
CIS 4521/5521: COMPILERS
Lecture 1

Administrivia
• Instructor: Steve Zdancewic

Office hours: Mondays 4:00-5:00pm & by appointment.
 Levine 511

• TAs:
– Gary Chen Office Hours: TBD

– Noé De Santo Office Hours: TBD
– Alex Shapulya Office Hours: TBD

• E-mail: cis5521@seas.upenn.edu
• Web site: http://www.seas.upenn.edu/~cis5521

Zdancewic CIS 4521: Compilers 2

Look for announcements on ED

mailto:cis5521@seas.upenn.edu
http://www.seas.upenn.edu/~cis5521

Why CIS 4521 / 5521?
• You will learn:

– Practical applications of theory

– Lexing/Parsing/Interpreters

– How high-level languages are implemented in
machine language

– (A subset of) Intel x86 architecture

– More about common compilation tools like GCC and LLVM
– A deeper understanding of code

– A little about programming language semantics & types

– Functional programming in OCaml

– How to manipulate complex data structures

– How to be a better programmer

• Expect this to be a very challenging, implementation-oriented course.
– Programming projects can take tens of hours per week…

Zdancewic CIS 4521: Compilers 3

CIS 4521/5521 vs. CIS 341(0)

CIS 341 / 3410 is the old version of this class; the content is identical.

Masters and PhD students should register for CIS 5521.

If you want to change, send mail to cis5521@seas.upenn.edu.

Zdancewic CIS 4521: Compilers 4

The CIS4521/5521 Compiler
• Course projects

– HW1: Hellocaml! (OCaml programming)
– HW2: X86lite interpreter
– HW3: LLVMlite compiler
– HW4: Lexing, Parsing, simple compilation
– HW5: Higher-level Features
– HW6: Analysis and Optimizations

• Goal: build a complete compiler from a high-level, type-safe language
to x86 assembly.

Zdancewic CIS 4521: Compilers 5

Resources
• Course textbook: (recommended, not required)

– Modern compiler implementation in ML
(Appel)

• Additional compilers books:
– Compilers – Principles, Techniques & Tools

(Aho, Lam, Sethi, Ullman)
• a.k.a. “The Dragon Book”

– Advanced Compiler Design & Implementation
(Muchnick)

• About Ocaml:
– Real World Ocaml

(Minsky, Madhavapeddy, Hickey)
• realworldocaml.org

– Introduction to Objective Caml
(Hickey)

Zdancewic CIS 4521: Compilers 6

Why OCaml?
• OCaml is a dialect of ML – “Meta Language”

– It was designed to enable easy
manipulation abstract syntax trees

– Type-safe, mostly pure, functional
language with support for polymorphic
(generic) algebraic data types, modules,
and mutable state

– The OCaml compiler itself is well engineered
• you can study its source!

– It is the right tool for this job

• Forgot about OCaml after CIS1200 or never used it?
– Next couple lectures will (re)introduce it
– First two projects will help you get up to speed programming
– See “Introduction to Objective Caml” by Jason Hickey

• book available on the course web pages, referred to in HW1

Zdancewic CIS 4521: Compilers 7

HW1: Hellocaml
• Homework 1 available on the course web site.

– Individual project – no groups
– Due: Wednesday, 29 Jan. 2024 at 11:59pm
– Topic: OCaml programming, an introduction to interpreters

• Logistics for getting access to Github Classroom will be posted soon.

• We recommend using VSCode + Docker
– the projects will build a "dev container" for you
– See the course web pages about the CIS4521 tool chain to get started

• Quickstart guide:
– open up the project in VSCode
– start a “sandbox terminal” via OCaml Platform plugin
– type make test at the command prompt

– Please: Use Ed to report any troubles with the toolchain!

Zdancewic CIS 4521: Compilers 8

Homework Policies
• Homework (except HW1) should be done individually or in pairs
• Late projects:

– up to 24 hours late: 10 point penalty

– up to 48 hours late: 20 point penalty

– after 48 hours: not accepted

• Submission policy:
– Projects that don’t compile will get no credit
– Partial credit will be awarded according to the guidelines in the project description

• Academic integrity: don’t cheat
– This course will abide by the University’s Code of Academic Integrity

– “low level” and “high level” discussions across groups are fine

– “mid level” discussions / code sharing are not permitted

– General principle: When in doubt, ask!

Zdancewic CIS 4521: Compilers 9

Course Policies
Prerequisites:

– Significant programming experience, familiarity with trees, graphs, low-level coding
(CIS 1210/5490/5730 and CIS 2400/5010)

– Some familiarity with computation models (automata, stack machines, etc.), is useful too!
(CIS 2620/5110)

– If HW01 is a struggle, this class might not be a good fit for you
(HW01 is significantly simpler than the rest…)

Grading:
• 60% Projects: Compiler

– Groups of 2 students (except for HW01)
– Implemented in OCaml

• 20% Midterm: in class … tentatively March 6th

• 20% Final exam

• Lecture attendance is crucial
– Active participation (asking questions, etc.) is encouraged

• When in person, I'd prefer no laptops/devices!
– It’s too distracting for me and for others in the class.

Zdancewic CIS 4521: Compilers 10

Announcements
• Dr. Zdancewic will be away next week

• Class lectures (OCaml demo / implementing interpreters) will be
covered by TAs Noé and Alex.

Zdancewic CIS 4521: Compilers 11

COMPILERS

What is a compiler?

Zdancewic CIS 4521: Compilers 12

What is a Compiler?
• A compiler is a program that translates from one programming language to another.
• Typically: high-level source code to low-level machine code

(object code)
– Not always: Source-to-source translators, Java bytecode compiler, GWT Java ⇒ Javascript

Zdancewic CIS 4521: Compilers 13

High-level Code

Low-level Code

?

Historical Aside
• This is an old problem!
• Until the 1950’s: computers were programmed in assembly.
• 1951—1952: Grace Hopper

– developed the A-0 system for the UNIVAC I

– She later contributed significantly
to the design of COBOL

• 1957: FORTRAN compiler built at IBM
– Team led by John Backus

• 1960’s: development of the first
bootstrapping compiler for LISP

• 1970’s: language/compiler design blossomed

• Today: thousands of languages (most little used)
– Some better designed than others...

Zdancewic CIS 4521: Compilers 14

1980s: ML / LCF
1984: Standard ML
1987: Caml
1991: Caml Light
1995: Caml Special Light
1996: Objective Caml
2005: F# (Microsoft)
2015: Reason ML
2020: OCaml Platform
2022: Multicore OCaml

Source Code
• Optimized for human readability

– Expressive: matches human ideas of grammar / syntax / meaning

– Redundant: more information than needed to help catch errors

– Abstract: exact computation possibly not fully determined by code

• Example C source:

Zdancewic CIS 4521: Compilers 15

#include <stdio.h>

int factorial(int n) {
int acc = 1;

 while (n > 0) {
acc = acc * n;
n = n - 1;

}
return acc;

}

int main(int argc, char *argv[]) {
printf("factorial(6) = %d\n", factorial(6));

}

Low-level code
• Optimized for Hardware

– Machine code hard for people to read
– Redundancy, ambiguity reduced
– Abstractions & information about intent is

lost

• Assembly language
– then machine language

• Figure at right shows (unoptimized)
64-bit x86 assembly code for the factorial
function

_factorial:
%bb.0:
 pushq %rbp
 movq %rsp, %rbp
 movl %edi, -4(%rbp)
 movl $1, -8(%rbp)
LBB0_1:
 cmpl $0, -4(%rbp)
 jle LBB0_3
%bb.2:
 movl -8(%rbp), %eax
 imull -4(%rbp), %eax
 movl %eax, -8(%rbp)
 movl -4(%rbp), %eax
 subl $1, %eax
 movl %eax, -4(%rbp)
 jmp LBB0_1
LBB0_3:
 movl -8(%rbp), %eax
 popq %rbp
 retq

Zdancewic CIS 4521: Compilers 16

How to translate?
• Source code – Machine code mismatch
• Some languages are farther from machine code than others:

– Consider: C, C++, Java, Lisp, ML, Haskell, Ruby, Python, Javascript

• Goals of translation:
– Source level expressiveness for the task

– Best performance for the concrete computation
– Reasonable translation efficiency (< O(n3))

– Maintainable code

– Correctness!

Zdancewic CIS 4521: Compilers 17

Correct Compilation
• Programming languages describe computation precisely…

– therefore, translation can be precisely described

– a compiler can be correct with respect to the source and target language semantics.

• Correctness is important!
– Broken compilers generate broken code.
– Hard to debug source programs if the compiler is incorrect.

– Failure has dire consequences for development cost, security, etc.

• This course: some techniques for building correct compilers
– Finding and Understanding Bugs in C Compilers,

Yang et al. PLDI 2011

– There is much ongoing research about proving compilers correct.
(Google for CompCert, Verified Software Toolchain, or Vellvm)

Zdancewic CIS 4521: Compilers 18

Idea: Translate in Steps
• Compile via a series of program representations

• Intermediate representations are optimized for program manipulation of various kinds:
– Semantic analysis: type checking, error checking, etc.

– Optimization: dead-code elimination, common subexpression elimination, function inlining, register
allocation, etc.

– Code generation: instruction selection

• Representations are more machine specific, less language specific as translation proceeds

Zdancewic CIS 4521: Compilers 19

(Simplified) Compiler Structure

Zdancewic CIS 4521: Compilers 20

Lexical Analysis

Parsing

Intermediate Code
Generation

Code Generation

Source Code
(Character stream)
if (b == 0) a = 0;

Token Stream

Abstract Syntax Tree

Intermediate Code

Assembly Code
CMP ECX, 0
SETBZ EAX

Front End
(machine independent)

Back End
(machine dependent)

Middle End
(compiler dependent)

Representations of the programCompiler Passes

Typical Compiler Stages
Lexing à token stream

 Parsing à abstract syntax
 Disambiguation à abstract syntax
 Semantic analysis à annotated abstract syntax
 Translation à intermediate code

 Control-flow analysis à control-flow graph
 Data-flow analysis à interference graph
 Register allocation à assembly
 Code emission

• Optimizations may be done at many of these stages
• Different source language features may require more/different stages
• Assembly code is not the end of the story

Zdancewic CIS 4521: Compilers 21

Compilation & Execution

Zdancewic CIS 4521: Compilers 22

Compiler

Assembler

Linker

Loader

Source code

Executable image

Assembly Code

Object Code

Fully-resolved machine Code

foo.c

gcc -S

foo.s

as

foo.o

ld

foo

Library code

(Usually: gcc -o foo foo.c)

COMPILER DEMO

See lec01.zip

Zdancewic CIS 4521: Compilers 23

Short-term Plan

• Rest of today:
– Refresher / background on OCaml
– “object language” vs. “meta language”
– Build a simple interpreter

Zdancewic CIS 4521: Compilers 24

OCAML

Introduction to OCaml programming
A little background about ML

Interactive tour of OCaml via UTop & VSCode

Writing simple interpreters

Zdancewic CIS 4521: Compilers 25

ML’s History
• 1971: Robin Milner starts the LCF Project at Stanford

– “logic of computable functions”

• 1973: At Edinburgh, Milner implemented his
theorem prover and dubbed it “Meta Language” – ML

• 1984: ML escaped into the wild and became
“Standard ML”
– SML ‘97 newest version of the standard
– There is a whole family of SML compilers:

• SML/NJ – developed at AT&T Bell Labs
• MLton – whole program, optimizing compiler
• Poly/ML
• Moscow ML
• ML Kit compiler
• MLj – SML to Java bytecode compiler

• ML 2000: failed revised standardization
• sML: successor ML – discussed intermittently
• 2014: sml-family.org + definition on github

Zdancewic CIS 4521: Compilers 26

OCaml’s History
• The Formel project at the Institut National de Rechereche en Informatique

et en Automatique (INRIA)
• 1987: Guy Cousineau re-implemented a variant of ML

– Implementation targeted the
“Categorical Abstract Machine” (CAM)

– As a pun, “CAM-ML” became “CAML”

• 1991: Xavier Leroy and Damien Doligez wrote
Caml-light
– Compiled CAML to a virtual machine with simple bytecode (much faster!)

• 1996: Xavier Leroy, Jérôme Vouillon, and Didier Rémy
– Add an object system to create OCaml
– Add native code compilation

• Many updates, extensions, since…
• 2005: Microsoft’s F# language is a descendent of OCaml
• 2013: ocaml.org
• 2020: OCaml Platform
• 2022: Multicore OCaml

Zdancewic CIS 4521: Compilers 27

OCaml Tools
• ocaml – the top-level interactive loop
• ocamlc – the bytecode compiler
• ocamlopt – the native code compiler
• ocamldep – the dependency analyzer
• ocamldoc – the documentation generator
• ocamllex – the lexer generator

• ocamlyacc – the parser generator

• menhir – a more modern parser generator
• dune – a compilation manager
• utop – a more fully-featured interactive top-level

• opam – package manager

Zdancewic CIS 4521: Compilers 28

Distinguishing Characteristics
• Functional & (Mostly) “Pure”

– Programs manipulate values rather than issue commands

– Functions are first-class entities

– Results of computation can be “named” using let
– Has relatively few “side effects” (imperative updates to memory)

• Strongly & Statically typed
– Compiler typechecks every expression of the program, issues errors if it can’t prove that the program

is type safe

– Good support for type inference & generic (polymorphic) types
– Rich user-defined “algebraic data types” with pervasive use of

pattern matching

– Very strong and flexible module system for constructing large projects

Zdancewic CIS 4521: Compilers 29

Most Important Features for CIS4521
• Types:

– int, bool, int32, int64, char, string, built-in lists, tuples, records, functions

• Concepts:
– Pattern matching

– Recursive functions over algebraic (i.e. tree-structured) datatypes

• Libraries:
– Int32, Int64, List, Printf, Format

Zdancewic CIS 4521: Compilers 30

INTERPRETERS

How to represent programs as data structures.

How to write programs that process programs.

Zdancewic CIS 4521: Compilers 31

Factorial: Everyone’s Favorite Function
• Consider this implementation of factorial in a hypothetical programming language that we’ll

call “SIMPLE”
 (Simple IMperative Programming LanguagE):

• We need to describe the constructs of this SIMPLE language
– Syntax: which sequences of characters count as a legal “program”?
– Semantics: what is the meaning (behavior) of a legal “program”?

Zdancewic CIS 4521: Compilers 32

X = 6;
 ANS = 1;
 whileNZ (x) {
 ANS = ANS * X;
 X = X + -1;
 }

”Object” vs. “Meta” language

Today’s example:
 SIMPLE interpreter written in OCaml

Course project:
 OAT ⇒ LLVM ⇒ x86_64 compiler written in OCaml

Clang compiler:
 C/C++ ⇒ LLVM ⇒ x86_64 compiler written in C++

Metacircular interpreter:
 lisp interpreter written in lisp

Zdancewic CIS 4521: Compilers 33

Object language:
 the language (syntax / semantics)
 being described or manipulated

Metalanguage:
the language (syntax / semantics) used
to describe some object language

Grammar for a Simple Language

• Concrete syntax (grammar) for a simple imperative language
– Written in “Backus-Naur form”
– <exp> and <cmd> are nonterminals
– ‘::=‘ , ‘|’ , and <…> symbols are part of the metalanguage
– keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’ are part of the object language

• Need to represent the abstract syntax (i.e. hide the irrelevant of the concrete syntax)
• Implement the operational semantics (i.e. define the behavior, or meaning, of the program)
Zdancewic CIS 4521: Compilers 34

<exp> ::=
 | <X>
 | <exp> + <exp>
 | <exp> * <exp>
 | <exp> < <exp>
 | <integer constant>
 | (<exp>)

<cmd> ::=
 | skip
 | <X> = <exp>
 | ifNZ <exp> { <cmd> } else { <cmd> }
 | whileNZ <exp> { <cmd> }
 | <cmd>; <cmd>

BNF grammars are
themselves domain-specific
metalanguages for describing
the syntax of other
languages…

OCaml Demo

simple.ml

Zdancewic CIS 4521: Compilers 35

