
CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Introduction to Virtual Memory
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Sid Sannapareddy Maya Huizar

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Lecture Outline

❖ Problems with Old Memory Model

❖ Virtual Memory High Level

❖ Address Translation

2

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

❖ What does this print for x at all three points?

❖ How does the value of ptr change?

3

pollev.com/cis5480

fork_addr.c

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

❖ What does this print for x at all three points?

❖ How does the value of ptr change?

4

pollev.com/cis5480

The value of ptr stays constant showing that the virtual
address is identical

for both the parent and child!

fork_addr.c

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Review: Processes

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

5

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course (now!))
▪ Register values for non-executing processes saved in memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Memory As We Know It

8

CPU

0:

1:

2:

3:

4:

5:

...

data

❖ The CPU directly uses an address to access a location in memory

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 1: How does everything fit?

On a 64-bit machine, there are ~264 Addressable bytes,
which is: 18,446,744,073,709,551,616 Bytes (1.844 x 1019)

9

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(About to scale; physical memory is smaller than the
period at the end of the sentence compared to the

virtual address space.)

This is just one address space, consider multiple processes…

.

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

❖ What is stopping process B
from accessing A’s memory?

Process A
using

Process A
using

Process B
using

Process B
using

Process B
using

Process A

Process B

‘Address Space’

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 3: How do we segment things

❖ A process’ address space contains many
different “segments” that have specific
functionality.

❖ Problem: How do we keep track of the
location and permissions (Read/Write) each
segment may have?

▪ (e.g., that Read-Only data can’t be written)

The real question is who is keeping track of this?
12

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 3: How do we segment things?

13

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

POV: You’re the operating systemPOV: You’re a process

Note: some mappings are missing,
 not enough space.

“Translating”

Physical Memory (RAM)

…
.

…
.

…
.

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Lecture Outline

❖ Problems with Old Memory Model

❖ Virtual Memory High Level

❖ Address Translation

14

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

This Is Not What Happens

❖ The CPU directly uses an address to access a location in memory

15

CPU

0:

1:

2:

3:

4:

5:

...

data

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Indirection

❖ "Any problem in computer science can be solved by adding another level of
indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a name, reference or
container instead of the value itself. A flexible mapping between a name and a
thing allows chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add a level of indirection

16

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical memory, just the
ones that are currently running

❖ For the process’ that are currently running: we don’t need all their data to be
in physical memory, just the parts that are currently being used

❖ Data that isn’t currently stored in physical memory, can be stored elsewhere
(disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

17

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

18

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

Pages are of fixed size ~4KB
4KB -> (4 * 1024 = 4096 bytes.)

Pages in physical memory
are called “Page frames”

A page may not have an
accompanying page frame until the
page is used

(what the process thinks it has)

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that can be theoretically
be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is physically available on
the computer

❖ Virtual Memory: An abstraction technique for making memory look larger than
it is and hides many details from the programs.

19

Sometimes called “virtual memory” or
the “virtual address space”

IT MAY OR MAY NOT
EXIST ON HARDWARE
(like if that memory is

never used)

Physical memory holds a subset of the
addressable memory being used

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual addresses are
translated into them by the MMU

20

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address
(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

THIS SLIDE IS TO THE WHOLE IDEA

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical addresses via a page table.

❖ There is one page table per processes, managed by the MMU

21

More details about
translation later

Virtual page # Valid Physical Page Number

0 0 null //page hasn’t been used yet

1 1 0

2 1 1

3 0 disk

Valid determines if the page is in
physical memory

If a page is on disk,
MMU will fetch it

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

User code Kernel code

Exception: page fault
Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

Access a
virtual page
not in RAM

Page Fault Exception

❖ An Exception is a transfer of control to the OS kernel in response to some
synchronous event (directly caused by what was just executed)

❖ In this case, writing to a memory location that is not in physical memory
currently

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical memory.

❖ If physical memory is full and we need to load in a page, then how do we
choose a page in physical memory to store on disk in the swap file

❖ If we need to load in a page from disk, how do we decide which page in
physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to disk. It takes a while to
go to disk.

23

More details about page replacement later

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in page 3?

24

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/cis5480

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in page 3?

25

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

The MMU accesses
the corresponding
frame (frame 2)

pollev.com/cis5480

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical memory is full?

26

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/cis5480

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical memory is full?

27

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

We get a page fault,
the OS evicts a page
from a frame, loads in
new page into that frame

pollev.com/cis5480

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Lecture Outline

❖ Problems with old memory model

❖ Virtual Memory High Level

❖ Address Translation

28

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Aside: Bits

❖ We represent data on the computer in binary representation (base 2)

❖ A bit is a single “digit” in a binary representation.

❖ A bit is either a 0 or a 1

❖ In decimal -> 243

❖ In binary -> 0b11110011

29

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Hexadecimal

❖ Base 16 representation of numbers

❖ Allows us to represent binary with
fewer characters

▪ 0b11110011 == 0xF3
 ^ binary ^ hex

30

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Pages & Frames Details

❖ A page is typically 4 KiB -> 212 -> 4096 bytes

❖ If physical memory is 32 KiB, how many page frames are there?

❖ If addressable memory for a single process consists of 64 KiB bytes, how many
pages are there for one process?

❖ If there is one page table per process, how many entries should there be in a
single page table?

31

A. 5 B. 4 C. 32 D. 8 E. We’re lost…

A. 64 B. 16 C. 20 D. 6 E. We’re lost…

A. 6 B. 8 C. 16 D. 5 E. None of These…

pollev.com/cis5480

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Pages & Frames Details

A. 5 B. 4 C. 32 D. 8 E. We’re lost…

A. 64 B. 16 C. 20 D. 6 E. We’re lost…

A. 6 B. 8 C. 16 D. 5 E. None of These

❖ A page is typically 4 KiB -> 212 -> 4096 bytes

❖ If physical memory is 32 KiB, how many page frames are there?

❖ If addressable memory for a single process consists of 64 KiB bytes, how many
pages are there for one process?

❖ If there is one page table per process, how many entries should there be in a
single page table?

32 KiB / 4 KiB = 8 frames

64 KiB / 4 KiB = 16 pages

One entry per page

pollev.com/cis5480

32

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Addresses

❖ Virtual Address:

▪ Used to refer to a location in a virtual address space.

▪ Generated by the CPU and used by our programs

❖ Physical Address

▪ Refers to a location on physical memory

▪ Virtual addresses are converted to physical addresses

33

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Offset

❖ This idea of Virtual Memory abstracts things on the level of Pages

▪ (4096 bytes == 212 bytes)

❖ On almost every machine, memory is byte-addressable meaning that each
byte in memory has its own address

❖ How many distinct addresses can correspond to the same page?

❖ At a minimum, how many bits are dedicated to calculating the location (offset)
of an address within a page?

34

4096 addresses to a single page

12 bits

'00’64 bits:

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

One way to read() 𝑛 bytes

35

pollev.com/cis5480

❖ If there are 16 pages (virtual), how many bits
would you need to represent the number of
pages?

❖ If there are 8 pages frames (physical), how
many bits would we need to represent the
number of page frames?

A. 4 2

B. 4 3

C. 3 3

D. 5 3

E. We’re lost…

Page bits Frame bits

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

One way to read() 𝑛 bytes

36

pollev.com/cis5480

❖ If there are 16 pages (virtual), how many bits
would you need to represent the number of
pages?

❖ If there are 8 pages frames (physical), how
many bits would we need to represent the
number of page frames?

A. 4 2

B. 4 3

C. 3 3

D. 5 3

E. We’re lost…

Page bits Frame bits

num_bits = log2(16) = 4
or
16 = 24, so 4

num_bits = log2(8) = 3
or
8 = 23, so 3

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

High Level: Steps For Translation

❖ Derive the virtual page number from a virtual address

❖ Look up the virtual page number in the page table

▪ Handle the case where the virtual page doesn’t correspond to a physical page frame

❖ Construct the physical address

37

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ The virtual page number determines which page we want to access

❖ The page offset determines which location within a page we want to access.

▪ Remember that a page is many bytes (~4KiB -> 4096 bytes)

38

Virtual Page Number Page Offset

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Virtual Address High Level View

❖ High level view:

▪ Each page starts at a multiple of 4096 (0X1000)

▪ If we take an address and add 4096
(0x1000) we get the same offset
but into the next page

39

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x0595

0x1595

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ Example address: 0x1234

▪ What is the page number?

▪ What is the offset?

▪ Reminder: there are 16 virtual pages, and a page is 4096 bytes

40

Virtual Page Number Page Offset

pollev.com/cis5480

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Virtual Page Number

❖ A virtual address is composed of two parts relevant for translating:

▪ Virtual Page Number length = bits to represent number of pages

▪ Page offset length = bits to represent number of bytes in a page

❖ Example address: 0x1234

▪ What is the page number?

▪ What is the offset?

▪ Reminder: there are 16 virtual pages, and a page is 4096 bytes

41

0001 0010 0011 0100

0001 -> 0x1

0010 0011 0100 -> 0x234

pollev.com/cis5480

Virtual Page Number Page Offset

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Lookup & Combining

❖ Once we have the page number, we can look up in our page table to find the
corresponding physical page number.

▪ For now, we will assume there is an associate page frame

❖ With the physical page number, combine it with the page offset to get the
physical address

▪ Since we only need 3 bits to represent the physical page number, we only need 15 bits for
the address (as opposed to 16).

▪ In our example, with 0x1234, our physical address is 0x5234

42

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x5

… … …

Physical Page Number Page Offset

Translation
Done!

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Faults

❖ What if we accessed a page whose page frame was not in physical memory?

❖ In this example, Virtual page 0x3

43

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Faults

❖ In this example, Virtual page 0x3, whose frame is on disk (page 0x3 handled
before, but was evicted at some point)

▪ MMU fetches the page from disk

▪ Evicts an old page from physical memory if necessary

• Uses LRU or some page replacement algorithm

• Writes the contents of the evicted page back to disk

▪ Store the previously fetched page to physical memory
44

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIS4480, Summer 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Faults

❖ In this example, Virtual page 0x0, which has never been accessed before

▪ Evict an old page if necessary (A page that isn’t needed)

▪ Claim an empty frame and use it as the frame for our virtual page

45

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

	Default Section
	Slide 1: Introduction to Virtual Memory Computer Operating Systems, Summer 2025
	Slide 2: Lecture Outline
	Slide 3: Poll: how are you?
	Slide 4: Poll: how are you?
	Slide 5: Review: Processes
	Slide 6: Multiprocessing: The Illusion
	Slide 7: Multiprocessing: The (Traditional) Reality
	Slide 8: Memory As We Know It
	Slide 9: Problem 1: How does everything fit?
	Slide 10: Problem 2: Sharing Memory
	Slide 11: Problem 2: Sharing Memory
	Slide 12: Problem 3: How do we segment things
	Slide 13: Problem 3: How do we segment things?
	Slide 14: Lecture Outline
	Slide 15: This Is Not What Happens
	Slide 16: Indirection
	Slide 17: Idea:
	Slide 18: Pages
	Slide 19: Definitions
	Slide 20: Virtual Address Translation
	Slide 21: Page Tables
	Slide 22: Page Fault Exception
	Slide 23: Problem: Paging Replacement
	Slide 24: Paging
	Slide 25: Paging
	Slide 26: Paging
	Slide 27: Paging
	Slide 28: Lecture Outline
	Slide 29: Aside: Bits
	Slide 30: Hexadecimal
	Slide 31: Pages & Frames Details
	Slide 32: Pages & Frames Details
	Slide 33: Addresses
	Slide 34: Page Offset
	Slide 35: One way to read() n bytes
	Slide 36: One way to read() n bytes
	Slide 37: High Level: Steps For Translation
	Slide 38: Address Translation: Virtual Page Number
	Slide 39: Virtual Address High Level View
	Slide 40: Address Translation: Virtual Page Number
	Slide 41: Address Translation: Virtual Page Number
	Slide 42: Address Translation: Lookup & Combining
	Slide 43: Page Faults
	Slide 44: Page Faults
	Slide 45: Page Faults

