
CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Memory Allocation (fin)
Computer Operating Systems, Summer 2025

Instructors: Joel Ramirez Travis McGaha

TAs: Ash Fujiyama Sid Sannapareddy Maya Huizar

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ How is PennOS Going? Any Questions about Memory Allocation?

2

pollev.com/tqm

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Administrivia

❖ Final Exam; July 31st

▪ Same format as the Midterm!

▪ Last course day is July 23rd

▪ Final Exam Review Thursday, July 24th

❖ PennOS Due Friday, July 25th

❖ Final Grades due August 11th

▪ So even though the course is “over”, there’s still wiggle room at the end.

3

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Administrivia

❖ Some notes:

▪ DO NOT mmap the entire File System. Only mmap the Allocation Table, the rest of the file
system needs to be handled with lseek/write.

• Do not keep the contents of the file in memory, it should be stored in the file

• If your PennFat is killed with kill -9, your file contents should still be saved in disk

▪ Advice for using gdb to debug

• handle SIGUSR1 noprint nostop

Makes it so that gdb doesn’t report every time SIGUSR1 goes and interrupts you

▪ (more on next slide)

4

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Administrivia

❖ Some notes:

▪ Reminder, you instead of just doing:

you may need to do:

▪ With the description of setitimer(), it just says that sigalarm is delivered to the
process, not necessarily the calling thread. To make sure siglaram goes to the scheduler,
you may want to make it so that all threads (spthread or otherwise) that aren’t the
scheduler call something like: pthread_sigmask(SIG_BLOCK, SIGALARM)

• Which will block SIGALARM in that thread.

5

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Administrivia

❖ If you are having issues with the scheduler not running you can try running
▪ strace –e 'trace=!all' ./bin/pennos

▪ You may have to install strace: sudo apt install strace

▪ This will print out every time a signal is sent to your pennos

▪ (Usual fix is the pthread_sigmask thing on the previous slide)

6

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Garbage collection

❖ Arena Allocation

❖ Buddy Algorithm

❖ Slab/Slub Allocator

7

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we allocate something, but don’t delete it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
delete-d

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all references to it

▪ Affects performance, but avoid memory leaks

▪ Java and other “high level” languages

❖ RAII (Resource Acquisition Is Initialization)

▪ C++ and Rust have this, it is VERY GOOD

8

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Garbage Collection

❖ When memory is automatically deallocated for us, so we do not need to
explicitly free memory

❖ Very common in higher level languages:

▪ Java, C#, Python, Javascript, Ruby, Lisp, Erlang, Racket, Haskell, Scala, Dart, etc.

❖ Big difference between these languages and languages like C / C++ / Rust:

▪ Many of these languages are not run directly on your hardware.

▪ Java (for example) runs on the JVM (Java Virtual Machine) which then runs on your
computer

▪ Garbage collection requires some help from the “runtime” environment” and/or the
compiler to keep track of pointers, memory allocations etc and decide when to free them

9

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Garbage Collection

❖ With the aid of the runtime and compiler we can keep track of all memory
allocation and represent it as a directed graph

▪ Each allocation is a node in the graph

▪ Each pointer is an edge in the graph

▪ If an object contains a pointer to another object we draw an edge from that node to the
other.

10

The Heap

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Garbage Collection

▪ Each allocation is a node in the graph

▪ Each pointer is an edge in the graph

▪ If an object contains a pointer to another object we draw an edge from that node to the
other.

❖ We also keep track of which pointers are held by local variables (pointers that
are not on the heap, but point to the heap). These are “roots”

11

Nodes that are “reachable” from a root are safe
if it can’t be reached from a root, then it is garbage

The HeapThe Stack

Var my_obj

Var other

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Garbage Collection

▪ Each allocation is a node in the graph

▪ Each pointer is an edge in the graph

▪ If an object contains a pointer to another object we draw an edge from that node to the
other.

❖ We also keep track of which pointers are held by local variables (pointers that
are not on the heap, but point to the heap). These are “roots”

12

Nodes that are “reachable” from a root are safe
if it can’t be reached from a root, then it is garbage

The HeapThe Stack

Var my_obj

Var other

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Garbage Collection

▪ Each allocation is a node in the graph

▪ Each pointer is an edge in the graph

▪ If an object contains a pointer to another object we draw an edge from that node to the
other.

❖ We also keep track of which pointers are held by local variables (pointers that
are not on the heap, but point to the heap). These are “roots”

13

Nodes that are “reachable” from a root are safe
if it can’t be reached from a root, then it is garbage

The HeapThe Stack

Var my_obj

Var other

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Garbage Collection

▪ Each allocation is a node in the graph

▪ Each pointer is an edge in the graph

▪ If an object contains a pointer to another object we draw an edge from that node to the
other.

❖ We also keep track of which pointers are held by local variables (pointers that
are not on the heap, but point to the heap). These are “roots”

14

Nodes that are “reachable” from a root are safe
if it can’t be reached from a root, then it is garbage

The HeapThe Stack

Var my_obj

Var other

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Garbage collection

❖ Arena Allocation

❖ Buddy Algorithm

❖ Slab/Slub Allocator

15

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Arena Allocator

❖ In some instances, we want to allocate a lot of items and limit those
allocations to one scope. We call our allocator a “arena allocator”. It allocates
things within the same "arena"/region/pool of the same scope

❖ For example, Consider we start with:

▪ Note that there is a little bit more metadata than just these two pointers

❖ Then we allocate 4 bytes

16

…

1024 bytes

start_ptr

end_ptr

Alloc’d …

1024 bytes

start_ptr

end_ptr

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Arena Allocator: Alloc

❖ For example, Consider we start with:

▪ Note that there is no metadata, just these two pointers

❖ Then we allocate 4 bytes

❖ Then we allocate 16 bytes

17

…

1024 bytes

start_ptr

end_ptr

Alloc’d …

1020 bytes

start_ptr

end_ptr

Alloc’d Alloc’d …start_ptr

end_ptr

1008 bytes

*Alignment could be a thing that affects how we allocate things, but we are leaving that out

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Arena Allocator: Free

❖ Once we are done with our temporaries, we free the all allocations, and we
can then use it again as if “fresh”

▪ Looks the same as when we started!

❖ That is the API

❖ Example usage:

▪ Instead of being scoped to a function, an arena allocator can also be scoped to an “object”
or the lifetime of some “task”

18

…

1024 bytes

start_ptr

end_ptr

temp_allocator t_alloc = init_allocator();

for (many iterations) {

 int *ptr = allocate(t_alloc, 4 bytes);

 image *img = allocate(t_alloc, 1024 bytes);

 // a bunch of other allocations local

 // to this scope

 clear_allocs(t_alloc);

}

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Arena Allocator: Growing

❖ This simple arena allocator we are showing can also be called a “bump
allocator” since to allocate we just “bump” the pointer

❖ All the memory for an arena allocator is allocated before hand, typically there
is a good guess for the memory that a given scope will need, so we can just
allocate that many pages or bytes

❖ If we want to handle growing an arena allocator, it may handle multiple
“arenas” and simply allocate a new arena whenever one is requested.

▪ Can allocate new pages by using mmap() to create “anonymous” mappings (anonymous =
pages aren’t mapped to a file)

19

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Arena Allocator

❖ How fast is our arena allocator at allocating things on average? At freeing
things?

❖ What does the internal and external fragmentation look like with our arena
allocator?

❖ Why can’t we use this as a replacement for malloc maintaining lists of
allocated & freed memory?

20

pollev.com/tqm

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

❖ How fast is our allocator at allocating things on average? At freeing things?

❖ What does the internal and external fragmentation look like with our
allocator?

❖ Why can’t we use this as a replacement for malloc maintaining lists of
allocated & freed memory?

Memory Allocation Part 2

21

Minimal/none for both ☺ Since we know how big each allocation is, we
can allocate the exact size requested (no internal) and chunk our
memory so that there is minimal space between each allocated chunk

Very Fast, constant time for each

Malloc manages things that are freed individually that may be allocated
for varying lengths of time. This allocator assumes everything can be
allocated together.

pollev.com/tqm

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Garbage collection

❖ Arena Allocation

❖ Buddy Algorithm

❖ Slab/Slub Allocator

22

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm

❖ Keeps in mind that there is some “maximum” amount of memory and divides
memory into partitions that are powers of 2.

▪ Power of 2 allows for compact allocation tracking and makes coalescing memory quick.

▪ Usually with the smallest unit being 1 page, 4096 bytes.

❖ Modified implementation of the buddy system is one of many things used by
the Linux kernel and the others (like a version of malloc called jemalloc)

▪ Linux Kernel uses the buddy algorithm to allocate physical pages to the kernel

23

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ We start with the full pool of memory, in this example, 24
pages (usually a higher cap than this, this is for example)

❖ What happens if someone asks to allocate 1 page?

24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 pages 23 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

22 pages 22 pages 23 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ What happens if someone asks to allocate 1 page?

▪ Split page chunks into half until we have enough

❖ Can mark the one page as being used by allocation A

29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 2 pages, what happens?

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 2 pages, what happens?

❖ We can claim the 21-page chunk and mark it as being used
by allocation B

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 3 pages, what happens?

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Now someone requests 3 pages, what happens?

❖ Buddy ONLY deals with powers of 2, this gets rounded up
to 22 pages (4 pages)

❖ We can claim the 22-page chunk and mark it as being used
by allocation C

33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B C

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Last allocation: someone allocates 1 page, what happens?

❖ We can claim the 1-page chunk and mark it as being used
by allocation D

34

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B CD

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ First, allocation D is done and frees its page

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B CD

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ First, allocation D is done and frees its page

❖ To free the page, we just mark it as no longer being
allocated. Nothing we can coalesce (yet)

36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

A B C

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Second, allocation A is done and frees its page

❖ To start, we just mark it as no longer being allocated.

37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

B C

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Second, allocation A is done and frees its page

❖ To start, we just mark it as no longer being allocated.

❖ Then we can coalesce!

❖ Each “chunk” has a “buddy”, the buddy being the its
“twin” created while spitting chunks in half.

❖ If both buddies are free, they can be combined ☺
38

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 21 pages 22 pages 23 pages

B C

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Second, allocation A is done and frees its page

❖ To start, we just mark it as no longer being allocated.

❖ Then we can coalesce!

❖ Each “chunk” has a “buddy”, the buddy being the its
“twin” created while spitting chunks in half.

❖ If both buddies are free, they can be combined ☺
39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

B C

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Third, allocation C is done and frees its pages

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

B C

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ Third, allocation C is done and frees its pages

❖ Can’t coalesce since its buddy is not completely free

41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

B

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 pages 21 pages 22 pages 23 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

❖ Its buddy is free so we can coalesce!

43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

22 pages 22 pages 23 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

❖ Its buddy is free so we can coalesce!

❖ The newly coalesced chunk can be further coalesced!

44

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 pages 23 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm walkthrough

❖ Let’s walk through the freeing process

❖ lastly, allocation B is done and frees its pages

❖ Its buddy is free so we can coalesce!

❖ The newly coalesced chunk can be further coalesced!

❖ The newly coalesced chunk can be further coalesced!

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24 pages

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm Implementation

❖ Buddy Algorithm can be maintained with a binary search tree

▪ Each node carries
whether it is split,
allocated, or free

46

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

21 21 21 21 21 21 21 21

22 22 22 22

23 23

24

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm Implementation

❖ Since Buddy has a known max size, we can represent the tree in an array or
bitmap. (example shows up to 22 for space on the slide)

47

20 20 20 20

21 21

22
22 21 21 20 20 20 20

22

21 21

20 20 20 20

(alternate way to show the array, may
make the connection between array and
tree easier to see).
Indexes go Left -> Right, top to bottom

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm Implementation

❖ The tree (array representation) is useful for coalescing, but we can make
algorithm faster by keeping track of several free lists, roughly one list per size

▪ Quicker lookup for memory allocation

▪ Coalescing is still fast since we can maintain a bitmap and easily find the location of a
“buddy”. If an allocation’s “Buddy” is free it should be 2k bytes before/after it.

48

size

20

21

22

23

…

block block

block

block

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ How does the fragmentation for the buddy algorithm look?

49

pollev.com/tqm

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Buddy Algorithm

❖ A bit restrictive in the interface, must be a power of 2

▪ Internal fragmentation can be a lot 

▪ If someone needs 24 +1 pages, buddy algorithm will allocate 25 pages, 24 - 1 pages of
fragmentation

❖ External fragmentation is generally kept pretty small

❖ Small allocations don’t really work for this

50

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Lecture Outline

❖ Garbage collection

❖ Arena Allocation

❖ Buddy Algorithm

❖ Slab/Slub Allocator

51

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator*

❖ What if we restrict the API to a single size that can be allocated or freed?

❖ First, you need to allocate the thing you will allocate from

▪ When you create it, you specify a name and some other information

▪ The thing we care about is that you specify the size of the objects that the slab allocator
will allocate from

❖ We are simplifying this allocator a good bit 52

// Internal to the OS, you can’t call it yourself

struct kmem_cache*kmem_cache_alloc (const char* name, unsigned int size,

 struct kmem_cache_args* args, unsigned int flags);

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level

❖ In the context of a slab allocator

▪ Object: the thing we want to allocate, some fixed size memory that we want to allocate
NOT the same as a java object

▪ slab: a chunk of memory containing the “objects”

▪ A cache maintains lists of slabs noting which slabs are full/empty/partially in use

53

struct kmem_cache* s object object object object object object object object object

partial

empty

full

object object object object object object object object object

object object object object object object object object object

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level

❖ There can be multiple slabs that are partial/empty free

54

struct kmem_cache* s object object object object object object object object object

partial

empty …
full …

object object object object object object object object object

object object object object object object object object object

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Alloc

❖ Each slab maintains a pointer to an element that is free in the slab.
(This pointer is stored in some metadata somewhere.)

❖ Each free object contains a pointer to the next free object in the slab

❖ When we allocate from the cache, we get a pointer to the first element that is
free

55

struct kmem_cache* s

partial

empty …
full …

freelist
…

object object object object object object object

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Alloc

❖ Each slab maintains a pointer to an element that is free in the slab.
(This pointer is stored in some metadata somewhere.)

❖ Each free object contains a pointer to the next free object in the slab

❖ When we allocate from the cache, we get a pointer to the first element that is
free

56

struct kmem_cache* s

partial

empty …
full …

freelist
…

object object object object object object object

New
allocation!

Update freelist pointer to point
to the next free object in the list

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Free

❖ When we want to free something, we are given the pointer to that object
So we can do math on the address to calculate the page (and thus which slab it
goes to)

❖ From there we can just “push it to the front of the free list”

57

struct kmem_cache* s

partial

empty …
full …

freelist
…

object object object object object object object

To free

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator High Level: Free

❖ When we want to free something, we are given the pointer to that object
So we can do math on the address to calculate the page (and thus which slab it
goes to)

❖ From there we can just “push it to the front of the free list”

58

struct kmem_cache* s

partial

empty …
full …

freelist
…

object object object object object object object

To free

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Poll: how are you?

❖ What is the runtime for slab?

❖ How does the fragmentation look?

59

pollev.com/tqm

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator Analysis

❖ Slab allocator is pretty fast, O(1) ish, but can slow down when it needs to
allocate a new slab

❖ Slab allocator is very useful for minimizing overhead for allocating and freeing.

❖ Can be minimal internal and external fragmentation (gets more complicated
when you account for alignment and buddy algo requirements)

60

CIS 4480/5480, Summer 2025L23: Memory AllocationUniversity of Pennsylvania

Slab Allocator Usage

❖ Used on top of the buddy algorithm in the kernel.

▪ This allows us to use the buddy algorithm still, but can quickly allocate smaller sized
“objects” within the slabs of memory returned by the buddy algorithm

❖ General Memory allocators may use something like this, allocate many slabs of
various sizes and try to mostly use those for allocation

▪ The generic “kmalloc” (kernel malloc) is backed by the slab allocator.
When it asks for N bytes it allocates from a slab that will best fit that allocation size.

61

	Default Section
	Slide 1: Memory Allocation (fin) Computer Operating Systems, Summer 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Administrivia
	Slide 7: Lecture Outline
	Slide 8: Memory Leaks
	Slide 9: Garbage Collection
	Slide 10: Garbage Collection
	Slide 11: Garbage Collection
	Slide 12: Garbage Collection
	Slide 13: Garbage Collection
	Slide 14: Garbage Collection
	Slide 15: Lecture Outline
	Slide 16: Arena Allocator
	Slide 17: Arena Allocator: Alloc
	Slide 18: Arena Allocator: Free
	Slide 19: Arena Allocator: Growing
	Slide 20: Arena Allocator
	Slide 21: Memory Allocation Part 2
	Slide 22: Lecture Outline
	Slide 23: Buddy Algorithm
	Slide 24: Buddy Algorithm walkthrough
	Slide 25: Buddy Algorithm walkthrough
	Slide 26: Buddy Algorithm walkthrough
	Slide 27: Buddy Algorithm walkthrough
	Slide 28: Buddy Algorithm walkthrough
	Slide 29: Buddy Algorithm walkthrough
	Slide 30: Buddy Algorithm walkthrough
	Slide 31: Buddy Algorithm walkthrough
	Slide 32: Buddy Algorithm walkthrough
	Slide 33: Buddy Algorithm walkthrough
	Slide 34: Buddy Algorithm walkthrough
	Slide 35: Buddy Algorithm walkthrough
	Slide 36: Buddy Algorithm walkthrough
	Slide 37: Buddy Algorithm walkthrough
	Slide 38: Buddy Algorithm walkthrough
	Slide 39: Buddy Algorithm walkthrough
	Slide 40: Buddy Algorithm walkthrough
	Slide 41: Buddy Algorithm walkthrough
	Slide 42: Buddy Algorithm walkthrough
	Slide 43: Buddy Algorithm walkthrough
	Slide 44: Buddy Algorithm walkthrough
	Slide 45: Buddy Algorithm walkthrough
	Slide 46: Buddy Algorithm Implementation
	Slide 47: Buddy Algorithm Implementation
	Slide 48: Buddy Algorithm Implementation
	Slide 49: Poll: how are you?
	Slide 50: Buddy Algorithm
	Slide 51: Lecture Outline
	Slide 52: Slab Allocator*
	Slide 53: Slab Allocator High Level
	Slide 54: Slab Allocator High Level
	Slide 55: Slab Allocator High Level: Alloc
	Slide 56: Slab Allocator High Level: Alloc
	Slide 57: Slab Allocator High Level: Free
	Slide 58: Slab Allocator High Level: Free
	Slide 59: Poll: how are you?
	Slide 60: Slab Allocator Analysis
	Slide 61: Slab Allocator Usage

