
CIS 4521/5521: COMPILERS
Lecture 6

Announcements

• HW2: X86lite
– Due: Weds. Feb. 12th at 10:00pm
– Pair-programming
– Sign up for teams via github classroom

– Please get started! (I can see who has cloned the git repo!)

• Note: clone the project with `--recurse-submodules` flag
– There is a shared, public git submodule to which you will need to push

test cases.
– We may need to adjust permissions on github to make this work, so:
1. please accept the invitation to join the upenn-cis5521 organization.
2. let us know if you don't have access to the sp25_students team,

which is needed to clone the shared submodule.

Zdancewic CIS 4521/5521: Compilers 2

DIRECTLY GENERATING X86

see compile.ml in lec05.zip

Zdancewic CIS 4521/5521: Compilers 3

Directly Translating AST to Assembly
• For simple languages, no need for intermediate representation.

– e.g., the arithmetic expression language from SIMPLE

• Main Idea: maintain invariants
– e.g., code emitted for a given expression computes the answer into rax

• Key Challenges:
– storing intermediate values needed to compute complex expressions
– some instructions use specific registers (e.g., shift)

CIS 4521/5521: Compilers 4

One Simple Strategy
• Compilation is the process of “emitting” instructions into an

instruction stream.
• To compile an expression, we recursively compile sub expressions and

then process the results.
• Invariants:

– Argument (Xi) is stored in a dedicated operand
– Compilation of an expression yields its result in rax
– Intermediate values are pushed onto the stack
– Stack slot is popped after use (so the space is reclaimed)

• Resulting code is wrapped to comply with calling conventions:

• See the compile.ml compile1.

CIS 4521/5521: Compilers 5

Another Simple Strategy
• Use a stack-oriented intermediate representation

1. translate source expressions to stack instructions
2. translate stack instructions to x86 assembly

• Compilation Invariants:
– Argument (Xi) is stored in a dedicated operand
– Compilation of an expression yields its result on the top of the stack
– We use dedicated registers to process the stack

 note: each instruction can be translated independently

• Resulting code is wrapped to comply with calling conventions:

• See the compile.ml compile2.

CIS 4521/5521: Compilers 6

INTERMEDIATE
REPRESENTATIONS

Zdancewic CIS 4521/5521: Compilers 7

Why do something else?
• This is a simple syntax-directed translation

– Input syntax uniquely determines the output, no complex analysis or code
transformation is done.

– It works fine for simple languages.

But…
• The resulting code quality is poor.
• Richer source language features are hard to encode

– Structured data types, objects, first-class functions, etc.
• It’s hard to optimize the resulting assembly code.

– The representation is too concrete – e.g., it has committed to using certain registers
and the stack

– Only a fixed number of registers
– Some instructions have restrictions on where the operands are located

• Control-flow is not structured:
– Arbitrary jumps from one code block to another
– Implicit fall-through makes sequences of code non-modular

(i.e., you can’t rearrange sequences of code easily)
• Retargeting the compiler to a new architecture is hard.

– Target assembly code is hard-wired into the translation

CIS 4521/5521: Compilers 8

Intermediate Representations (IR’s)
• Abstract machine code: hides details of the target architecture
• Allows machine independent code generation and optimization.

CIS 4521/5521: Compilers 9

AST IR

x86

Java
Byte-
code

ArmOptimization

Multiple IR’s
• Goal: get program closer to machine code without losing the

information needed to do analysis and optimizations
• In practice, multiple intermediate representations

might be used (for different purposes)

CIS 4521/5521: Compilers 10

AST MIR

x86

Java
Byte-
code

Arm

Optimization

HIR

Optimization Optimization

What makes a good IR?
• Easy translation target (from the level above)
• Easy to translate (to the level below)
• Narrow interface

– Fewer constructs means simpler phases/optimizations

• Example: Source language might have while, for, and foreach
loops (and maybe more variants)
– IR might have only while loops and sequencing
– Translation eliminates for and foreach

 *

CIS 4521/5521: Compilers 11

⟦for(pre; cond; post) {body}⟧
 =

 ⟦pre; while(cond) {body;post}⟧

*Here the notation ⟦cmd⟧ denotes
the “translation” or “compilation”
of the command cmd.

IR’s at the extreme
• High-level IR’s

– Abstract syntax + new node types not generated by the parser
• e.g., Type checking information or disambiguated syntax nodes

– Typically preserves the high-level language constructs
• Structured control flow, variable names, methods, functions, etc.
• May do some simplification (e.g., convert for to while)

– Allows high-level optimizations based on program structure
• e.g., inlining “small” functions, reuse of constants, etc.

– Useful for semantic analyses like type checking

• Low-level IR’s
– Machine dependent assembly code + extra pseudo-instructions

• e.g., a pseudo instruction for interfacing with garbage collector or memory allocator
(parts of the language runtime system)

• e.g., (on x86) a imulq instruction that doesn’t restrict register usage
– Source structure of the program is lost:

• Translation to assembly code is straightforward
– Allows low-level optimizations based on target architecture

• e.g., register allocation, instruction selection, memory layout, etc.

• What’s in between?

CIS 4521/5521: Compilers 12

Mid-level IR’s: Many Varieties
• Intermediate between AST (abstract syntax) and assembly
• May have unstructured jumps, abstract registers or memory locations
• Convenient for translation to high-quality machine code

– Example: all intermediate values might be named to facilitate
optimizations that attempt to minimize stack/register usage

• Many examples:
– Triples: OP a b

• Useful for instruction selection on X86 via “tiling”
– Quadruples: a = b OP c (RISC-like “three address form”)
– SSA static single assignment a = op b c

• variant of quadruples where each variable is assigned exactly once
• Easy dataflow analysis for optimization
• e.g., LLVM IR: industrial-strength IR, based on SSA

– Stack-based:
• Easy to generate
• e.g., Java Bytecode, UCODE

CIS 4521/5521: Compilers 13

Growing an IR
• Develop an IR in detail… starting from the very basic.

• Start: a (very) simple intermediate representation for the arithmetic
language
– Very high level
– No control flow

• Goal: A simple subset of the LLVM IR
– LLVM = “Low-level Virtual Machine”
– Used in HW3+

• Add features needed to compile rich source languages

CIS 4521/5521: Compilers 14

SIMPLE LET-BASED IR

Zdancewic CIS 4521/5521: Compilers 15

Eliminating Nested Expressions
• Fundamental problem:

– Compiling complex & nested expression forms to simple operations.

 IR

• Idea: name intermediate values, make order of evaluation explicit.
– No nested operations.

CIS 4521/5521: Compilers 16

((1 + X4) + (3 + (X1 * 5)))

Add(Add(Const 1, Var X4),
 Add(Const 3, Mul(Var X1,
 Const 5)))

Source

AST

?

Translation to SLL
• Given this:

• Translate to this desired SLL form:
let tmp0 = add 1L varX4 in
let tmp1 = mul varX1 5L in
let tmp2 = add 3L tmp1 in
let tmp3 = add tmp0 tmp2 in
 tmp3

• Translation makes the order of evaluation explicit.
• Names intermediate values
• Note: introduced temporaries are never modified

CIS 4521/5521: Compilers 17

Add(Add(Const 1, Var X4),
 Add(Const 3, Mul(Var X1,
 Const 5)))

