
CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Memory and Page Tables
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Sid Sannapareddy Maya Huizar

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Logistics

❖ Meet with your TAs by the EOD Friday to present Milestone 1!

▪ Milestone 1 is not the end of the world – communicate with us if anything comes up.

❖ Check-In Released Wednesday @ 1:30 PM, Due Monday @ 12 PM

4

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

5

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Direct Addressing

❖ The CPU directly uses an address to access a location in memory

▪ Creates several different issues….

6

CPU

data

Virtual address
(0x16f5e33e8)

0x16f5e33ea

0x16f5e33ea

0x16f5e33e9

0x16f5e33e8

0x16f5e33e7

0x16f5e33e6

...

0x000000001

0x000000000

data

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Memory: Translation

❖ Programs don’t know about physical addresses; virtual addresses are
translated into them by the MMU

7

CPU

0x3eb

0x3ea:

0x3e9:

0x3e8:

0x3e7

0x3e6
...

0xffe

0xfff

Virtual address
(0x16f5e33e8)

MMU

Memory
Management
Unit

Page: 0x00f5e3

data

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Memory: Translation

❖ Programs don’t know about physical addresses; virtual addresses are
translated into them by the MMU

8

CPU

0x3eb

0x3ea:

0x3e9:

0x3e8:

0x3e7

0x3e6
...

0xffe

0xfff

Virtual address
(0x16f5e33e8)

data

MMU

Memory
Management
Unit

Page: 0x00f5e3

The Virtual Address is
manipulated to create the

Physical Address.

Note: This is a simple translation scheme.

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Pages and Physical Page Frames
❖ Memory is divided into fixed-size units called pages

9

Virtual
Address Space

Physical Memory disk

A page doesn’t need a page frame if it is unused

Virtual Page Page Frame

Unmapped Pages

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Pages and Physical Page Frames
❖ Memory is divided into fixed-size units called pages

10

Virtual
Address Space

Physical Memory disk

A page doesn’t need a page frame if it is unused

Virtual Page Page Frame

Unmapped Pages

Page X

If we need page X, we
need to evict a page

from memory!

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Pages and Physical Page Frames
❖ Memory is divided into fixed-size units called pages

11

Virtual
Address Space

Physical Memory disk

A page doesn’t need a page frame if it is unused

Virtual Page Page Frame

Unmapped Pages

Page X

If we need page X, we
need to evict a page

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Pages and Physical Page Frames
❖ Memory is divided into fixed-size units called pages

12

Virtual
Address Space

Physical Memory disk

A page doesn’t need a page frame if it is unused

Virtual Page Page Frame

Unmapped Pages

Page X

If we need page X, we
need to evict a page

from memory!

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Virtual Pages and Physical Page Frames
❖ Memory is divided into fixed-size units called pages

13

Virtual
Address Space

Physical Memory disk

Only pages with content
are moved to disk (swap file).

Why would you write
empty pages to disk?

Virtual Page Page Frame

Page X

Writing a Page to Disk
is an expensive task

If the green process was allocated the page but never wrote to it,
 do we still need to write the page to disk?

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Tables

❖ Virtual addresses are converted into physical addresses via a page table.

❖ Each process needs its own mapping so there is a page table per process

14

Virtual page # Valid Physical Page Frame

0x00f5e5 0 -----------------------------------

0x00f5e4 1 0x00a1b2

0x00f5e3 1 0x00c3d4

0x00f5e2 0 0x00e5f6

Valid determines if the

page is in physical memory

If a page is on disk,

it will be fetched

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

User code Kernel code

Exception: page fault
Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

dereference
pointer to
memory
that is
mapped but
no page in
memory

Page Fault Exception

❖ An Exception is a transfer of control to the OS kernel in response to some
synchronous event (directly caused by what was just executed)

❖ In this case, writing to a memory location that is not in physical memory
currently

In this example, a
variable that points
to a virtual address
that is mapped (but
not in memory) will
trigger a page fault.

If you want to know what virtual address is an invalid virtual address, 0x0 is a good example.

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Types of Addresses

❖ Virtual Address:

▪ Used to refer to a location in a virtual address space

• Think the typical Stack and Heap diagram.

▪ Used by CPU during pointer arithmetic and used by our programs.

❖ Physical Address

▪ Refers to a location in physical memory

▪ Virtual addresses are converted to physical addresses when we preform accesses to
memory.

16

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Offset

❖ Typically, Pages are 4096 bytes in size (212 bytes).

▪ In the real world, this size is configurable (e.g. 1MB Pages….)

❖ On most modern machines, memory is byte-addressable.

▪ Each individual byte has a unique address.

Questions Worth Pondering

How many different addresses belong to the same page?

(i.e. how many values can we access within a page)

How many bits are needed to specify a location within a page?

(i.e. what’s the lowest number of bits needed to encode an offset)
17

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Physical Memory

❖ High level view:

▪ Each page is aligned by a multiple of 4096 (0X1000)

▪ If we take an address and add 4096 (0x1000) we get the same offset but within the next
page (see below, the red corresponds to the offset, the black with the page.)

18
0x0000 0x1000 0xe000 0xf000

……0x0800 0x1800

Page 0 Page 1 Page 14 Page 15

0xe800 0xf800

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Translating from Virtual to Physical

❖ Virtual Address: Simple Limitations

▪ A portion of the virtual address is used to calculate the physical frame and the value of the
offset. Here’s an example if addresses == sizeof(short)

19
0x0000 0x1000 0xe000 0xf000

……0x0800 0x1800

Page 0 Page 1 Page 14 Page 15

0b0000 0000 0000 0000

Page OffsetPage

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Translating from Virtual to Physical

❖ Increasing the number of pages per process…

20
0x00000 0x01000 0xfe000 0xff000

……

Page 0 Page 1

0b0000 0000 0000 0000 0000

Page OffsetPage

If pages stay the same size, we
don’t change the number of
bits dedicated to the offset.

If we can have more virtual pages
per process, we can dedicate more
bits to those pages.

 Think about how the range of pages changes

Page n-1 Page n

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

POLL PASTE THAT FUCKING SHIT HERE

❖ In the previous example, we worked with a virtual address that dedicated 8 bits to
the page number and 12 bits to the offset within the page.

Let’s place some system limitations

▪ A page is 4096 bytes

▪ There are 128 virtual pages max per process

21

Is 0x81111 a valid virtual address? Why or why not?

pollev.com/cis5480

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

POLL PASTE THAT FUCKING SHIT HERE

❖ In the previous example, we worked with a virtual address that dedicated 8 bits to
the page number and 12 bits to the offset within the page.

Let’s place some system limitations

▪ A page is 4096 bytes

▪ There are 128 virtual pages max per process

❖ 0x111 is a valid offset!

❖ 0x81 represents value 129 (this would be page 130…)

22

Is 0x81111 a valid virtual address? Why or why not?

 Remember: Just because you have n bits doesn't mean all 2ⁿ possible values
correspond to valid page numbers (or more precisely, to valid page table entries).

pollev.com/cis5480

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Address Translation: Lookup & Combining

❖ The extracted “page number” is actually used as an index into a table to
look up the corresponding physical page frame (if it exists..)

23

Virtual page # Valid Physical Page Number

… 0 null

0x7E 0 0xFF

0x7F 1 0xF0

Virtual Address: 0b0111 1111 0000 0000 0001

Page OffsetPage Index

Physical Address: 0b1111 0000 0000 0000 0001

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

24

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

MMU + TLB
❖ So, does the MMU access the page table for every memory access?

▪ No: Looking for values in the table is not as simple as it seems. A dedicated cache makes
lookups faster (TLB)

25

CPU

0x3eb

0x3ea:

0x3e9:

0x3e8:

0x3e7

0x3e6
...

0xffe

0xfff

Virtual address
(0x16f5e33e8)

data

TLB

Page: 0x00f5e3

If the TLB is missed, the
MMU will insert the value
in the TLB and then try the

instruction again!
(load/store)

Note: This is a simple translation scheme.

miss

MMU find page table entry

f5e3

Physical Address
(0x00f5e33e8)

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Transition Lookaside Buffer (TLB)

❖ A special piece of hardware memory that is quick to do lookups in. (cache)

❖ Stores recent virtual page to physical frame translations.

▪ Hardware for TLB is special, it can quickly check all entries to see if it contains a mapping.

• Hardware is expensive, so the TLB is kept relatively small usually (256 entries or so...)

❖ TLB prevents MMU from having to read/walk the page table on each
translation to find the mappings.

26

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

This Example with the TLB

❖ If this mapping exists within the TLB, this is not performed!

27

Virtual page # Valid Physical Page Number

… 0 null

0x7E 0 0xFF

0x7F 1 0xF0

Virtual Address: 0b0111 1111 0000 0000 0001

Page OffsetPage Index

Physical Address: 0b1111 0000 0000 0000 0001

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

This Example with the TLB

❖ If this mapping exists within the TLB, this is not performed!

28

Virtual Address: 0b0111 1111 0000 0000 0001

Physical Address: 0b1111 0000 0000 0000 0001

TLBIt starts to look more like this.

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB Locality

❖ Is limited in the number of page table entries it can cache

▪ Dramatically smaller than you expect.

❖ TLB takes advantage of temporal locality to decide which pages should be
stored inside of it

▪ Pages that are accessed more often are more likely to be accessed soon in the future

• The things you need more often you probably keep on your desk and closer to you…when’s
there’s no more space you choose something to evict…or sometimes you just throw everything
off your desk (The TLB’s equivalent would be called a TLB Flush)

29

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

MMU + TLB
❖ So, does the MMU access the page table for every memory access?

▪ No: Looking for values in the table is not as simple as it seems. A dedicated cache makes
lookups faster (TLB)

30

CPU

0x3eb

0x3ea:

0x3e9:

0x3e8:

0x3e7

0x3e6
...

0xffe

0xfff

Virtual address
(0x16f5e33e8)

data

TLB

Page: 0x00f5e3

If the TLB is missed, the
MMU will insert the value in

the TLB and then try the
instruction again!

(load/store)

The address must be
resolved by the TLB!

Note: This is a simple translation scheme.

miss

MMU find page table entry

f5e3

Physical Address
(0x00f5e33e8)

Looks at the
page tables

Finds the mappings

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ Entries in the TLB need to store:

▪ The virtual page -> physical frame mapping

▪ Dirty & Permission bits

❖ TLB Entries need to be kept n’sync with the page table

▪ If a TLB entry is updated, the page table must be synced to have the updated dirty bit
value

▪ If a page is evicted from the page table, but is in the TLB, then that entry must be removed
from the TLB (If not, it will access invalid memory because it will resolve the address)

❖ To maintain process isolation, one of two things

▪ When we switch executing processes, the TLB is cleared

▪ TLB entries also contain a PID tag to enforce isolation
31

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ To maintain process isolation, one of two things

▪ When we switch executing processes, the TLB is cleared

▪ TLB entries also contain a PID tag to enforce isolation

32

CPU

0x3eb

0x3ea:

0x3e9:

0x3e8:

0x3e7

0x3e6

...

0xffe

0xfff

Virtual address
(0x16f5e33e8)

data

TLB

Process 1

Page: 0x00f5e3

The TLB is full of mappings for
Process 1

And is honestly doing a great job
mapping everything!

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ To maintain process isolation, one of two things

▪ When we switch executing processes, the TLB is cleared

▪ TLB entries also contain a PID tag to enforce isolation

33

CPU

0x3eb

0x3ea:

0x3e9:

0x3e8:

0x3e7

0x3e6

...

0xffe

0xfff

Virtual address
(0x16f5e33e8)

data

TLB

Page: 0x00f5e3

So, when switching from one process to another,
you might need to flush all the entries in the TLB

Process 2

The TLB is full of the old mappings!

If Process 2 sends the same VA, then
it’ll get data belonging to another
process!

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ To maintain process isolation, one of two things

▪ When we switch executing processes, the TLB is cleared

▪ TLB entries also contain a PID tag to enforce isolation

34

CPU

0x434

0x433:

0x432:

0x431:

0x430

0x42f

...

0x001

0x000

Virtual address
(0x343123431)

data

TLB

Page: 0x00XXXX

Process 2

After flushing all
entries in the TLB,
the system must
begin repopulating
it with the correct
entries for process
2 from the page
table.

miss

MMU find page table entry

XXXX

Looks at the
page tables

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ Entries in the TLB need to store:

▪ The virtual page -> physical frame mapping

▪ Dirty & Permission bits

❖ TLB Entries need to be kept n’sync with the page table

▪ If a TLB entry is updated, the page table must be synced to have the updated dirty bit
value

▪ If a page is evicted from the page table, but is in the TLB, then that entry must be removed
from the TLB (If not, it will access invalid memory because it will resolve the address)

❖ To maintain process isolation, one of two things

▪ When we switch executing processes, the TLB is cleared

▪ TLB entries also contain a PID tag to enforce isolation
35

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

TLB: More Details

❖ Like Caches, CPU’s usually have more than 1 TLB.

❖ A Level 1 TLB

▪ Faster (hardware can check all entries in parallel)

▪ Smaller ~64 or 128 entries

▪ Usually (nowadays) two Level 1 TLBs

• One for data

• One for instructions

❖ A Level 2 TLB

▪ Faster than looking up in a Page Table
but slower than a level 1 TLB lookup

▪ ~512 entries

▪ Usually contains addresses for both instructions & data.
36

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level & Address Translation Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

37

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Previous View of a page table

❖ One page table per process

❖ Is just a big array of page table entries

❖ One entry per page

▪ on a modern 64-bit machine, that is 252 (4,503,599,627,370,496) entries

38

Virtual page # Valid Physical Page Frame

0 0 ---- //page hasn’t been used yet

1 1 0

2 1 1

3 0 1

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Table Entry: Valid Bit & Reference Bit

❖ Valid:

▪ 1 bit, True/False whether the page is in physical memory

▪ Iff bit is 0, then it is not present in memory and a page fault occurs

❖ Reference:

▪ Used by the MMU to determine eviction; helps measure the age of a page

▪ More on this next lecture!

39

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Table Entry: Dirty & Permission Bits

❖ Dirty:

▪ 1 bit whether the page has been written to

▪ If page is dirty and needs to be evicted from physical memory,
then the data must be written back to the swap file

❖ Permissions:

▪ At least three bits to determine permissions to that memory

▪ Can it be Read, Written or eXecuted?

40

Virtual page # Valid Frame # dirty permissions

0 0 ----

1 1 0 1 R/W

2 1 1 0 R/X

3 0 1

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Table Entry

❖ A page table entry stores more than a valid bit and the physical page number
(and more than what I have here)

▪ Valid: True/False whether the page is in physical memory

▪ Frame #: the location of the page in physical memory iff it is in it

▪ Dirty: whether the page was written to or not

▪ Permissions: whether the page can be used for Reading, Writing or eXecuting.

▪ And much more…

41

Virtual page # Valid Frame # dirty permissions

0 0 ----

1 1 0 1 R/W

2 1 1 0 R/X

3 0 1

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

A Big Array

❖ We can view the page table as being an array that we can index into using the
Virtual page number

❖ With 252 virtual pages per process, that is 252 entries per page table… It would
help to keep page table entries small

❖ Question: What could we remove to make the entries smaller?

42

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

Ask Yourself

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Optimization: Remove Virtual Page #

❖ The Virtual page # can be removed since it is implicitly the index into our Page
Table

43

Virtual page # Valid Frame # Reference dirty permissions

0 0 ----

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Page Tables in Reality

❖ Page Table Entries are simply numerical values, where specific bits encode
information such as the physical address, access permissions, etc…

❖ Frame # – 8 Bits

❖ Valid – 1 bit

❖ Reference – 2 bits

❖ Dirty – 1 bit

❖ Permissions – 4 bits

44

'0b0000000000000000'Table Address
(Where the table starts)

'0b0000000000000000'
'0b0000000000000000'

If you want to know: Table Locations are stored in specialized registers. I’m not going to talk about it though.

Index 0

Index 1

Index 2

…
'0b0000000000000000' Index N

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Arm v7 Page Table Entry
❖ Page Table Entry

▪ Arm calls them “Descriptors” (not sure why)

❖ Armv7 is a 32 bit architecture…

❖ “Small Page Base Address” is a 4KB page

▪ Bits 31–12, indicated the Physical Frame Number

❖ nG (Not Global)

▪ 2 bits

▪ Is this memory shared by everyone? Process Specific?

❖ AP (Access Permisions)

▪ 2 bits

▪ Read/Write?
45For those interested: this is an example of a second level descriptor, necessary to create 4kb pages in ARMv7.

Executable Page?
Can we execute instructions stored at this frame?
XN = Execute Never; 1 Bit

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Still really big :(

❖ Removing the page number saves us 52 bits from the input, but we still end up
with ~30 bits (4 bytes) per entry

❖ One page table takes up 252 * 4 = 254 bytes 

❖ How can we make this better?

46

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level & Address Translation Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ Inverted Page Tables

47

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Multi Level Page Table: x86 Linux Implementation

❖ On a 64-bit address, we keep the bottom 12 bits for the page offset, and the
upper 52 for the page number.

❖ We can split the page number into 4 groups of 9 bits

48

Page Offset
12 bits

Reserved
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

0000000000000000 000000000 000000000 000000000 000000000 000000000000

Each of these groups of bits are an index into a table.

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Diagram

❖ High level view

49

…

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s (Page Table Entries)

Each Intermediary Table has 512 (29) entries

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address
❖ First index into top level table using the top 9-bit chunk

50

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s

Page Offset
12 bits

Reserved
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

0000000000000000 101001010 100000010 111011010 001101011 000101011011

We already know the location
of the top-level page table—
so we use the G Offset to
index directly into it.

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address

51

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s

❖ First index into top level table using the top 9-bit chunk
Page Offset

12 bits
Reserved

16 bits
G offset

9 bits
U offset

9 bits
M offset

9 bits
PTE offset

9 bits

0000000000000000 101001010 100000010 111011010 001101011 000101011011

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address

52

…

…

…

…

…

…

…

…

…

Top level table

Third tables

Mid level tables PTE’s

❖ First index into top level table using the top 9-bit chunk
Page Offset

12 bits
Reserved

16 bits
G offset

9 bits
U offset

9 bits
M offset

9 bits
PTE offset

9 bits

0000000000000000 101001010 100000010 111011010 001101011 000101011011

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Looking up an address

53

…

…

…

…

…

…

…

…

Frame Number

…

Top level table

Third tables

Mid level tables PTE’s

❖ First index into top level table using the top 9-bit chunk
Page Offset

12 bits
Reserved

16 bits
G offset

9 bits
U offset

9 bits
M offset

9 bits
PTE offset

9 bits

0000000000000000 101001010 100000010 111011010 001101011 000101011011

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Why 9 bits?

❖ Why is each index into a level of the page table 9 bits?

▪ 9 bits = 29 = 512 entries in each Intermediary Table

❖ Each entry is just a pointer to the next level table

▪ A pointer on a 64-bit machine is 8 bytes

▪ A page table entry is also at max 8 bytes

❖ 29 entries * 23 bytes per entry = 212 bytes (size of a page!)

▪ This means each level into the page table itself is the size of the page. Makes maintaining
the page table itself convenient since the page table itself lies in memory.

54

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Analysis

❖ Most of the pages that are theoretically available to a process go unused. Multi
Level Page Tables take advantage of this, most pointers in the table are NULL

▪ A lot less space needed than our first idea of a page table

❖ Lazily allocate page table entries for pages as they are needed

▪ E.g. only allocate them once they are needed

❖ Take advantage of temporal locality: if a particular memory location is
referenced, it is likely that it and nearby memory locations will be accessed
soon

▪ I’ll revisit the idea of locality later

55

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Analysis pt. 2

❖ Take advantage of temporal locality: if a particular memory location is
referenced, it is likely that it and nearby memory locations will be accessed
soon

▪ If pages near each other in memory are accessed, they will in the same nodes in the tree!
Not every page access requires the creation of a mid-level node

▪ I’ll revisit the idea of locality later

❖ What was once just one memory access to lookup page frame is now four
memory accesses 
▪ This can be very expensive time-wise

▪ There is hardware (TLB) that helps a lot with this ☺

56

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Memory Analysis: 4 Level Page Tables

57

Page Offset
12 bits

Reserved
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

0000000000000000 000000000 000000000 000000000 000000000 000000000000

☺

We know there is a single global G Table containing 29 entries.

Each entry in the G table points to the base address of a U Intermediary Table, and
this structure continues down through additional levels.

If every entry at every level is valid, what is the maximum amount of memory that
the page table will occupy?

Poll Yourselves At Home

The total number of entries is 8 * (29 + (29 * 2 9) + (29 * 2 9 * 2 9) + (29 * 2 9 * 2 9 * 2 9))

G Entries

U Entries

M Entries

PTE Entries
Bytes per entry

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Memory Analysis: 4 Level Page Tables

58

Page Offset
12 bits

Reserved
16 bits

G offset
9 bits

U offset
9 bits

M offset
9 bits

PTE offset
9 bits

0000000000000000 000000000 000000000 000000000 000000000 000000000000

☺

We know there is a single global G Table containing 29 entries.

Each entry in the G table points to the base address of a U Intermediary Table, and
this structure continues down through additional levels.

If every entry at every level is valid, what is the maximum amount of memory that
the page table will occupy?

Poll Yourselves At Home

The total number of entries is
~ 550831656960 Bytes = .5 Terabytes

CIS 4480, Summer 2025L20: Virtual Memory & Page TablesUniversity of Pennsylvania

Lecture Outline

❖ High Level & Address Translation Refresher

❖ TLB

❖ Page Table Details

❖ Multi-Level Page Tables

❖ More Next time! ☺

59

	Default Section
	Slide 1: Virtual Memory and Page Tables Computer Operating Systems, Summer 2025
	Slide 4: Logistics
	Slide 5: Lecture Outline
	Slide 6: Direct Addressing
	Slide 7: Virtual Memory: Translation
	Slide 8: Virtual Memory: Translation
	Slide 9: Virtual Pages and Physical Page Frames
	Slide 10: Virtual Pages and Physical Page Frames
	Slide 11: Virtual Pages and Physical Page Frames
	Slide 12: Virtual Pages and Physical Page Frames
	Slide 13: Virtual Pages and Physical Page Frames
	Slide 14: Page Tables
	Slide 15: Page Fault Exception
	Slide 16: Types of Addresses
	Slide 17: Page Offset
	Slide 18: Physical Memory
	Slide 19: Translating from Virtual to Physical
	Slide 20: Translating from Virtual to Physical
	Slide 21: POLL PASTE THAT FUCKING SHIT HERE
	Slide 22: POLL PASTE THAT FUCKING SHIT HERE
	Slide 23: Address Translation: Lookup & Combining
	Slide 24: Lecture Outline
	Slide 25: MMU + TLB
	Slide 26: Transition Lookaside Buffer (TLB)
	Slide 27: This Example with the TLB
	Slide 28: This Example with the TLB
	Slide 29: TLB Locality
	Slide 30: MMU + TLB
	Slide 31: TLB: More Details
	Slide 32: TLB: More Details
	Slide 33: TLB: More Details
	Slide 34: TLB: More Details
	Slide 35: TLB: More Details
	Slide 36: TLB: More Details
	Slide 37: Lecture Outline
	Slide 38: Previous View of a page table
	Slide 39: Page Table Entry: Valid Bit & Reference Bit
	Slide 40: Page Table Entry: Dirty & Permission Bits
	Slide 41: Page Table Entry
	Slide 42: A Big Array
	Slide 43: Optimization: Remove Virtual Page #
	Slide 44: Page Tables in Reality
	Slide 45: Arm v7 Page Table Entry
	Slide 46: Still really big :(
	Slide 47: Lecture Outline
	Slide 48: Multi Level Page Table: x86 Linux Implementation
	Slide 49: Diagram
	Slide 50: Looking up an address
	Slide 51: Looking up an address
	Slide 52: Looking up an address
	Slide 53: Looking up an address
	Slide 54: Why 9 bits?
	Slide 55: Analysis
	Slide 56: Analysis pt. 2
	Slide 57: Memory Analysis: 4 Level Page Tables
	Slide 58: Memory Analysis: 4 Level Page Tables
	Slide 59: Lecture Outline

