
Recitation 0
Welcome, everybody!

Recitation in a Summer Course
● Summer courses are very fast paced!

● For learning material, active practice > passive listening
○ Passive learning may boost your confidence, but active learning makes you aware of

what you don’t know

● We’ll do our best to spend the most time on the topics you feel least
confident on (through code and worksheets)

Recitation Logistics
● Turn in your worksheets! This is how we grade recitation participation

○ Due every Thursday at 11:59 pm.

● No need to submit the original file, - can just upload a copy of your
answers on blank paper, especially since we make you draw out answers
sometimes

● Recitations are not recorded! We hope that this makes participation
easier

Today’s Topics
● Grab bag of C Review:

○ Intro to C
○ Pointers & Arrays
○ Strings
○ Structs
○ Stack vs Heap
○ Output Parameters
○ Header files

● Intro to GDB
● Environment Setup

Pointers

Pointers
● Store addresses (an address is like an index in the array of memory)

● C is pass-by-value - to mimic pass-by-reference, you pass the
pointer to the value

● * = “value of”
○ (UNLESS * is used in variable declaration, then it’s part of that variable’s type)

● & = “address of”

Pointers Example
 x

ptr

 int *ptr;

 int x;

* = “value of”

& = “address of”

Pointers Example

0xffffd4c11504

 x

ptr

int *ptr;

 int x;
 int *ptr;

 int x;

 ptr = &x;

* = “value of”

& = “address of”

Pointers Example
10 x

ptr

 int *ptr;

 int x;

 ptr = &x;

 x = 10;

* = “value of”

& = “address of”

0xffffd4c11504

Pointers Example

* = “value of”

& = “address of”

20 x

ptr

 int *ptr;

 int x;

 ptr = &x;

 x = 10;

 *ptr = 20;

0xffffd4c11504

Pointers Example: Removing a Pointer
20 x

ptr

*To ensure you never accidentally
access freed memory, set the pointer
to NULL when you know it’s no longer
needed! (think about malloc/free)

Setting a pointer to NULL is especially helpful in
malloc/free

If want to ensure you never accidentally access
freed memory, set the pointer to NULL after you
call free!

 int *ptr;

 int x;

 ptr = &x;

 x = 10;

 *ptr = 20;

 ptr = NULL;

NULL

Arrays

Arrays
● Line of contiguous memory

● Lots of connections between pointers and arrays
○ For example, when you pass an array into a function, you’re actually passing a pointer to

the start of the array (a[0] is equivalent to *a)

● Must keep track of the length explicitly!

Exercise 1: Hello World
I wanted to print “Hello world!” in a fancier way

using my new knowledge of pointers in C.

For some reason, things aren’t working. Help!

(Assume the printf syntax is fine)

#include <stdio.h>

int main() {
 char **a;
 fill_a(a);
 printf("%s %s", a[0], a[1]);
}

void fill_a(char **a) {
 a[0] = "Hello";
 a[1] = "world!\n";
}

15

5

22

42

x

y

z

X (foo)

y (foo)

z (foo)

42

37

void foo(int32_t *x, int32_t *y, int32_t *z)
{
 x = y;
 *x = *z;
 *z = 37;
}
int main() {
 int32_t x = 5, y = 22, z = 42;
 foo(&x, &y, &z);
 printf("%d, %d, %d\n", x, y, z);
 return EXIT_SUCCESS;
}

Exercise 2: Memory Diagram
Draw a memory diagram for the following code and determine what the output will be.

Include a basic stack layout, see worksheet for details/example.

Structs

Structs
● Structs != Objects

Defining a struct:

Fields of the struct

struct Pokemon {
 char* name;
 int level;
};

Structs
● Structs != Objects

Defining a struct:

Fields of the struct

struct Pokemon {
 char* name;
 int level;
};

This struct has two
fields: name and level

Structs
● Structs != Objects

Defining a struct: Defining a struct variable:

Fields of the struct

 struct Pokemon p;
 p.name = "Pikachu";
 p.level = 100;
 p.name = "Raichu"

struct Pokemon {
 char* name;
 int level;
};

Structs
● Structs != Objects

Defining a struct: Defining a struct variable:

Fields of the struct

 struct Pokemon p;
 p.name = "Pikachu";
 p.level = 100;
 p.name = "Raichu"

Must include “struct”
in your variable
declaration!

struct Pokemon {
 char* name;
 int level;
};

Structs
● Structs != Objects

Defining a struct: Defining a struct variable:

Fields of the struct

 struct Pokemon p;
 p.name = "Pikachu";
 p.level = 100;
 p.name = "Raichu" Can reassign fields of a

struct variable
Can reassign fields
of a struct variable

struct Pokemon {
 char* name;
 int level;
};

Structs versus Struct Pointers
Struct Pointer Variable:Struct Variable:

 struct Pokemon p;
 p.name = "Pikachu";
 p.level = 100;
 p.name = "Raichu"

 struct Pokemon *p = malloc(sizeof(struct Pokemon));
 p->name = "Pikachu";
 p->level = 100;
 p->name = "Raichu"; //reassignment still possible

Structs versus Struct Pointers
Struct Pointer Variable:Struct Variable:

 struct Pokemon p;
 p.name = "Pikachu";
 p.level = 100;
 p.name = "Raichu"

 struct Pokemon *p = malloc(sizeof(struct Pokemon));
 p->name = "Pikachu";
 p->level = 100;
 p->name = "Raichu"; //reassignment still possible

When using a struct pointer, -> (arrow) is used instead of . (period) to
access a field. An equivalent assignment expression is:
*p.name = "Pikachu"; //using dereference operator

Structs on the Stack vs Heap
Good Stack AllocationBad Stack Allocation

struct Pokemon* bad_function() {
 struct Pokemon p; // stack

 //allocated
 p.level = 100;
 return &p; // p is deallocated
 // at function return
}

void bad() {
 struct Pokemon* p =

bad_function();
 // undefined behavior!
 printf("Level: %d\n", p->level);
}

Structs on the Stack vs Heap
Bad Stack Allocation:
struct Pokemon* bad_function() {
 struct Pokemon p; // stack

 //allocated
pointer

 p.level = 100;
 return &p; // p is deallocated
 // at function return
}

void bad() {
 struct Pokemon* p =
bad_function();
 // undefined behavior!
 printf("Level: %d\n", p->level);
}

Structs on the Stack vs Heap
Good Stack Allocation:Bad Stack Allocation:

struct Pokemon* bad_function() {
 struct Pokemon p; // stack

 //allocated
pointer

 p.level = 100;
 return &p; // p is deallocated
 // at function return
}

void bad() {
 struct Pokemon* p =
bad_function();
 // undefined behavior!
 printf("Level: %d\n", p->level);
}

struct Pokemon good_function() {
 struct Pokemon p;
 p.level = 100;
 return p; // copy of p is returned
}

void good() {
 struct Pokemon p =
good_function();
 printf("Level: %d\n", p.level);
}

Structs on the Stack vs Heap
Bad Heap Allocation:
struct Pokemon* bad_function() {
 // bad style: unnecessary malloc
 struct Pokemon* p =

malloc(sizeof(struct Pokemon));
 if (p != NULL) {
 p->level = 100;
 return p;
 }
 return NULL;
}

void bad() {
 struct Pokemon* p =
bad_function();
 printf("Level: %d\n", p->level);
}

Structs on the Stack vs Heap
Good Heap Allocation:Bad Heap Allocation:

struct Pokemon* bad_function() {
 // bad style: unnecessary malloc
 struct Pokemon* p =

malloc(sizeof(struct Pokemon));
 if (p != NULL) {
 p->level = 100;
 return p;
 }
 return NULL;
}

void bad() {
 struct Pokemon* p =
bad_function();
 printf("Level: %d\n", p->level);
}

void good_function(struct Pokemon *p) {
 if (p != NULL) {
 p->level = 100;
 }
}

void good() {
 // malloc in caller function: good!
 struct Pokemon *p =

 malloc(sizeof(struct Pokemon));
 good_function(p);
 printf("Level: %d\n", p->level);
}

Exercise 3: Struct Debugging
1. What is this code trying to do? What

should the output or final state of pikachu
be if everything worked as intended?

2. Why doesn’t pikachu end up with the name
“Sparky”? What happens to the value
modified by rename_pokemon?

3. What does C do when you pass a struct to
a function like this? Is it passed by
reference or by value?

4. How could you fix this?

#include <stdio.h>
#include <stdlib.h>

struct Pokemon {
 char* name;
 int level;
};

void rename_pokemon(struct Pokemon x, char*
new_name){
 x.name = new_name;
}

int main() {
 struct Pokemon pikachu;
 pikachu.name = "Pikachu";
 pikachu.level = 100;
 rename_pokemon(pikachu, "Sparky");
 printf("%s\n", pikachu.name);
 return 0;
}

Output Parameters

Output Parameters
Definition: a pointer parameter used to store output in a location specified by
the caller.

Useful for returning multiple items :)

31

Output Parameter Example
Consider the following
function:

Will the user get the value '5'?

32

void getFive(int ret) {
 ret = 5;
}

Output Parameter Example
Consider the following
function:

Will the user get the value '5'?

33

No! You need to use a pointer so
that the caller can see the change

void getFive(int ret) {
 ret = 5;
}

void getFive(int* ret) {
 *ret = 5;
}

How is the caller able to see the changes in
dest if C is pass-by-value?

Why do we need an output parameter? Why
can’t we just return an array we create in
strcpy?

34

Exercise 4: Output Params

char *strcpy (char* dest, char* src) {
 char *ret_value = dest;
 while (*src != '\0') {
 *dest = *src;
 src++;
 dest++;
 }
 *dest = '\0'; // don't forget null

 // terminator!
 return ret_value;
}

How is the caller able to see the changes in
dest if C is pass-by-value?

Why do we need an output parameter? Why
can’t we just return an array we create in
strcpy?

35

If we allocate an array inside strcpy, it will be
allocated on the stack. When we return an array,
we are actually returning a pointer to the array, and
not a copy of the array itself.Thus, we have no
control over this memory after strcpy returns, which
means we can’t safely use the array whose
address we’ve returned.

The caller can see the copied over string in
dest since we are dereferencing dest.
Note that modifications to dest that do not
dereference will not be seen by the
caller(such as dest++). Also note that if you
used array syntax, then dest[i] is
equivalent to *(dest+i).

Exercise 4: Output Params

char *strcpy (char* dest, char* src) {
 char *ret_value = dest;
 while (*src != '\0') {
 *dest = *src;
 src++;
 dest++;
 }
 *dest = '\0'; // don't forget null

 // terminator!
 return ret_value;
}

Header Files

What is a Header File?
● A place for:

○ function declarations
○ struct definitions
○ Constants and macros
○ Includes used in other files

Why use one?
● Better organization
● Reusability
● Prevents bugs (no accidental double inclusions!)

Example: Header Files

How do we split this
across multiple files?

#include <stdio.h>

void say_hello() {
 printf("Hello!\n");
}

int add(int a, int b) {
 return a + b;
}

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

 result);
 return 0;
}

Example: Header Files

Header guards →

Header guards ensure
that stuff within a
header file is only
defined once.
Useful for preventing
circular includes

#include <stdio.h>

void say_hello() {
 printf("Hello!\n");
}

int add(int a, int b) {
 return a + b;
}

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

 result);
 return 0;
}

#include <stdio.h>
#include "math_utils.h"

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

result);
 return 0;
}

main.c

Example: Header Files

Header guards →

Header guards ensure
that stuff within a
header file is only
defined once.
Useful for preventing
circular includes

#include <stdio.h>

void say_hello() {
 printf("Hello!\n");
}

int add(int a, int b) {
 return a + b;
}

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

 result);
 return 0;
}

#include <stdio.h>
#include "math_utils.h"

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

result);
 return 0;
}

main.c

Example: Header Files

Header guards →

Header guards ensure
that stuff within a
header file is only
defined once.
Useful for preventing
circular includes

#include <stdio.h>

void say_hello() {
 printf("Hello!\n");
}

int add(int a, int b) {
 return a + b;
}

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

 result);
 return 0;
}

#include <stdio.h>
#include "math_utils.h"

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

result);
 return 0;
}

main.c

#ifndef MATH_UTILS_H
#define MATH_UTILS_H

int add(int a, int b);
void say_hello();

#endif // MATH_UTILS_H

math_utils.h

#include <stdio.h>
#include "math_utils.h"

void say_hello() {
 printf("Hello!\n");
}

int add(int a, int b) {
 return a + b;
}

math_utils.c

Example: Header Files Header guards →

Header guards →

Header guards ensure
that stuff within a header
file is only defined once.
Useful for preventing
circular includes

#include <stdio.h>

void say_hello() {
 printf("Hello!\n");
}

int add(int a, int b) {
 return a + b;
}

int main() {
 say_hello();
 int result = add(3,4);
 printf("3 + 4 = %d\n",

 result);
 return 0;
}

#ifndef MATH_UTILS_H
#define MATH_UTILS_H

int add(int a, int b);
void say_hello();

#endif // MATH_UTILS_H

math_utils.h

#include <stdio.h>
#include "math_utils.h"

void say_hello() {
 printf("Hello!\n");
}

int add(int a, int b) {
 return a + b;
}

math_utils.c

GDB (Debugger)

What is GDB?
● A scary program

GNU Project Debugger

● GNU = GNU’s not Unix! (recursive acronym)
● You can see what’s going on “inside” a program as it executes
● Supports Assembly, C, C++, D, Fortran, Go, Rust, etc
● Your best friend for this course!

Why not just use print statements?

● Print statements require knowing where the bug is
● Don’t let you see state after a crash,
● It’s hard to trace the call stack

GNU (GNU’s Not Unix) Project Debugger

● You can can examine the program as it is executing!
● Supports a variety of languages

○ (e.g. asm, C, C++, D, Fortran, Go, Rust, etc.)
● Your best friend for this course!

“But can I use print statements?”

● Using print statement can be tedious.
● Requires the use of many to find where the bug is.
● Unable to examine the state of the program after it crashes.
● printf(“here\n”); can only take you so far.

What is GDB?

Using GDB
Use -g or -g3 flag in Makefile
for compiling (the provided
Makefile has this)

Type in your shell:

a) gdb pokemon_buggy

b) <enter>, then run

start Start from beginning and stop there

run Start and run program from
beginning

continue Run until program exits*

step Run until next line*

bt Shows call stack

b [fname:]function
b [fname:]linenum

Sets breakpoint at beginning of
function or at line

print var Prints var

* = or until next breakpoint

Exercise 5: GDB
● Download files from website
● Run make, then debug via gdb

Environment Setup - Any Questions?
● Docker Setup

○ Installation
○ Container

● Git Repo Setup
○ SSH Key
○ Clone the repo

● VSCode
○ Installation
○ Extension
○ Entering the project

