
Recitation 2
Welcome back, everybody!

● Signals
● Redirection and Pipes
● Process Groups

Today’s Topics

Signals

● Software interrupt - a notification sent to a process

● An example of inter-process communication
○ What is another example of inter-process communication?

● From the OS: some sort of exception has occurred
● From another process: used to coordinate activity or as notification

Signals

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal. Signal Ignored

4. A process received a signal, and its signal handler called vec_push. While in the middle of
executing vec_push, it received the same signal. Once the first call to vec_push returned, the
signal handler ran vec_push again.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal. Signal Ignored

4. A process received a signal, and its signal handler called vec_push. While in the middle of
executing vec_push, it received the same signal. Once the first call to vec_push returned, the
signal handler ran vec_push again. Signal Blocked, then Unblocked

Redirections and Pipes

Pipelines
● Consider the following pipelined command:

sleep 1 | sleep 20 | sleep 100

How long does it take to finish?

Pipelines
● Consider the following pipelined command:

sleep 1 | sleep 20 | sleep 100

How long does it take to finish?
100 seconds

Why?

Pipelines
● Consider the following pipelined command:

sleep 1 | sleep 20 | sleep 100

How long does it take to finish?
100 seconds

Why?
Pipelined processes run in parallel

● Can be found on the website’s schedule page, June 9th’s lecture

Let’s take a look at two_pipe_animation :)

● Can be found on the website’s schedule page, June 9th’s lecture

● How might we achieve this elegant procedure?

Let’s take a look at two_pipe_animation :)

● Can be found on the website’s schedule page, June 9th’s lecture

● How might we achieve this elegant procedure?
● Closing redundant file descriptors

○ What does the child not use?
○ What does the parent need to hold on to before forking the next child?

Let’s take a look at two_pipe_animation :)

Process Groups

Activity: True or False
1. Only foreground jobs can write to stdout and stderr.

Activity: True or False
1. Only foreground jobs can write to stdout and stderr. FALSE

2. Only foreground jobs can receive the signals sent from CTRL+C and
CTRL+Z.

Activity: True or False
1. Only foreground jobs can write to stdout and stderr. FALSE

2. Only foreground jobs can receive the signals sent from CTRL+C and
CTRL+Z. TRUE

3. Only foreground jobs can receive SIGINT and SIGTSTP.

Activity: True or False
1. Only foreground jobs can write to stdout and stderr. FALSE

2. Only foreground jobs can receive the signals sent from CTRL+C and
CTRL+Z. TRUE

3. Only foreground jobs can receive SIGINT and SIGTSTP. FALSE

4. You can only call fg on a background process that is stopped.

Activity: True or False
1. Only foreground jobs can write to stdout and stderr. FALSE

2. Only foreground jobs can receive the signals sent from CTRL+C and
CTRL+Z. TRUE

3. Only foreground jobs can receive SIGINT and SIGTSTP. FALSE

4. You can only call fg on a background process that is stopped. FALSE

5. A parent process can call wait() or waitpid() on a child that is in a different
process group.

Activity: True or False
1. Only foreground jobs can write to stdout and stderr. FALSE

2. Only foreground jobs can receive the signals sent from CTRL+C and
CTRL+Z. TRUE

3. Only foreground jobs can receive SIGINT and SIGTSTP. FALSE

4. You can only call fg on a background process that is stopped. FALSE

5. A parent process can call wait() or waitpid() on a child that is in a different
process group. TRUE

Process Groups and waitpid()

waitpid(pid_t pid, int *status, int options)
Options:

- WNOHANG: do not wait for process to finish, but “collect” already finished
or changed-state processes. Move on otherwise.

- WUNTRACED: also return if the child has stopped

Pid:

- -1: wait for all children
- Negative of pgid: wait for children of a specific process group
- Pid: wait for a child with specific process id

waitpid(pid_t pid, int *status, int options)
Options:

- WNOHANG: do not wait for process to finish, but “collect” already finished
or changed-state processes. Move on otherwise.

- WUNTRACED: also return if the child has stopped

Pid:

- -1: wait for all children
- Negative of pgid: wait for children of a specific process group
- Pid: wait for a child with specific process id

Be aware that STOP and CONTINUE are also detected by waitpid()!

Waiting in Project 2
- How does waitpid and its options come up?
- When should terminal control change?
- Will you encounter zombies? If so, how will you handle them?
- How do process groups factor in?

Waiting in Project 2
- How does waitpid and its options come up?

- Depending on the job being in fg or bg, we need different waitpid args

- When should terminal control change?
- When the role of “foreground process group” changes

- Will you encounter zombies? If so, how will you handle them?
- When background jobs finish first, they will be zombies until reaped by parent calling

waitpid()

- How do process groups factor in?
- One command (job) with all its pipelined components will correspond to one process

group

Shell OH?

