
CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Allocation (Start)
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Sid Sannapareddy Maya Huizar

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ Any Questions about PennOS?

2

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ Final Exam; July 31st

▪ Same format as the Midterm!

▪ Last course day is July 23rd

▪ Final Exam Review Thursday, July 24th

❖ PennOS Due Friday, July 25th

❖ Final Grades due August 11th

▪ So even though the course is “over”, there’s still wiggle room at the end.

Administrivia

3

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Administrivia

❖ Some notes:

▪ Reminder, you instead of just doing:

you may need to do:

▪ With the description of setitimer(), it just says that sigalarm is delivered to the
process, not necessarily the calling thread. To make sure siglaram goes to the scheduler,
you may want to make it so that all threads (spthread or otherwise) that aren’t the
scheduler call something like: pthread_sigmask(SIG_BLOCK, SIGALARM)

• Which will block SIGALARM in that thread.

4

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Administrivia

❖ If you are having issues with the scheduler not running you can try running
▪ strace –e 'trace=!all' ./bin/pennos

▪ You may have to install strace: sudo apt install strace

▪ This will print out every time a signal is sent to your pennos

▪ (Usual fix is the pthread_sigmask thing on the previous slide)

5

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Stack & Heap w/ Free-lists

❖ Memory Alignment

❖ Fragmentation

❖ Leaks

6

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Stack & Heap

❖ Hopefully you are familiar with the stack and the heap,

▪ Quick refresher now though

❖ Stack:

▪ Where local variables & information for local functions are stored (return address, etc).

▪ Grows whenever you call a function. pushes a “stack frame” for each function call.

❖ Heap:

▪ Dynamically allocated data stored here. Usually done when data needs to exist beyond the
scope it is allocated in, or the size is not known at compile time

7

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Stack Example:

8

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for main is
created when CPU
starts executing it

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Stack Example:

9

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i;

Stack frame for
sum()

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Stack Example 1:

10

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

sum()’s stack frame
goes away after
sum() returns.

main()’s stack frame
is now top of the stack
and we keep executing
main()

????

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Stack Example:

11

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
printf()

????

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Stack

❖ Grows, but has a static max size
▪ Can find the default size limit with the command ulimit –all

(May be a different command in different shells and/or linux versions. Works in bash on
Ubuntu though)

▪ Can also be found at runtime with getrlimit(3)

❖ Max Size of a stack can be changed
▪ at run time with setrlimit(3)

▪ At compilation time for some systems (not on Linux it seems)

▪ (or at the creation of a thread, more on threads next lecture)

12

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

❖ malloc:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ free:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

13

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ When we allocate data on the heap
we get the guarantee that the data is
contiguous within an allocation

❖ Heap:

Dynamic Memory Example (Naïve)

14

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ When we allocate data on the heap
we get the guarantee that the data is
contiguous within an allocation

❖ Heap:

Dynamic Memory Example (Naïve)

15

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ When we allocate data on the heap
we get the guarantee that the data is
contiguous within an allocation

❖ Heap:

Dynamic Memory Example (Naïve)

16

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ When we allocate data on the heap
we get the guarantee that the data is
contiguous within an allocation

❖ Heap:

Dynamic Memory Example (Naïve)

17

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

How do we know how much to deallocate?

How do we mark the memory as “free”?

When we allocate next, how do we know where we could allocate from?

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Free Lists

❖ One way that malloc can be implemented is by maintaining an implicit list of
the space available and space allocated.

❖ Before each chunk of allocated/free memory, we’ll also have this metadata:

18

// this is simplified

// not what malloc really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list ->

Dynamic Memory Example

19

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header

{

 NULL,

 NULL,

 false,

 1000

}

This diagram is

not to scale

The metadata is at

the beginning of the

chunk of memory

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

20

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 NULL,

 false,

 972

}

malloc

return

value

Free chunks can

be split to

allocate blocks of

specific size

Malloc gets a

pointer to just

after the

metadata

free_list

points to first

free chunk

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

21

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

malloc

return

value

{

 0x…,

 NULL,

 false,

 924

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

22

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 924

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

23

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 false,

 24

}

{

 0x…,

 NULL,

 false,

 924

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

24

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 free(ptr2);

}

header

{

 NULL,

 0x…,

 false,

 1000

}

Once a block has been

freed, we can try to

“coalesce” it with

their neighbors

The first free

couldn’t be coalesced,

only neighbor was

allocated

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Heap

❖ malloc() and free() are not system calls, they are implemented as part
of the C std library
▪ malloc() and free() will sometimes internally invoke system calls to expand the heap

if needed

▪ Instead, these functions just manipulate memory already given to the process, marking
some as free and some as allocated

❖ System calls used by malloc() and free():

▪ brk() and sbrk()

• Used to grow/shrink the data segment of memory

▪ mmap(), munmap()

• creates / or destroys a mapping in virtual address space

25

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Allocation Has a Cost

❖ There is a reason we had “Unnecessary Memory Allocation” in the style guide.

❖ Memory Allocation is not an O(1) operation

❖ It takes time to:

▪ Search for a block size that is big enough

▪ Coalesce / free memory

▪ Grow the heap if needed

▪ In multithreaded applications, locks need to be acquired!

26

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ How many memory allocations occur in each piece of code?

▪ Assume vector resizes will double capacity

▪ std::vector is an arraylist in C++
std::list is a linked list in C++

27

pollev.com/tqm

int main() {
 vector nums {4, 8}; // size and capacity == 2
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

int main() {
 list nums {4, 8};
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ How many memory allocations occur in each piece of code?

▪ Assume vector resizes will double capacity

▪ std::vector is an arraylist in C++
std::list is a linked list in C++

28

pollev.com/tqm

int main() {
 vector nums {4, 8}; // size and capacity == 2
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

int main() {
 list nums {4, 8};
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

3 6

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Minimizing Allocations

❖ As we saw previously, memory allocations require time, sometimes a lot of
time to compute.

❖ If performance is our goal, we should minimize the number of allocations we
make.

❖ This can include

▪ Making references instead of copies

▪ Using functions like vec.reserve()

• In C++

• Java arraylist lets you specify capacity in the constructor.

▪ Using move semantics

29

vector::reserve(size_t new capacity)

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Stack & Heap w/ Free-lists

❖ Memory Alignment

❖ Fragmentation

❖ Leaks

30

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ What do you think sizeof(alloc_info) is on
our 64-bit machines? (how many bytes is it)

❖ Assume size_t is 4 bytes.

31

// this is simplified

// not what malloc really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Alignment

❖ In memory, data isn’t always just crammed together.

❖ Hardware likes it so that if we are dealing with a 4-byte type, then that variable
is stored at an address that is a multiple of 4 bytes.

▪ Same with types that are 8, 2, 1-byte etc.

❖ This isn’t always the case, but our software and hardware tries to make this
the case.

32

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Back to Poll:

❖ How big is this struct?

33

// this is simplified

// not what malloc really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Back to Poll: (Naïve answer)

❖ How big is this struct?

▪ prev

▪ next

▪ allocated

▪ size

34

// this is simplified

// not what malloc really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Back to Poll: (Fragmentation answer)

❖ How big is this struct?

▪ prev

▪ next

▪ allocated

▪ size

35

// this is simplified

// not what malloc really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Fragmentation: Struct Size

❖ C structs will also try to be a multiple of its biggest member.
So in our example, we want to make sure that the struct size is a multiple of 8

❖ Given this struct foo: what is the size of the struct?
What is the optimal size of the struct we could have
if we rearranged the fields and still respected alignment?

36

// this is simplified

// not what malloc really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

struct foo {

 bool allocated;

 uint32_t size;

 bool flag;

 uint16_t bleg;

};

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Stack & Heap w/ Free-lists

❖ Memory Alignment

❖ Fragmentation

❖ Leaks

37

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Fragmentation

❖ Fragmentation: when storage is used inefficiently, which can hurt performance
and ability to allocate things.

Specifically, when there is something that prevents "unused" memory from
otherwise being used

❖ External Fragmentation: when free memory is spread out over small portions
that cannot be coalesced into a bigger block that can be used for allocation

38

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

External Fragmentation Example

39

#include <stdlib.h>

int main() {

 char* ptr = malloc(26*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 ptr = malloc(2*sizeof(char));

 ...

}

header header header

{

 NULL,

 0x…,

 false,

 26

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

External Fragmentation Example

40

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 ptr = malloc(2*sizeof(char));

 ...

}

header header header header

{

 NULL,

 0x…,

 true,

 2

}

{

 0x…,

 0x…,

 false,

 2

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

❖ free_list

External Fragmentation Example

41

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 char* ptr2 = malloc(6*sizeof(int));

 ... // do stuff with ptr

 free(ptr);

 ptr = malloc(2*sizeof(char));

 ...

}

header header header header header

{

 0x…,

 0x…,

 false,

 2

}

{

 0x…,

 0x…,

 false,

 2

}

After some more series of allocations
and frees (not shown), we get this:

Let’s say malloc(4) gets called
(trying to allocate 4 bytes)
what happens?

There are 4 bytes of free space, but they
aren’t next to each other and can’t be
coalesced into something that can be
used. Heap would need to grow to
make space (if possible)

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Internal Fragmentation

❖ Internal Fragmentation: When more space is allocated for something than is
actually used. This fragmentation happens “internally” within an allocated
portion, instead of “external” to one.

❖ What if someone calls malloc(4096 * sizeof(char*)) and only uses the first
char*?

▪ Can be thought of internal fragmentation, not the allocator's fault though (in this use case)

❖ What if we allocate a struct that has empty space to meet alignment
requirements?

❖ Sometimes we call malloc() and more space is allocated than needed.

▪ if we allocate for 7 bytes, 8 may actually be allocated. Computer may want addresses to be
aligned to a multiple of a power of 2

42

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

First Fit

❖ There may be multiple free blocks that can be chosen for allocation.

❖ The allocation policy we used in our examples is First Fit: find the first block of
memory that is big enough

▪ Start at the front of the free list, iterate till we find something big enough

▪ Usually the simplest to implement

43

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Best Fit

❖ Best Fit: another approach where instead you look for the portion of memory
that is the “best” or “tightest” fit

❖ If allocating for 4 bytes of memory, search for the smallest block that is >= 4
bytes.

44

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Worst Fit

❖ Worst Fit: another approach where instead you look for the portion of
memory that is the “worst” fit (opposite of best fit)

❖ If allocating for 4 bytes of memory, search for the largest block that is >= 4
bytes.

45

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ What is the approximate runtime of the algorithms? (e.g. O(N log(N))). What is
the best/worst case?

▪ First Fit

▪ Best Fit

▪ Worst Fit

❖ Lets say we call malloc(4 bytes). Which block is allocated in this example
if we choose:

▪ First Fit

▪ Best fit

▪ Worst fit

free_list

46

header header header header header

size = 8 size = 1024size = 16

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ What is the approximate runtime of the algorithms? (e.g. O(N log(N))). What is
the best/worst case?

▪ First Fit best: O(1), worst: O(n)

▪ Best Fit best: O(n), worst: O(n)

▪ Worst Fit best: O(n), worst: O(n)

❖ Lets say we call malloc(4 bytes). Which block is allocated in this example
if we choose:

▪ First Fit 8 byte chunk

▪ Best fit 8 byte chunk

▪ Worst fit 1024 byte chunk

free_list

47

header header header header header

size = 8 size = 1024size = 16

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

❖ Less small “leftover” fragments, fragments are bigger and easier to reuse

❖ In the previous example, if we allocate for size 6…

header header header header header

size = 1024size = 16
size = 8

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

❖ Less small “leftover” fragments, fragments are bigger and easier to reuse

❖ In the previous example, if we allocate for size 6…

▪ Best fit would allocate the size 8 free chunk leaving a size 2 chunk that is unlikely to be
usable

header header header header header

size = 1024size = 16
size = 8

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ It turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

❖ Less small “leftover” fragments, fragments are bigger and easier to reuse

❖ In the previous example, if we allocate for size 6…

▪ Worst fit would use 1024, splitting it into 6 and 1018. 8 chunk is still usable and 1018 is still
usable.

header header header header header

size = 1024size = 16
size = 8

pollev.com/tqm

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Stack & Heap w/ Free-lists

❖ Memory Alignment

❖ Fragmentation

❖ Leaks

52

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Leaks

❖ How do we feel about them? Good? Bad?

53

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we allocate something, but don’t delete it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d

▪ Is this a problem?

54

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we allocate something, but don’t delete it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d

▪ Is this a problem?

❖ If this happens enough, we run out of heap space and program may slow
down and eventually crash

55

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we allocate something, but don’t delete it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d

▪ Is this a problem?

❖ What if it is a short lived program or we are about to exit the process? Do we
still need to free?

▪ Eh……. The OS will clean up all of memory when our process exits

▪ What if we were about to exit a thread?

• Probably still cleanup, threads share an address space.

56

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we allocate something, but don’t delete it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all references to it

▪ Affects performance, but avoid memory leaks

▪ Java and other “high level” languages

❖ RAII (Resource Acquisition Is Initialization)

▪ C++ and Rust have this, it is VERY GOOD

57

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

RAII

❖ In C++, Rust and other languages we have RAII

▪ Resource Acquisition is Initialization

▪ What this really means is that in addition to a “constructor” for an object there exists a
“destructor” that cleans up the object

▪ The destructor is called for you when the object falls out of scope
The destructor will free the underlying memory the vector allocated!

▪ Can still cause issues, but makes it easier than C’s explicit calls to free()

58

int main() {
 vector nums {4, 8};
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
 // nums.~vector() implicit destructor call
}

int main() {
 if (…) {
 vector nums {4, 8};
 nums.push_back(0);
 // nums.~vector()
 }
}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

Safety C Example

❖ Here is an example in C where is the issue?

59

int main(int argc, char** argv) {

 int* ptr = malloc(sizeof(int));

 assert(ptr != NULL);

 *ptr = 5;

 // do stuff with ptr

 free(ptr);

 printf("%d\n", *ptr);

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

C++ Safety

❖ Here is an example in C++ where is the issue?

60

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> v {3, 4, 5};

 int* first = &v.front();

 cout << *first << endl; // print(*first)

 v.push_back(6);

 cout << v.size() << endl; // print(v.size())

 cout << *first << endl; // print(*first)

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

C++ Safety

❖ Here is an example in C++ where is the issue?

61

#include <iostream>

#include <vector>

using namespace std;

int* foo() {

 vector<int> v {3, 4, 5};

 return &v[0];

}

int main(int argc, char** argv) {

 int* first = foo();

 cout << *first << endl; // print(*first)

}

CIS 4480/5480, Summer 2025L22: Memory AllocationUniversity of Pennsylvania

More Next Time ☺

❖ Next Time

▪ Garbage Collection

▪ Arena Allocators

▪ Slab Allocators

▪ Buddy Allocators

62

	Default Section
	Slide 1: Memory Allocation (Start) Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Lecture Outline
	Slide 7: Stack & Heap
	Slide 8: Stack Example:
	Slide 9: Stack Example:
	Slide 10: Stack Example 1:
	Slide 11: Stack Example:
	Slide 12: Stack
	Slide 13: The Heap
	Slide 14: Dynamic Memory Example (Naïve)
	Slide 15: Dynamic Memory Example (Naïve)
	Slide 16: Dynamic Memory Example (Naïve)
	Slide 17: Dynamic Memory Example (Naïve)
	Slide 18: Free Lists
	Slide 19: Dynamic Memory Example
	Slide 20: Dynamic Memory Example
	Slide 21: Dynamic Memory Example
	Slide 22: Dynamic Memory Example
	Slide 23: Dynamic Memory Example
	Slide 24: Dynamic Memory Example
	Slide 25: Heap
	Slide 26: Memory Allocation Has a Cost
	Slide 27
	Slide 28
	Slide 29: Minimizing Allocations
	Slide 30: Lecture Outline
	Slide 31
	Slide 32: Memory Alignment
	Slide 33: Back to Poll:
	Slide 34: Back to Poll: (Naïve answer)
	Slide 35: Back to Poll: (Fragmentation answer)
	Slide 36: Fragmentation: Struct Size
	Slide 37: Lecture Outline
	Slide 38: Fragmentation
	Slide 39: External Fragmentation Example
	Slide 40: External Fragmentation Example
	Slide 41: External Fragmentation Example
	Slide 42: Internal Fragmentation
	Slide 43: First Fit
	Slide 44: Best Fit
	Slide 45: Worst Fit
	Slide 46: Poll: how are you?
	Slide 47: Poll: how are you?
	Slide 48: Poll: how are you?
	Slide 49: Poll: how are you?
	Slide 50: Poll: how are you?
	Slide 51: Poll: how are you?
	Slide 52: Lecture Outline
	Slide 53: Memory Leaks
	Slide 54: Memory Leaks
	Slide 55: Memory Leaks
	Slide 56: Memory Leaks
	Slide 57: Memory Leaks
	Slide 58: RAII
	Slide 59: Safety C Example
	Slide 60: C++ Safety
	Slide 61: C++ Safety
	Slide 62: More Next Time 

