test thi
Parallel Algos: 1 nOTEEStyoron this

+ We can define T(n) to be the running time of our algorithm

» We can split up our work between two parts, the part done sequentially, and
the part done in parallel

" T(n) = sequential_part + parallel_part
= T(n)=0(n) merging +T(n/2) sort half the array
- This is a recursive definition

- |f we start recurring...
= T(n) =0(n) + O(n/2) + T(n/4)
" T(n)=0(n) + O(n/2) + O(n/4) + T(n/8)

55



University of Pennsylvania L17: Cond & Parallel Analysis

CIS 4480/5480, Summer 2025

Will not test you on this

Parallel Algos:

+» If we start recurring...
= T(n)=0(n) + O(n/2) + T(n/4)
® T(n)=0(n) + O(n/2) + O(n/4) + T(n/8)

= Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

% This approximates to T(n) =~2 * O(n) = O(n)

" This parallel merge sort is O(n), but there are further optimizations that can be done to
reach ~O(log(n))

+» There is a lot more to parallel algo analysis than just this, | am just giving you a
sneak peek

56



	Default Section
	Slide 1: Concurrency & Parallel Analysis Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Synchronization So Far
	Slide 6: Producer & Consumer Problem
	Slide 7: Producer & Consumer Problem
	Slide 8: Poll: how are you?
	Slide 9: Poll: how are you?
	Slide 10: Poll: how are you?
	Slide 11: Thread Communication: Naïve Solution
	Slide 12: Lecture Outline
	Slide 13: Condition Variables
	Slide 14: pthreads and Condition Variables
	Slide 15: pthreads and Condition Variables
	Slide 16: Condition Variables and the Producer (our example)
	Slide 17: Condition Variables and the Producer(our example)
	Slide 18: Condition Variables and the Consumer (our example)
	Slide 19: Condition Variables: Other Considerations
	Slide 20: Multiple Consumers
	Slide 21: Merge Sort Algorithmic Analysis
	Slide 22: Multiple Consumers – What Happens?
	Slide 23: Multiple Consumers Solution
	Slide 24: Spurious Wakeups
	Slide 25: Lecture Outline
	Slide 26: Why Would We Write Multithreaded Code?
	Slide 27: Why Wouldn't We Want to Write Multithreaded Code?
	Slide 28: Limitations of Parallelization
	Slide 29: Amdahl's Law
	Slide 30: Amdahl's Law
	Slide 31: How Fast?
	Slide 32: How Fast?
	Slide 33: Amdahl's Limit
	Slide 34: Lecture Outline
	Slide 35: Parallel Algorithms 
	Slide 36: Merge Sort: Core Ideas
	Slide 37: Merge Sort: Core Ideas
	Slide 38: Merge Sort: Core Ideas
	Slide 39: Merge Sort: Core Ideas
	Slide 40: Merge Sort: Core Ideas
	Slide 41: Merge Sort: Core Ideas
	Slide 42: Merge Sort: Core Ideas
	Slide 43: Merge Sort: Core Ideas
	Slide 44: Merge Sort: Core Ideas
	Slide 45: Merge Sort: High Level Example
	Slide 46: Merge Sort: High Level Example
	Slide 47: Merge Sort: High Level Example
	Slide 48: Merge Sort: High Level Example
	Slide 49: Merge Sort: High Level Example
	Slide 50: Merge Sort: High Level Example
	Slide 51: Merge Sort: High Level Example
	Slide 52: Merge Sort Algorithmic Analysis
	Slide 53: Merge Sort Algorithmic Analysis
	Slide 54: Merge Sort Algorithmic Analysis
	Slide 55: Parallel Algos:
	Slide 56: Parallel Algos:


