Lecture 1

CIS 4521/5521: COMPILERS

Administrivia

* Instructor: Steve Zdancewic
Office hours: Mondays 4:00-5:00pm & by appointment.

Levine 511
* TAs:
— Gary Chen Office Hours: TBD
— Noé De Santo Office Hours: TBD

— Alex Shapulya Office Hours: TBD

e E-mail: cis5521@seas.upenn.edu

* Web site: http://www.seas.upenn.edu/~cis552 1

. ook for announcements on ED

Zdancewic CIS 4521: Compilers

mailto:cis5521@seas.upenn.edu
http://www.seas.upenn.edu/~cis5521

Why CIS 4521 / 55212

* You will learn: ol
. . . ‘ -

— Practical applications of theory g (lntel)

— Lexing/Parsing/Interpreters | COREi9

— How high-level languages are implemented in X-series
machine language

— (A subset of) Intel x86 architecture

— More about common compilation tools like GCC and LLVM
— A deeper understanding of code

— A little about programming language semantics & types

— Functional programming in OCaml

— How to manipulate complex data structures

— How to be a better programmer

» Expect this to be a very challenging, implementation-oriented course.
— Programming projects can take tens of hours per week...

Zdancewic CIS 4521: Compilers

CIS 4521/5521 vs. CIS 341(0)

CIS 341 / 3410 is the old version of this class; the content is identical.

Masters and PhD students should register for CIS 5521.

If you want to change, send mail to cis5521@seas.upenn.edu.

Zdancewic CIS 4521: Compilers

The CIS4521/5521 Compiler

* Course projects
— HW1: Hellocaml! (OCaml programming)
— HW?2: X86lite interpreter
— HW3: LLVMlite compiler
— HWA4: Lexing, Parsing, simple compilation
— HW5: Higher-level Features
— HW6: Analysis and Optimizations

* Goal: build a complete compiler from a high-level, type-safe language
to x86 assembly.

Zdancewic CIS 4521: Compilers

Resources

* Course textbook: (recommended, not required)

— Modern compiler implementation in ML
(Appel)

+ Additional compilers books:
— Compilers — Principles, Techniques & Tools
(Aho, Lam, Sethi, Ullman)
* a.k.a. “The Dragon Book”

— Advanced Compiler Design & Implementation
(Muchnick)

* About Ocaml:

— Real World Ocaml
(Minsky, Madhavapeddy, Hickey)

+ realworldocaml.org

— Introduction to Objective Cam/
(Hickey)

Zdancewic CIS 4521: Compilers

modern
compiler
implementation
in ML

Compllers

andrew . ap

Com ilers

Pnncnpkls, Techniques,
and Tools

Alfred V.Aho _4 4
RaviSethi &
Jeffrey D. Ullman

> %
" .
A,

Real World
OCaml

y. Ani
& Jason Hickey

Why OCaml?

« OCaml is a dialect of ML — “Meta Language”

— It was designed to enable easy
manipulation abstract syntax trees
— Type-safe, mostly pure, functional
language with support for polymorphic
(generic) algebraic data types, modules,
and mutable state
— The OCaml compiler itself is well engineered
* you can study its source!
— It is the right tool for this job

“YJocCaml

 Forgot about OCaml after CIS1200 or never used it?
— Next couple lectures will (re)introduce it
— First two projects will help you get up to speed programming

— See “Introduction to Objective Caml” by Jason Hickey
* book available on the course web pages, referred to in HW1

Zdancewic CIS 4521: Compilers

HW1: Hellocaml

* Homework 1 available on the course web site.
— Individual project — no groups
— Due: Wednesday, 29 Jan. 2024 at 11:59pm
— Topic: OCaml programming, an introduction to interpreters

* Logistics for getting access to Github Classroom will be posted soon.

* We recommend using VSCode + Docker
— the projects will build a "dev container" for you
— See the course web pages about the CIS4521 tool chain to get started

* Quickstart guide:
— open up the project in VSCode
— start a “sandbox terminal” via OCaml Platform plugin
— type make test at the command prompt

— Please: Use Ed to report any troubles with the toolchain!

Zdancewic CIS 4521: Compilers

Homework Policies

« Homework (except HW1) should be done individually or in pairs
* Late projects:

— up to 24 hours late: 10 point penalty

— up to 48 hours late: 20 point penalty

— after 48 hours: not accepted
 Submission policy:

— Projects that don’t compile will get no credit

— Partial credit will be awarded according to the guidelines in the project description
« Academic integrity: don't cheat

— This course will abide by the University’s Code of Academic Integrity

— “low level” and “high level” discussions across groups are fine

— “mid level” discussions / code sharing are not permitted

— General principle: When in doubt, ask!

Zdancewic CIS 4521: Compilers

Course Policies

Prerequisites:
— Si%nificant rogramming experience, familiarity with trees, graphs, low-level coding
(CIS 1210/5490/5730 and CIS 2400/5010)

— Some familiarity with computation models (automata, stack machines, etc.), is useful too!
(CIS 2620/5110)

— If HWOT1 is a struggle, this class might not be a good fit for you
(HWOT1 is significantly simpler than the rest...)

Grading:
* 60% Projects: Compiler

— Groups of 2 students (except for HWO01)
— Implemented in OCaml

* 20% Midterm: in class ... tentatively March 6t
* 20% Final exam

* Lecture attendance is crucial

— Active participation (asking questions, etc.) is encouraged
« When in person, I'd prefer no laptops/devices!

— It's too distracting for me and for others in the class.

Zdancewic CIS 4521: Compilers

10

Announcements

* Dr. Zdancewic will be away next week

* Class lectures (OCaml demo / implementing interpreters) will be
covered by TAs Noé and Alex.

Zdancewic CIS 4521: Compilers

11

What is a compiler?

COMPILERS

Zdancewic CIS 4521: Compilers

12

What is a Compiler?

* A compiler is a program that translates from one programming language to another.

* Typically: high-level source code to low-level machine code
(object code)

— Not always: Source-to-source translators, Java bytecode compiler, GWT Java = Javascript

Zdancewic CIS 4521: Compilers

13

Historical Aside

* This is an old problem!

* Until the 1950’s: computers were programmed in assembly.

e 1951—1952: Grace Hopper
— developed the A-0 system for the UNIVAC |

— She later contributed significantly
to the design of COBOL

* 1957: FORTRAN compiler built at IBM
— Team led by John Backus

* 1960’s: development of the first
bootstrapping compiler for LISP

* 1970’s: language/compiler design blossomed

* Today: thousands of languages (most little used)
— Some better designed than others...

Zdancewic CIS 4521: Compilers

1984:
1987:
1991:

g 1995:

1996:
2005:
2015:
2020:
2022:

1980s: ML / LCF

Standard ML

Caml

Caml Light

Caml Special Light
Objective Caml

F# (Microsoft)
Reason ML
OCaml Platform
Multicore OCaml

14

Source Code

Optimized for human readability
— Expressive: matches human ideas of grammar / syntax / meaning

— Redundant: more information than needed to help catch errors
— Abstract: exact computation possibly not fully determined by code

Example C source:

#include <stdio.h>

int factorial(int n) {
int acc = 1;
while (n > 0) {
acc = acc * n;
n=n-1;
¥

return acc;

}

int main(int argc, char *argv[]) {
printf("“factorial(6) = %d\n", factorial(6));

}

Zdancewic CIS 4521: Compilers

15

Optimized for Hardware

Low-level code

— Machine code hard for people to read
— Redundancy, ambiguity reduced
— Abstractions & information about intent is

lost

« Assembly language

— then machine language

* Figure at right shows (unoptimized)
64-bit x86 assembly code for the factorial

function

Zdancewic CIS 4521: Compilers

_factorial:
%bb.0:

pushqSrbp

movq S%rsp, S%rbp
movl %edi, -4(S%rbp)
movl $1, -8(%rbp)

LBBO _1:
cmpl $0, -4(S%rbp)
jle LBB0O_3

%bb.2:

movl -8(%rbp), S%eax
imull-4(%rbp), %eax
movl %eax, -8(%rbp)
movl -4(%rbp), S%eax
subl $1, %eax

movl %eax, -4(S%rbp)
jmp LBBO_1

LBBO_3:

movl -8(%rbp), S%eax

popqg Srbp
retq

16

How to translate?

* Source code — Machine code mismatch

* Some languages are farther from machine code than others:
— Consider: C, C++, Java, Lisp, ML, Haskell, Ruby, Python, Javascript

e Goals of translation:
00000000
. 00000010
— Source level expressiveness for the task 0000020
00000040
— Best performance for the concrete computation Sapsescs
00000070
— Reasonable translation efficiency (< O(n?)) 0000000
00000020
. . 000000b0
— Maintainable code o90000cs
000000e0
— Correctness! se00cato
00000110
00000120
00000130
00000140
00000150
;0000186
00000190
00000120
000001b0
000001c0
000001d0
000001e0
0000010
00000200
00000210
00000220
00000230
00000240 00 5f 6d 61 69 6e 00 5F 66 61 63 74 6f 72 69 61 |._main._factoria|
00000250 6C 00 5f 70 72 69 be 74 66 00 00 00 00 00 00 00 |l._printf

Zdancewic CIS 4521: Compilers 17

Correct Compilation

* Programming languages describe computation precisely...
— therefore, translation can be precisely described

— a compiler can be correct with respect to the source and target language semantics.

* Correctness is important!
— Broken compilers generate broken code.
— Hard to debug source programs if the compiler is incorrect.
— Failure has dire consequences for development cost, security, etc.

* This course: some techniques for building correct compilers
— Finding and Understanding Bugs in C Compilers,

Yang et al. PLDI 2011
— There is much ongoing research about proving compilers correct.

(Google for CompCert, Verified Software Toolchain, or Vellvm)

Zdancewic CIS 4521: Compilers

18

Idea: Translate in Steps

Compile via a series of program representations

Intermediate representations are optimized for program manipulation of various kinds:
— Semantic analysis: type checking, error checking, etc.

— Optimization: dead-code elimination, common subexpression elimination, function inlining, register
allocation, etc.

— Code generation: instruction selection

Representations are more machine specific, less language specific as translation proceeds

Zdancewic CIS 4521: Compilers 19

(Simplified) Compiler Structure

Source Code

(Character stream)
if (b ==0) a = 0;

Assembly Code
CMP ECX, ©
SETBZ EAX

Zdancewic CIS 4521: Compilers

\

Token Strea

Abstract Syntax Tre

Intermediate Cod

& -

Front End

(machine independent)

> Middle End

(compiler dependent)

- Back End

(machine dependent)

20

Typical Compiler Stages

token stream

vV

abstract syntax

abstract syntax

annotated abstract syntax
intermediate code
control-flow graph
interference graph

N 2 BN N 2N/

assembly

l_'_l

Compiler Passes Representations of the program

« Optimizations may be done at many of these stages
« Different source language features may require more/different stages
» Assembly code is not the end of the story

Zdancewic CIS 4521: Compilers 21

Compilation & Execution

Source code

Assembly Code

Object Code

Library code

Fully-resolved machine Code

Executable image

Zdancewic CIS 4521: Compilers

foo.c

gee -S

foo.s

as

foo.o

Id

foo

(Usually: gcc -o foo foo.c)

22

See lecO1.zip

COMPILER DEMO

Short-term Plan

* Rest of today:
— Refresher / background on OCaml
— “object language” vs. “meta language”
— Build a simple interpreter

Zdancewic CIS 4521: Compilers

24

Introduction to OCaml programming
A little background about ML
Interactive tour of OCaml via UTop & VSCode
Writing simple interpreters

OCAML

Zdancewic CIS 4521: Compilers

25

ML’s History

* 1971: Robin Milner starts the LCF Project at Stanford
— “logic of computable functions”
* 1973: At Edinburgh, Milner implemented his
theorem prover and dubbed it “Meta Language” — ML

* 1984: ML escaped into the wild and became
“Standard ML”

— SML ‘97 newest version of the standard
— There is a whole family of SML compilers:
* SML/NJ - developed at AT&T Bell Labs
* MLton — whole program, optimizing compiler
* Poly/ML
¢ Moscow ML
* ML Kit compiler
* MLj - SML to Java bytecode compiler

ML 2000: failed revised standardization
sML: successor ML — discussed intermittently
2014: sml-family.org + definition on github

Zdancewic CIS 4521: Compilers

26

OCaml’s History
-

The Formel project at the Institut National de Rechereche en Informatique 0GRy,
et en Automatique (INRIA) i
1987: Guy Cousineau re-implemented a variant of ML

— Implementation targeted the
“Categorical Abstract Machine” (CAM)

— As a pun, “CAM-ML” became “CAML”

1991: Xavier Leroy and Damien Doligez wrote
Caml-light

— Compiled CAML to a virtual machine with simple bytecode (much faster!)
1996: Xavier Leroy, Jérome Vouillon, and Didier Rémy

— Add an object system to create OCaml

— Add native code compilation

Many updates, extensions, since...

2005: Microsoft’s F# language is a descendent of OCaml
2013: ocaml.org

2020: OCaml Platform

2022: Multicore OCaml q ocaml

FRENCH STYLE

A AEL INIDTI0E 43
B Nunce gravemente alla salute

Zdancewic CIS 4521: Compilers 27

ocaml
ocamlc
ocamlopt
ocamldep
ocamldoc
ocamllex

ocamlyacc
menhir
dune

utop

opam

Zdancewic CIS 4521: Compilers

OCaml Tools

— the top-level interactive loop
— the bytecode compiler

— the native code compiler

— the dependency analyzer

— the documentation generator
— the lexer generator

— the parser generator

— a more modern parser generator
— a compilation manager

— a more fully-featured interactive top-level

— package manager

Distinguishing Characteristics

* Functional & (Mostly) “Pure”
— Programs manipulate values rather than issue commands
— Functions are first-class entities
— Results of computation can be “named” using let
— Has relatively few “side effects” (imperative updates to memory)

+ Strongly & Statically typed
— Compiler typechecks every expression of the program, issues errors if it can’t prove that the program
is type safe
— Good support for type inference & generic (polymorphic) types

— Rich user-defined “algebraic data types” with pervasive use of
pattern matching

— Very strong and flexible module system for constructing large projects

TYdocaml

Zdancewic CIS 4521: Compilers 29

Most Important Features for CIS4521

* Types:

— int, bool, int32, int64, char, string, built-in lists, tuples, records, functions

+ Concepts:
— Pattern matching
— Recursive functions over algebraic (i.e. tree-structured) datatypes

* Libraries:
— Int32, Int64, List, Printf, Format

Zdancewic CIS 4521: Compilers

30

How to represent programs as data structures.
How to write programs that process programs.

INTERPRETERS

Zdancewic CIS 4521: Compilers

31

Factorial: Everyone’s Favorite Function

+ Consider this implementation of factorial in a hypothetical programming language that we’'ll

call “SIMPLE”
(Simple IMperative Programming LanguagE):

X = 0;

ANS = 1;

whileNZ (x) {
ANS = ANS * X;
X=X+ -1;

* We need to describe the constructs of this SIMPLE language

— Syntax: which sequences of characters count as a legal “program”?
— Semantics: what is the meaning (behavior) of a legal “program”?

Zdancewic CIS 4521: Compilers

32

"Object” vs. “Meta” language

Object language: Metalanguage:
the language (syntax / semantics) the language (syntax / semantics) used
being described or manipulated to describe some object language

Today’s example:
SIMPLE interpreter written in OCaml

Course project:
OAT = LLVM = x86_64 compiler written in OCaml

Clang compiler:
C/C++ = LLVM = x86_64 compiler written in C++

Metacircular interpreter:
lisp interpreter written in lisp

Zdancewic CIS 4521: Compilers 33

Grammar for a Simple Language

<exp> ::=
| <X>
| <exp> + <exp>
| <exp> * <exp> BNF grammars are
| <exp> < <exp> themselves domain—spec'ifi.c
| <integer constant> metalanguages for describing
the syntax of other
| (<exp>) languages...
<cmd> ::=
| skip
| <X> = <exp>
| ifNZ <exp> { <cmd> } else { <cmd> }
| whileNZ <exp> { <cmd> }
| <cmd>; <cmd>

Concrete syntax (grammar) for a simple imperative language
— Written in “Backus-Naur form”
— <exp> and <cmd> are nonterminals
/ /

— ‘z=",’", and <...> symbols are part of the metalanguage
— keywords, like ‘skip’ and ‘1fNZ’ and symbols, like ‘{* and ‘+ are part of the object language

Need to represent the abstract syntax (i.e. hide the irrelevant of the concrete syntax)
Implement the operational semantics (i.e. define the behavior, or meaning, of the program)

Zdancewic CIS 4521: Compilers

34

Zdancewic CIS 4521: Compilers

OCaml Demo

simple.ml

35

