
CIS 4521/5521: COMPILERS
Lecture 8

Announcements

• HW2: X86lite
– Due: TOMORROW Feb. 12th at 10:00pm

Zdancewic CIS 4521/5521: Compilers 2

Intermediate Representations
• IR1: Expressions

– immutable global variables
– simple arithmetic expressions

• IR2: Commands
– mutable global variables
– commands for update and sequencing

• IR3: Local control flow
– conditional commands & while loops
– basic blocks

• IR4: Procedures (top-level functions)
– local variables
– call stack

• IR5: “almost” LLVM IR
– missing phi-nodes (explained when we get there)

Zdancewic CIS 4521/5521: Compilers 4

Basic Blocks
• A sequence of instructions that is always executed starting at the first

instruction and always exits at the last instruction.
– Starts with a label that names the entry point of the basic block.
– Ends with a control-flow instruction (e.g., branch or return) the “link”
– Contains no other control-flow instructions
– Contains no interior label used as a jump target

• Basic blocks can be arranged into a control-flow graph
– Nodes are basic blocks
– There is a directed edge from node A to node B if the control flow

instruction at the end of basic block A might jump to the label of basic
block B.

CIS 4521/5521: Compilers 5

Control-flow Graphs

Zdancewic CIS 4521/5521: Compilers 6

tmp1 = add 3 4
tmp2 = mul 4 5
…
…
br loop

tmp3 = load valX
tmp4 = icmp eq tmp3, 0
br %4, label %body, label %post

loop:

tmp5 = load valX
tmp6 = sub tmp5 1
store valX tmp6
…
…
…
br label %loop

tmp7 = load valX
ret tmp7

body: post:

Nodes:
 (labeled) basic blocks
 instruction sequences
 terminators

Edges:
 determined by terminators

LLVM

Zdancewic CIS 4521/5521: Compilers 7

See llvm.org

Low-Level Virtual Machine (LLVM)
• Open-Source Compiler Infrastructure

– see llvm.org for full documentation
• Created by Chris Lattner (advised by Vikram Adve) at UIUC

– LLVM: An infrastructure for Mult-stage Optimization, 2002
– LLVM: A Compilation Framework for Lifelong Program Analysis and

Transformation, 2004

• 2005: Adopted by Apple for XCode 3.1
• Front ends:

– llvm-gcc (drop-in replacement for gcc)
– Clang: C, objective C, C++ compiler supported by Apple
– various languages: Swift, ADA, Scala, Haskell, …

• Back ends:
– x86 / Arm / Power / etc.

• Used in many academic/research projects
– Here at Penn: SoftBound, Vellvm

Zdancewic CIS 4521/5521: Compilers 8

LLVM Compiler Infrastructure

LLVM

frontends
like

'clang'

llc
backend
code gen

jit

Optimizations/
Transformations

Typed SSA
IR

Analysis

[Lattner et al.]

IR3/4/5 vs. LLVM
• “let - in” and

OCaml-style identifiers:

let tmp1 = add 3L 4L in

• OCaml-style “let-rec”
and functions for blocks:

let rec entry () =
 let tmp1 = …
and foo () =
 let tmp2 = …

• OCaml-style global variables:
let varX = ref 0L

• Omits let/in and prefixes local
identifiers with %:

%tmp1 = add i64 3, i64 4

• Uses lighter-weight colon
notation:

entry:
 %tmp1 = …
foo:
 %tmp2 = …

• Prefixes globals with @
define @X = i64 0

Zdancewic CIS 4521/5521: Compilers 10

Example LLVM Code
• LLVM offers a textual representation of its IR

– files ending in .ll

Zdancewic CIS 4521/5521: Compilers 11

define @factorial(%n) {
 %1 = alloca
 %acc = alloca
 store %n, %1
 store 1, %acc
 br label %start

start:
 %3 = load %1
 %4 = icmp sgt %3, 0
 br %4, label %then, label %else

then:
 %6 = load %acc
 %7 = load %1
 %8 = mul %6, %7
 store %8, %acc
 %9 = load %1
 %10 = sub %9, 1
 store %10, %1
 br label %start

else:
 %12 = load %acc
 ret %12
}

#include <stdio.h>
#include <stdint.h>

int64_t factorial(int64_t n) {
 int64_t acc = 1;
 while (n > 0) {
 acc = acc * n;
 n = n - 1;
 }
 return acc;
}

factorial64.c

factorial-pretty.ll

Real LLVM
• Decorates values with type information

 i64
 i64*
 i1

• Permits numeric
identifiers

• Has alignment
annotations

• Keeps track of
entry edges for
each block:
preds = %5, %0

Zdancewic CIS 4521/5521: Compilers 12

; Function Attrs: nounwind ssp
define i64 @factorial(i64 %n) #0 {
 %1 = alloca i64, align 8
 %acc = alloca i64, align 8
 store i64 %n, i64* %1, align 8
 store i64 1, i64* %acc, align 8
 br label %2

; <label>:2 ; preds = %5, %0
 %3 = load i64* %1, align 8
 %4 = icmp sgt i64 %3, 0
 br i1 %4, label %5, label %11

; <label>:5 ; preds = %2
 %6 = load i64* %acc, align 8
 %7 = load i64* %1, align 8
 %8 = mul nsw i64 %6, %7
 store i64 %8, i64* %acc, align 8
 %9 = load i64* %1, align 8
 %10 = sub nsw i64 %9, 1
 store i64 %10, i64* %1, align 8
 br label %2

; <label>:11 ; preds = %2
 %12 = load i64* %acc, align 8
 ret i64 %12
}

factorial.ll

Example Control-flow Graph

Zdancewic CIS 4521/5521: Compilers 13

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %loop

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %body, label %post

loop:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %loop

%12 = load %acc
ret %12

body: post:

define @factorial(%n) {

}

LL Basic Blocks and Control-Flow Graphs

• LLVM enforces (some of) the basic block invariants syntactically.
• Representation in OCaml:

• A control flow graph is represented as a list of labeled basic blocks
with these invariants:
– No two blocks have the same label
– All terminators mention only labels that are defined among the set of

basic blocks
– There is a distinguished, unlabeled, entry block:

Zdancewic CIS 4521/5521: Compilers 14

type block = {
 insns : (uid * insn) list;
 term : (uid * terminator)
}

type cfg = block * (lbl * block) list

LL Storage Model
• Several kinds of storage:

– Local variables (or temporaries): %uid
– Global declarations (e.g., for string constants): @gid
– Abstract locations: references to (stack-allocated) storage created by the

alloca instruction
– Heap-allocated structures created by external calls (e.g., to malloc)

Zdancewic CIS 4521/5521: Compilers 15

LL Storage Model: Locals

• Local variables:
– Defined by the instructions of the form %uid = …
– Analogous to “let %uid = e in …” in OCaml

• The value of a %uid remains unchanged throughout its lifetime
• Intended to be an abstract version of machine registers.
• We’ll see soon how to extend SSA to allow richer use of local

variables
– phi nodes (allow "controlled mutation" of uids)

Zdancewic CIS 4521/5521: Compilers 16

static single assignment (SSA) invariant:

Each %uid appears on the left-hand side of an assignment
only once in the entire control flow graph.

LL Storage Model: alloca
• alloca instruction allocates stack space and returns a reference to it.

– The returned reference is stored in local:
 %ptr = alloca type
– The amount of space allocated is determined by the type

• The contents of the slot are accessed via the load and store
instructions:

 %acc = alloca i64 ; allocate a storage slot
 store i64 4521, i64* %acc ; store the integer value 4521
 %x = load i64, i64* %acc ; load the value 4521 into %x

• Gives an abstract version of stack slots

Zdancewic CIS 4521/5521: Compilers 17

STRUCTURED DATA

Zdancewic CIS 4521/5521: Compilers 18

Compiling Structured Data
• Consider C-style structures like those below.
• How do we represent Point and Rect values?

CIS 4521/5521: Compilers 19

struct Point { int x; int y; };

struct Rect { struct Point ll, lr, ul, ur };

struct Rect mk_square(struct Point ll, int len) {
 struct Rect square;
 square.ll = square.lr = square.ul = square.ur = ll;
 square.lr.x += len;
 square.ul.y += len;
 square.ur.x += len;
 square.ur.y += len;
 return square;
}

Representing Structs
 struct Point { int x; int y;};

• Store the data using two contiguous words of memory.
• Represent a Point value p as the address of the first word.

 struct Rect { struct Point ll, lr, ul, ur };
• Store the data using 8 contiguous words of memory.

• Compiler needs to know the size of the struct at compile time to
allocate the needed storage space.

• Compiler needs to know the shape of the struct at compile time to
index into the structure.

CIS 4521/5521: Compilers 20

x yp

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

Assembly-level Member Access

• Consider: ⟦square.ul.y⟧ = (x86.operand, x86.insns)

• Assume that %rcx holds the base address of square
• Calculate the offset relative to the base pointer of the data:

– ul = sizeof(struct Point) + sizeof(struct Point)
– y = sizeof(int)

• So: ⟦square.ul.y⟧ = (ans, Movq 20(%rcx) ans)

CIS 4521/5521: Compilers 21

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int x; int y; };

struct Rect { struct Point ll, lr, ul, ur };

Padding & Alignment
• How to lay out non-homogeneous structured data?

Zdancewic CIS 4521/5521: Compilers 22

struct Example {
 int x;
 char a;
 char b;
 int y;
};

x a b y

x a b y

x a yb

32-bit boundaries

Padding

Not 32-bit
aligned

Copy-in/Copy-out
When we do an assignment in C as in:

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr = ll;

...

then we copy all of the elements out of the source and put them
in the target. Same as doing word-level operations:

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr.x = ll.x;
 res.lr.y = ll.x;
 ...

• For really large copies, the compiler uses something like memcpy
(which is implemented using a loop in assembly).

C Procedure Calls
• Similarly, when we call a procedure, we copy arguments in, and copy

results out.
– Caller sets aside extra space in its frame to store results that are bigger

than will fit in %rax.
– We do the same with scalar values such as integers or doubles.

• Sometimes, this is termed "call-by-value".
– This is bad terminology.
– Copy-in/copy-out is more accurate.

• Benefit: locality
• Problem: expensive for large records…

• In C: can opt to pass pointers to structs: “call-by-reference”

• Languages like Java and OCaml always pass non-word-sized objects
by reference.

Call-by-Reference:

• The caller passes in the address of the point and the
address of the result (1 word each).

void mkSquare(struct Point *ll, int elen,
 struct Rect *res) {
 res->lr = res->ul = res->ur = res->ll = *ll;
 res->lr.x += elen;
 res->ur.x += elen;
 res->ur.y += elen;
 res->ul.y += elen;
}
void foo() {
 struct Point origin = {0,0};
 struct Square unit_sq;
 mkSquare(&origin, 1, &unit_sq);
}

Stack Pointers Can Escape
• Note that returning references to stack-allocated

data can cause problems…

– see unsafestack.c

• For data that persists across a function call, we
need to allocate storage in the heap…
– in C, use the malloc library

Zdancewic CIS 4521/5521: Compilers 26

int* bad() {
int x = 4521;
int *ptr = &x;
return ptr;

}

ARRAYS

Zdancewic CIS 4521/5521: Compilers 27

Arrays

• Space is allocated on the stack for buf.
– Note, without the ability to allocated stack space dynamically (C’s

alloca function) need to know size of buf at compile time…

• buf[i] is really just: (base_of_array) + i *
elt_size

void foo() { void foo() {
 char buf[27]; char buf[27];

 buf[0] = 'a'; *(buf) = 'a';
 buf[1] = 'b'; *(buf+1) = 'b';

 buf[25] = 'z'; *(buf+25) = 'z';
 buf[26] = 0; *(buf+26) = 0;
} }

Multi-Dimensional Arrays
• In C, int M[4][3] yields an array with 4 rows and 3 columns.
• Laid out in row-major order:

• M[i][j] compiles to?

• In Fortran, arrays are laid out in column major order.

• In ML and Java, there are no multi-dimensional arrays:
– (int array) array is represented as an array of pointers to arrays of ints.

• Why is knowing these memory layout strategies important?

M[0][0] M[0][1] M[0][2] M[1][0] M[1][1] M[1][2] M[2][0] …

M[0][0] M[1][0] M[2][0] M[3][0] M[0][1] M[1][1] M[2][1] …

Array Bounds Checks
• Safe languages (e.g. Java, C#, ML but not C, C++) check array indices

to ensure that they’re in bounds.
– Compiler generates code to test that the computed offset is legal

• Needs to know the size of the array… where to store it?
– One answer: Store the size before the array contents.

• Other possibilities:
– Store size and a pointer to array data
– Pascal: only permit statically known array sizes

(very unwieldy in practice)
– What about multi-dimensional arrays?

CIS 4521/5521: Compilers 30

Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]

arr

Array Bounds Checks (Implementation)
• Example: Assume %rax holds the base pointer (arr) and %ecx holds

the array index i. To read a value from the array arr[i]:
 movq -8(%rax) %rdx // load size into rdx
 cmpq %rdx %rcx // compare index to bound
 j l __ok // jump if 0 <= i < size
 callq __err_oob // test failed, call the error handler
__ok:
 movq (%rax, %rcx, 8) dest // do the load from the array access

• Clearly more expensive: adds move, comparison & jump
– More memory traffic
– These overheads are particularly bad in an inner loop

• Compiler optimizations can help remove the overhead
– e.g. In a for loop, if bound on index is known, only do the test once

• Hardware support can improve performance: executing instructions in
parallel, branch prediction
– but speculative execution is behind the Spectre/Meltdown vulnerabilities

CIS 4521/5521: Compilers 31

C-style Strings
• A string constant "foo" is represented as global data:

 _string42: 102 111 111 0

• C uses null-terminated strings
• Strings are usually placed in the text segment so they are read only.

– allows all copies of the same string to be shared.

• Rookie mistake (in C): write to a string constant.

• Instead, must allocate space on the heap:

char *p = "foo”;
p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4); /* include the null byte */
p[0] = 'b’;

TAGGED DATATYPES

Zdancewic CIS 4521/5521: Compilers 33

C-style Enumerations / ML-style datatypes

• In C:

• In ML:

• Associate an integer tag with each case: sun = 0, mon = 1, …
– C lets programmers choose the tags

• ML datatypes can also carry data:

• Representation: a foo value is a pointer to a pair: (tag, data)

• Example: tag(Bar) = 0, tag(Baz) = 1
⟦let f = Bar(3)⟧ =

⟦let g = Baz(4, f)⟧ =

CIS 4521/5521: Compilers 34

0 3f

1 4 fg

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

Switch Compilation
• Consider the C statement:
 switch (e) {
 case sun: s1; break;
 case mon: s2; break;
 …
 case sat: s3; break;
 }
• How to compile this?

– What happens if some of the break statements are omitted? (Control falls
through to the next branch.)

CIS 4521/5521: Compilers 35

Cascading ifs and Jumps
⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ =

• Each $tag1…$tagN
is just a constant
int tag value.

• Note: ⟦break;⟧
(within the
switch branches)
is:
 br %merge

CIS 4521/5521: Compilers 36

%tag = ⟦e⟧;
 br label %l1
l1: %cmp1 = icmp eq %tag, $tag1
 br %cmp1 label %b1, label %merge
b1: ⟦s1⟧
 br label %l2

l2: %cmp2 = icmp eq %tag, $tag2
 br %cmp2 label %b2, label %merge
b2: ⟦s2⟧
 br label %l3
…
lN: %cmpN = icmp eq %tag, $tagN
 br %cmpN label %bN, label %merge
bN: ⟦sN⟧
 br label %merge

merge:

Alternatives for Switch Compilation
• Nested if-then-else works OK in practice if # of branches is small

– (e.g. < 16 or so).

• For more branches, use better datastructures to organize the jumps:
– Create a table of pairs (v1, branch_label) and loop through
– Or, do binary search rather than linear search
– Or, use a hash table rather than binary search

• One common case: the tags are dense in some range
[min…max]
– Let N = max – min
– Create a branch table Branches[N] where Branches[i] = branch_label for

tag i.
– Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]

• Common to use heuristics to combine these techniques.

CIS 4521/5521: Compilers 37

ML-style Pattern Matching
• ML-style match statements are like C’s switch statements except:

– Patterns can bind variables
– Patterns can nest

• Compilation strategy:
– “Flatten” nested patterns into

matches against one constructor
at a time.

– Compile the match against the
tags of the datatype as for C-style switches.

– Code for each branch additionally must copy data from ⟦e⟧ to the
variables bound in the patterns.

• There are many opportunities for optimization, many papers about
“pattern-match compilation”
– Many of these transformations can be done at the AST level

CIS 4521/5521: Compilers 38

match e with
| Bar(z) -> e1
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with
| Bar(z) -> e1
| Baz(y, tmp) ->
 (match tmp with
 | Bar(w) -> e2
 | Baz(_, _) -> e3)

DATATYPES IN THE LLVM IR

Zdancewic CIS 4521/5521: Compilers 39

Structured Data in LLVM
• LLVM’s IR is uses types to describe the structure of data.

• <#elts> is an integer constant >= 0
• Structure types can be named at the top level:

– Such structure types can be recursive

Zdancewic CIS 4521/5521: Compilers 40

t ::=
 void
 i1 | i8 | i64 N-bit integers
 [<#elts> x t] arrays
 fty function types
 {t1, t2, … , tn} structures
 t* pointers
 %Tident named (identified) type

fty ::= Function Types
 t (t1, .., tn) return, argument types

%T1 = type {t1, t2, … , tn}

Example LL Types
• An array of 4521 integers: [4521 x i64]

• A two-dimensional array of integers: [3 x [4 x i64]]

• Structure for representing arrays with their length:
 { i64 , [0 x i64] }
– There is no array-bounds check; the static type information is only used

for calculating pointer offsets.

• C-style linked lists (declared at the top level):
 %Node = type { i64, %Node*}

• Structs from the C program shown earlier:
 %Rect = { %Point, %Point, %Point, %Point }
 %Point = { i64, i64 }

Zdancewic CIS 4521/5521: Compilers 41

getelementptr
• LLVM provides the getelementptr instruction to compute pointer

values
– Given a pointer and a “path” through the structured data pointed to by

that pointer, getelementptr computes an address
– This is the abstract analog of the X86 LEA (load effective address). It does

not access memory.
– It is a “type indexed” operation, since the size computations depend on

the type

• Example: access the x component of the first point of a rectangle:

Zdancewic CIS 4521/5521: Compilers 42

insn ::= …
 | getelementptr t* %val, t1 idx1, t2 idx2 ,…

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0

GEP Example*

Zdancewic CIS 4521/5521: Compilers 43

struct RT {
 int A;
 int B[10][20];
 int C;
}
struct ST {
 struct RT X;
 int Y;
 struct RT Z;
}
int *foo(struct ST *s) {
 return &s[1].Z.B[5][13];
}

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:
 %arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
 ret i32* %arrayidx
}

*adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction

1. %s is a pointer to an (array of) %ST structs,
suppose the pointer value is ADDR

2. Compute the index of the 1st element by
adding size_ty(%ST).

3. Compute the index of the Z field by
adding size_ty(%RT) +
size_ty(i32) to skip past X and Y.

4. Compute the index of the B field by
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer: ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)
 + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

getelementptr
• GEP never dereferences the address it’s calculating:

– GEP only produces pointers by doing arithmetic
– It doesn’t actually traverse the links of a datastructure

• To index into a deeply nested structure, need to “follow the pointer”
by loadingfrom the computed pointer
– See list.ll from HW3

Zdancewic CIS 4521/5521: Compilers 44

Compiling Datastructures via LLVM
1. Translate high level language types into an LLVM representation type.

– For some languages (e.g. C) this process is straight forward
• The translation simply uses platform-specific alignment and padding

– For other languages, (e.g. OO languages) there might be a fairly complex
elaboration.
• e.g. for Ocaml, arrays types might be translated to pointers to length-indexed

structs.

⟦int array⟧ = { i32, [0 x i32]}*

2. Translate accesses of the data into getelementptr operations:
– e.g. for Ocaml array size access:

⟦length a⟧ =
%1 = getelementptr {i32, [0xi32]}* %a, i32 0, i32 0

Zdancewic CIS 4521/5521: Compilers 45

Bitcast
• What if the LLVM IR’s type system isn’t expressive enough?

– e.g. if the source language has subtyping, perhaps due to inheritance
– e.g. if the source language has polymorphic/generic types

• LLVM IR provides a bitcast instruction
– This is a form of (potentially) unsafe cast. Misuse can cause serious bugs

(segmentation faults, or silent memory corruption)

Zdancewic CIS 4521/5521: Compilers 46

%rect2 = type { i64, i64 } ; two-field record
%rect3 = type { i64, i64, i64 } ; three-field record

define @foo() {
 %1 = alloca %rect3 ; allocate a three-field record
 %2 = bitcast %rect3* %1 to %rect2* ; safe cast
 %3 = getelementptr %rect2* %2, i32 0, i32 1 ; allowed
 …
}

LLVMLITE SPECIFICATION

Zdancewic CIS 4521/5521: Compilers 51

see HW3 lib/ll/ll.ml

Compiling LLVM locals
• How do we manage storage for each %uid defined by an LLVM

instruction?

• Option 1:
– Map each %uid to a x86 register
– Efficient!
– Difficult to do effectively: many %uid values, only 16 registers
– We will see how to do this later in the semester

• Option 2:
– Map each %uid to a stack-allocated space
– Less efficient!
– Simple to implement

• For HW3 we will follow Option 2

Zdancewic CIS 4521/5521: Compilers 52

Compiling LLVMlite Types to X86

• ⟦i1⟧, ⟦i64⟧, ⟦t*⟧ = quad word (8 bytes, 8-byte aligned)
• raw i8 values are not allowed (they must be manipulated via i8*)

• array and struct types are laid out sequentially in memory
(see today’s lecture)

Zdancewic CIS 4521/5521: Compilers 53

Other LLVMlite Features
• Globals

– must use %rip relative addressing

• Calls
– Follow x64 AMD ABI calling conventions
– Should interoperate with C programs

• More types: structured data records and arrays
• New instruction: getelementptr

– LLVM IR’s way of dealing with structured data
– trickiest part of the compilation process
– note: you can start HW3 before understanding getelementptr

• New instruction: bitcast
– convert between pointer types

Zdancewic CIS 4521/5521: Compilers 54

LLVMlite notes
• Real LLVM requires that constants appearing in getelementptr be

declared with type i32:

• LLVMlite ignores the i32 annotation and treats these as i64 values
– we keep the i32 annotation in the syntax to retain compatibility with the

clang compiler

Zdancewic CIS 4521/5521: Compilers 55

%struct = type { i64, [5 x i64], i64}

@gbl = global %struct {i64 1,
 [5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
 %1 = getelementptr %struct* @gbl, i32 0, i32 0
 …
}

