
CIS 4521/5521: COMPILERS
Lecture 9

Announcements
• HW2 – last minute git issues

– all submitted test cases are fine, but there was some last-minute scrambling
due to merge conflicts / accidental deletions

– going forward: please be careful
– we'll require test case submission 24 hours earlier
– (this also gives everyone time to test their code)

• HW3: LLVM Backend
– Available on the course web pages.
– Due: Weds., February 26th at 10:00PM
– Note: test cases should be submitted

24 hours earlier (so by Tues., Feb. 25th at 10pm)

• Midterm: March 6th

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– See Ed post (soon) for previous exams

Zdancewic CIS 4521/5521: Compilers 2

START EARLY!!

Plan for Today

1. Continue tour of datatypes
– tagged types / matching

2. LLVM IR's types
3. Overview of HW3

Zdancewic CIS 4521/5521: Compilers 3

TAGGED DATATYPES

Zdancewic CIS 4521/5521: Compilers 4

C-style Enumerations / ML-style datatypes

• In C:

• In ML:

• Associate an integer tag with each case: sun = 0, mon = 1, …
– C lets programmers choose the tags

• ML datatypes can also carry data:

• Representation: a foo value is a pointer to a pair: (tag, data)

• Example: tag(Bar) = 0, tag(Baz) = 1
⟦let f = Bar(3)⟧ =

⟦let g = Baz(4, f)⟧ =

CIS 4521/5521: Compilers 5

0 3f

1 4 fg

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

Switch Compilation
• Consider the C statement:
 switch (e) {
 case sun: s1; break;
 case mon: s2; break;
 …
 case sat: s3; break;
 }
• How to compile this?

– What happens if some of the break statements are omitted?
(Control falls through to the next branch.)

CIS 4521/5521: Compilers 6

Cascading ifs and Jumps
⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ =

• Each $tag1…$tagN
is just a constant
int tag value.

• Note: ⟦break;⟧
(within the
switch
branches)
is:
 br %merge
rather than
 br %b_(i+1)

CIS 4521/5521: Compilers 7

%tag = ⟦e⟧;
 br label %l1
l1: %cmp1 = icmp eq %tag, $tag1 ;; compare tags
 br %cmp1 label %b1, label %l2 ;; case 1 or case 2?
b1: ⟦s1⟧
 br label %b2 ;; fallthru to case 2

l2: %cmp2 = icmp eq %tag, $tag2 ;; compare tags
 br %cmp2 label %b2, label l3 ;; case 2 or case 3?
b2: ⟦s2⟧
 br label %b4 ;; ;; use %merge if break
…
lN: %cmpN = icmp eq %tag, $tagN
 br %cmpN label %bN, label %merge
bN: ⟦sN⟧
 br label %merge

merge:

Alternatives for Switch Compilation
• Nested if-then-else works OK in practice if # of branches is small

– (e.g. < 16 or so).

• For more branches, use better datastructures to organize the jumps:
– Create a table of pairs (v1, branch_label) and loop through
– Or, do binary search rather than linear search
– Or, use a hash table rather than binary search

• One common case: the tags are dense in some range
[min…max]
– Let N = max – min
– Create a branch table Branches[N]

 where Branches[i] is the branch_label for tag i.
– Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]

• Common to use heuristics to combine these techniques.

CIS 4521/5521: Compilers 8

ML-style Pattern Matching
• ML-style match statements are like C’s switch statements except:

– Patterns can bind variables
– Patterns can nest

• Compilation strategy:
– “Flatten” nested patterns into

matches against one constructor
at a time.

– Compile the match against the
tags of the datatype as for C-style switches.

– Code for each branch additionally must copy data from ⟦e⟧ to the
variables bound in the patterns.

• There are many opportunities for optimization, many papers about
“pattern-match compilation”
– Many of these transformations can be done at the AST level

CIS 4521/5521: Compilers 9

match e with
| Bar(z) -> e1
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with
| Bar(z) -> e1
| Baz(y, tmp) ->
 (match tmp with
 | Bar(w) -> e2
 | Baz(_, _) -> e3)

DATATYPES IN THE LLVM IR

Zdancewic CIS 4521/5521: Compilers 10

Structured Data in LLVM
• LLVM’s IR is uses types to describe the structure of data.

• <#elts> is an integer constant >= 0
• Structure types can be named at the top level:

– Such structure types can be recursive

Zdancewic CIS 4521/5521: Compilers 11

t ::=
 void
 i1 | i8 | i64 N-bit integers
 [<#elts> x t] arrays
 fty function types
 {t1, t2, … , tn} structures
 t* pointers
 %Tident named (identified) type

fty ::= Function Types
 t (t1, .., tn) return, argument types

%T1 = type {t1, t2, … , tn}

Example LL Types
• An array of 4521 integers: [4521 x i64]

• A two-dimensional array of integers: [3 x [4 x i64]]

• Structure for representing arrays with their length:
 { i64 , [0 x i64] }
– There is no array-bounds check; the static type information is only used

for calculating pointer offsets.

• C-style linked lists (declared at the top level):
 %Node = type { i64, %Node*}

• Structs from the C program shown earlier:
 %Rect = { %Point, %Point, %Point, %Point }
 %Point = { i64, i64 }

Zdancewic CIS 4521/5521: Compilers 12

Hiding Pointer Calculations

Question:

How do we abstract away from the details of pointer calculation?
– the low-level layout may be target dependent

Zdancewic CIS 4521/5521: Compilers 13

getelementptr
• LLVM provides the getelementptr instruction to compute pointer

values
– Given a pointer and a “path” through the structured data pointed to by

that pointer, getelementptr computes an address
– This is the abstract analog of the X86 leaq (load effective address)

instruction. It does not access memory.
– It is a “type indexed” operation, since the size computations depend on

the type

Zdancewic CIS 4521/5521: Compilers 14

insn ::= …
 | getelementptr t* %val, t1 idx1, t2 idx2 ,…

Example Uses of GEP
• Example: access the y component of the 2nd point of a rectangle:

Zdancewic CIS 4521/5521: Compilers 15

;; Type information
%Rect = { %Point, %Point, %Point, %Point }
%Point = { i64, i64 }

%tmp1 = getelementptr %Rect* %square, i32 0, i32 1
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 1

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.y%square

%tmp1 %tmp2

%tmp2 = getelementptr %Rect* %square, i32 0, i32 1, i32 1
%tmp2 can be equivalently calculated "all in one go" using a longer path:

GEP Example*

Zdancewic CIS 4521/5521: Compilers 16

struct RT {
 int A;
 int B[10][20];
 int C;
}
struct ST {
 struct RT X;
 int Y;
 struct RT Z;
}
int *foo(struct ST *s) {
 return &s[1].Z.B[5][13];
}

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:
 %arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
 ret i32* %arrayidx
}

*adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction

1. %s is a pointer to an (array of) %ST structs,
suppose the pointer value is ADDR

2. Compute the index of the 1st element by
adding size_ty(%ST).

3. Compute the index of the Z field by
adding size_ty(%RT) +
size_ty(i32) to skip past X and Y.

4. Compute the index of the B field by
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer: ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)
 + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

getelementptr
• GEP never dereferences the address it’s calculating:

– GEP only produces pointers by doing arithmetic
– It doesn’t actually traverse the links of a datastructure

• To index into a a linked-data structure that has embedded pointers,
you need to “follow the pointer” by using the load instruction from
the computed pointer
– See llprograms/list.ll from HW3 for an example

Zdancewic CIS 4521/5521: Compilers 17

Compiling Datastructures via LLVM
1. Translate high level language types into an LLVM representation type.

– For some languages (e.g. C) this process is straight forward
• The translation simply uses platform-specific alignment and padding

– For other languages, (e.g. OO languages) there might be a fairly complex
elaboration.
• e.g. for Ocaml, arrays types might be translated to pointers to length-indexed

structs.

⟦int array⟧ = { i32, [0 x i32]}*

2. Translate accesses of the data into getelementptr operations:
– e.g. for Ocaml array size access:

⟦length a⟧ =
%1 = getelementptr {i32, [0xi32]}* %a, i32 0, i32 0

Zdancewic CIS 4521/5521: Compilers 18

Bitcast
• What if the LLVM IR’s type system isn’t expressive enough?

– e.g. if the source language has subtyping, perhaps due to inheritance
– e.g. if the source language has polymorphic/generic types

• LLVM IR provides a bitcast instruction
– This is a form of (potentially) unsafe cast. Misuse can cause serious bugs

(segmentation faults, or silent memory corruption)

Zdancewic CIS 4521/5521: Compilers 19

%rect2 = type { i64, i64 } ; two-field record
%rect3 = type { i64, i64, i64 } ; three-field record

define @foo() {
 %1 = alloca %rect3 ; allocate a three-field record
 %2 = bitcast %rect3* %1 to %rect2* ; safe cast
 %3 = getelementptr %rect2* %2, i32 0, i32 1 ; allowed
 …
}

TOUR OF HW 3

Zdancewic CIS 4521/5521: Compilers 20

see HW3 and README

ll.ml.

LLVMLITE SPECIFICATION

Zdancewic CIS 4521/5521: Compilers 21

see HW3 lib/ll/ll.ml

LLVMlite vs "real" LLVM IR
• LLVM IR supports a few more types

– arbitrary bitwidth integers: i3, i17, i128, i12, iX
– packed structures, vectors

• LLVM IR has has more support for aggregate datatypes
– alloca can allocate arbitrary types in the stack
– there are operations for creating/manipulating such values (e.g., extractelement)

• There are a few other instructions:
– select – choose between values
– a few other kinds of control flow (for "exceptions" and "switch" statements)

• Pointer types can be written in an "undecorated form" as just ptr
– this saves type annotations and reduced the need for bitcast
– but is harder to debug

• So-called intrinsics
– special-purpose instructions named llvm.* that are treated by the compiler

e.g.: llvm.memcpy or llvm.log2

Zdancewic CIS 4521/5521: Compilers 22

LLVMlite notes
• Real LLVM requires that constants appearing in getelementptr be

declared with type i32:

• LLVMlite ignores the i32 annotation and treats these as i64 values
– we keep the i32 annotation in the syntax to retain compatibility with the

clang compiler

Zdancewic CIS 4521/5521: Compilers 23

%struct = type { i64, [5 x i64], i64}

@gbl = global %struct {i64 1,
 [5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
 %1 = getelementptr %struct* @gbl, i32 0, i32 0
 …
}

Compiling LLVM locals
• How do we manage storage for each %uid defined by an LLVM

instruction?

• Option 1:
– Map each %uid to a x86 register
– Efficient!
– Difficult to do effectively: many %uid values, only 16 registers
– We will see how to do this later in the semester

• Option 2:
– Map each %uid to a stack-allocated slot
– Less efficient!
– Simple to implement

• For HW3 we will follow Option 2

Zdancewic CIS 4521/5521: Compilers 24

Compiling LLVMlite Types to X86

• ⟦i1⟧, ⟦i64⟧, ⟦t*⟧ = quad word (8 bytes, 8-byte aligned)
• raw i8 values are not allowed (they must be manipulated via i8*)

• array and struct types are laid out sequentially in memory
(see today’s lecture)

Zdancewic CIS 4521/5521: Compilers 25

Other LLVMlite Features
• Globals

– must compile to use %rip relative addressing

• Calls/Function Bodies
– Follow x64 AMD ABI calling conventions
– Should interoperate with C programs

• More types: structured data records and arrays
• New instruction: getelementptr

– LLVM IR’s way of dealing with structured data
– trickiest part of the compilation process
– note: you can start HW3 before understanding getelementptr

• New instruction: bitcast
– convert between pointer types

Zdancewic CIS 4521/5521: Compilers 26

