
PennOS
Recitation!

Table of Contents

1. Makefiles
2. PennFAT
3. Scheduler
4. QnA

How to structure your files/directories

src/ .c and .h files

bin/ executable binary files

log/ generated log files

doc/ README, companion doc, etc.

tests/ .c files for tests (with its own main() function)

|-- Makefile
|-- bin
| |-- pennfat
| |-- pennos
| |-- sched-demo
| `-- test2
|-- src
| |-- pennfat.c
| |-- pennos.c
| |-- spthread.c
| |-- spthread.h
|-- tests

|-- sched-demo.c
`-- test2.c

Editing the Makefile for mains

Add .c files that have a int main(...)

to these lines

TEST_MAINS = $(TESTS_DIR)/cat_test.c $(TESTS_DIR)/list.c

MAIN_FILES = $(SRC_DIR)/pennos.c $(SRC_DIR)/pennfat.c

|-- Makefile
|-- bin
| |-- pennfat
| |-- pennos
| |-- sched-demo
| `-- test2
|-- src
| |-- pennfat.c
| |-- pennos.c
| |-- spthread.c
| |-- spthread.h
|-- tests

|-- sched-demo.c
`-- test2.c

Sub Folders in SRC

If you want to add a subfolder to SRC, you can do
that. Especially if you want to make a distinction
between FAT and Kernel, or user functions vs
system calls vs “kernel-level” functions

Notably, your .c files that have a main should not be
in a subfolder, if you mostly want to use the
provided makefile. Just put these files in src.

|-- Makefile
|-- bin
| |-- pennfat
| |-- pennos
| |-- sched-demo
| `-- test2
|-- src
| |-- pennfat.c
| |-- pennos.c
| |-- spthread.c
| |-- spthread.h
|-- tests

|-- sched-demo.c
`-- test2.c

Using the Makefile

● make or make all: create executables of mains in src/

○ *Be sure to make a bin/ directory before calling make

● make tests : create executables of test mains in tests/

● make info: list which files are set as main, execs, etc.

● make format: auto format main, test main, src, and header files

● make clean: delete *.o and executable files

demo

C: header guards, extern variables

#ifndef GLOBAL_STATE_H

#define GLOBAL_STATE_H

typedef struct GlobalState {

int id;

} GlobalState;

extern GlobalState gs;

#endif // GLOBAL_STATE_H

● Header guards → prevent including
code multiple times in same file

● Extern variables → global variables across
files

 global_state.h

#include "global_state.h"

#include "helper.h"

GlobalState gs;

int main() {

gs.id = 0;

...

}

main.c

#include "global_state.h"

void helper_func() {

gs.id++;

printf("%d\n", gs.id);

}

helper.c

Tips
● Functions with varying number of arguments: <stdarg.h>

● Add bin/*, src/*.o, and .DS_Store to your .gitignore

● Check for memory leaks with valgrind (fixing memory leaks → resolve bugs!)

○ Ex: valgrind ./bin/pennos
○ Ex: valgrind --leak-check=full --show-leak-kinds=all

--track-origins=yes --verbose ./bin/pennos

● Run top to check CPU usage for kernel

● Using gdb:

○ handle SIGUSR1 nostop : to not stop whenever a thread is spthread_suspend’d
○ handle SIGALRM nostop noprint : to -prevent a message printed when sig sent and stopping gdb
○ info threads : list running pthreads
○ t N: switch to thread N

https://www.man7.org/linux/man-pages/man3/stdarg.3.html

More Tips!

When Debugging, print statements are fine.
Do not use printf if you can, instead dprintf is better

Why? cause it can have weird interactions with some
 of the weird stuff we are doing in PennOS

How to get started?
 pick something small and achievable that you can make and check the
 functionality of. Build it, test it, then add to it slowly.
 e.g. mkfs or making your own, slightly modified, sched demo

More Tips!

YOU CAN CHANGE THE ARGS AND RETURN TYPES
TO THE SUGGESTED FUNCTIONS.
YOU CAN ALSO ADD MORE OF THEM!

You also don’t have to figure everything out right now. You can solve some things
later. (e.g. process level fd system calls and/or pennos signals)

Shortlist of what functions are allowed or not
(NOT A COMPLETE LIST
This is for the overall PennOS: note that almost all of these functions need to be internal to the kernel and probably in a k_ function if
they are allowed

● open/read/write/close/mmap can be called but only really inside of the kernel functions of your file system. Used elsewhere
doesn't make sense.

○ pread/pwrite are also ok
● pipe/dup2/etc should not be used
● I don't think you should need any pthread functions other than the provided spthread functions*. This includes locks and

condition variables. (*pthread_sigmask is ok, pass in the first field of the spthread struct).
● sigaction is needed in a few places.
● sigsuspend is needed but only really in the context of the scheduler like used in combination with setitimer in the sched-demo

code
● kill and pthread_kill are not allowed

Shortlist of what functions are allowed or not
(NOT A COMPLETE LIST
This is for the overall PennOS: note that almost all of these functions need to be internal to the kernel and probably in a k_ function if
they are allowed

● fork, waitpid, exec are all banned
● printf() and fprintf are banned but are ok to use for debugging purposes. Though be careful with them. There is a reason

sched-demo uses dprintf and write instead
● malloc, realloc, calloc and free are allowed
● sleep is not allowed, you need to implement your own sleeping functionality

Above (and on previous slide) are all functions that in some way interact with the host operating system resources (e.g. printf access
the host OS file system, fork creates a new process in the host os etc).

For functions that don't interact with the host os directly at all, you can use those. These include things like memset, memcpy,
strlen and snprintf which all just do something inside of your program without needing to invoke a system call. (Hint: snprintf
will probably be pretty useful for you to log/print things out nicely. look into it).

Milestone 0

Milestone 0 is due by the end of the day Tuesday!

A lot of it is just planning out how you want to do things and making sure you
have thought about many important aspects of the OS.

We expect you to have actually put effort into this. That you actually thought
about it seriously.

There will be time at the end of this where we will give you time to work on this
and ask us any questions.

PennFA
T

Intro

FAT system splits to two parts:

FAT table and Data blocks

FA
T
Each entry is 2 byte.

First entry give info : # of FAT entries(MSB) and block size(LSB).

Then, all entries are block informations: index is block number, value is next
block number.

Second FAT entry must be ROOT DIRECTORY.

Which means, FAT[1] is root directory, so first data block must be root
directory.

Next entries(FAT[2]......FAT[N]) are all file block numbers.

Data block

Root Directory and other files.

A directory (Root) stores info of other files in Directory Entries

- No directories inside Root! Yippee!

Metadata(64 bytes)

With metadata, we will know first block number of the file, and we can get
next block number of the file by indexing FAT.

FAT[current] = Next Block of File

PennFAT thinks itself as a large hard disk,
but it’s actually a (much smaller) binary file.

Milestone 1 - Standalone PennFAT

./pennfat

pennfat> mkfs minfs 1 0

MAKE A FILE SYSTEM!

pennfat> mount minfs

MOUNT IT!

pennfat> touch f1 f2 f3

pennfat> cat -w f1

HOST OS
FILESYSTEM

minfs

PennFAT

I/O

Terminal
user calls

mkfs

- Do not overthink it!

Quick mkfs exercise

pennfat> mkfs pikachu 16 2

Name of Filesystem?

How many blocks in FAT?

How many entries in FAT?

How many blocks in DATA?

How big is pikachu in bytes?

Quick mkfs exercise

pennfat> mkfs pikachu 16 2

Name of Filesystem?

How many blocks in FAT?

How many entries in FAT?

How many blocks in DATA?

How big is pikachu in bytes?

pikachu

16

16 * 1,024 / 2 = 8,192

8,192 - 1 = 8,191

FAT + DATA = 8,192 * 2 + 8,191 * 1,024 = 8,403,968

mount

2B 2B 2B 2B
2B 2B 2B 2B
2B 2B 2B 2B
2B 2B 2B 2B

 .
 .
 .

minfs

PennFAT

- mmap(2) - creates a new mapping in the virtual address space of the
calling process.

Virtual Memory

uint16_t* fat = mmap()

What about
unmount?

k_functions

- Kernel side API specific for PennFAT
- Direct interaction with the PennFAT file system binary
- Direct interaction with the global file descriptor table

Standalone
PennFAT

Standalone
Routines

(cat, cp, ls, etc…)
k_functions

Global FD
Table

pikachu
(currently

mounted fs)

Example: k_write(int fd, const char *str, int n)

1. Look for the open file descriptor fd in your system wide FD table and
retrieve it

2. According to what the offset value of the file is, write n bytes of str from
the offset

3. Modify the FAT and Directory entries accordingly

Things to consider when starting

- Think about how you want to structure your file descriptor table.
What information do you want to store for each file?

- Offset, filename, etc…

- What does each k_function want to achieve?

- What happens if you write over a block? What changes in the FAT?
The directory entry?

- Make sure to update timestamp when you modify a file

- Any error checking?

- What if there is no more space in the filesystem?

- What if the file descriptor is open only for reading but you try to write to it?

Comment on Offset

- Each file has their unique offset pointer
- Pointer to where in the file a new request to the file will read/write from
- k_lseek(int fd, int offset, int whence) can set this offset value
- k_read() and k_write() will start reading/writing from this offset pointer
- You can calculate the actual offset of where to write in the filesystem

using each file’s unique offset value!

File Descriptor Node
Filename: file1
fd: 5
Offset: 20 (bytes)

FAT

DATA

pikachu
directory

Data block
for file1

Offset
pointer
(20 bytes
into the
file)

Total Offset: FAT_size + blocksize + 20

Standalone Routines

- touch FILE …
- Creates the file ONLY. Does not allocate any memory for it as it has no data written into it.
- … means multiple files can be created at once by chaining the names in command

- mv SOURCE DEST
- Renames SOURCE to DEST ONLY.
- Nothing else. Really.

- cat FILE … [-w/a OUTPUT_FILE]
- Read contents of FILE(s) and overwrite/append to OUTPUT_FILE
- Should act like UNIX cat. Exit on ^D (read until EOF)

- cp -h
- Your HOST OS is files in your docker container
- Everything else are files in your file system (pikachu)

- chmod
- Is included too!

Quick example: cat file1 file2 file3 -w file4

1. fd1 = k_open(file1), fd2 = k_open(file2), fd3 = k_open(file3)
2. k_read(fd1), k_read(fd2), k_read(fd3)
3. fd4 = k_open(file4)
4. k_write(fd4)
5. k_close(fd1), k_close(fd2), k_close(fd3), k_close(fd4)

- Note fds and filenames are different
- You may want to have an intermediate buffer to store contents of f1, f2, f3.

But you don’t need one
- Max number of entries at any time in the FD table during this routine?

Quick example: cat file1 file2 file3 -w file4

1. fd1 = k_open(file1), fd2 = k_open(file2), fd3 = k_open(file3)
2. k_read(fd1), k_read(fd2), k_read(fd3)
3. fd4 = k_open(file4)
4. k_write(fd4)
5. k_close(fd1), k_close(fd2), k_close(fd3), k_close(fd4)

- Note fds and filenames are different
- You may want to have an intermediate buffer to store contents of f1, f2, f3.

But you don’t need one
- Max number of entries at any time in the FD table during this routine?

- 7 (stdin, stdout, stderr, f1, f2, f3, f4)
- min: 4 (stdin, stdout, stderr, and any one file currently being used)

Things to consider

- You are NOT creating a child process to execute something, but rather
literally implementing a function that has the functionality of each routines

- These should be implemented using k_functions
- Only when interacting with host OS, you should be using C system calls
- Some may not need k_functions

- Function syntax for each routines should be relatively simple!!!
- Check out the examples on the PennOS lecture slides
- You may implement your own k_functions as you need

Standalone FAT architecture

Your standalone fat is similar to a shell in
structure. There is a prompt -> read -> execute
loop.

HOWEVER: no forking! no waitpid! no pipes!

You just call the associated function which then
calls your corresponding k_ functions!

#include "pennfat.h"
int main() {
 while(!eof(stdin)) {
 getline(line);
 parse_command(line, cmd);
 if (cmd == "cat") {
 cat(cmd);
 } else if(cmd == ...}
 }
 ...
 }
}

void cat(cmd) {
 fd1 = k_open(cmd[0]);
 fd2 = k_open(cmd[2]);
 …
}

Some More Clarifications…

- name[0]
- This is the INTEGER 0 (0x00) not ASCII 0 (0x30)
- What is 1, what is 2?

- file type
- What is 0: Unknown, 4: Symbolic Link?

- default permissions
- Follow UNIX! Read&Write is appropriate here

- Do we mmap FAT only or the entire Filesystem?
- Only mmap the FAT, you cannot MMAP the whole file system

- How to handle file deletions?
- Do we want to zero-out the entire file?
- Or what is the minimal viable change to indicate a deleted file?

- What if …?
- Up to you!

TL;DR

1. Specifications should be followed. (Read the write-up carefully!)

2. When in doubt, follow UNIX behaviors. This means reading the
man pages!!!!

3. Implementation details are 100% up to you!
a. If you think it is appropriate, go ahead!

THIS IS YOUR MILESTONE!

What’s After?

- PennOS and PennFAT Interaction
- s_functions

- These are your own system calls!
- These provide the connection between PennOS Shell and your File System
- These take the process-level file descriptors as an argument.

- You may use functionalities you implemented in standalone PennFAT

to implement s_functions

- You MUST use s_functions to run ANY user-level functions like cat,

echo, touch, redirections, etc.

Scheduler

Penn-OS Scheduler Structure

- Runs every “clock” cycle (recurring alarm
signal)

- Picks a “process” to run (or the idle process)
- Maintains 3 priority queues, 0, 1, 2
- Lower queue are higher priority
- Maintained ratios of running program

Roughly what your main() does!

Which is similar to what sched-demo
does!

Roughly the process states.
Note that we do not
differentiate between ready
or running in the process
state, especially since there
is only one thread running at
a time.

THINK ABOUT THIS STATE
WHEN THINKING ABOUT
YOUR SCHEDULER
ARCHITECTURE

Functions To Implement the Scheduler

Kernel Level:

- k_proc_create
- k_proc_cleanup

User Level:

- s_waitpid
- s_spawn
- s_kill
- s_exit
- s_sleep

s_waitpid in the past for some students
is quite long and complex. There are a
lot of cases to consider that you will
have to come back and add to your
waitpid.

s_sleep is not the longest function, but a
common place for people to get stuck.

k_proc_create

k_proc_cleanup

s_spawn

s_waitpid

s_kill

s_exit

s_sleep

s_nice

PCB Struct

What might we want to have?

PCB Struct

What might we want to have?

- Spthread pointer/struct
- Status of process
- File descriptors
- Parent process identification
- Children process

identification
- File descriptors
- more!

(Normal to have 10 or more
fields in the struct)

Ways To Get Started

- Try starting from the ground up. Implement function headers, structs,
and constants. Think PCB, signal numbers and function outlines

- Look at sched-demo.c and understand it. Try and implement your own
basic shell which can take an input and based on the input schedule
different threads

- Create the outline of the queues and think about how the correct queue will
be chosen (and ensured it has a process on it)

Any
Questions?

