
CIS 4521/5521: COMPILERS
Lecture 10

Announcements

• HW3: LLVM Backend
– Available on the course web pages.
– Due: Weds., February 26th at 10:00PM
– Note: test cases should be submitted

24 hours earlier (so by Tues., Feb. 25th at 10pm)

• Midterm: March 6th

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– See Ed post (soon) for previous exams

Zdancewic CIS 4521/5521: Compilers 2

START EARLY!!

LEXING

Zdancewic CIS 4521/5521: Compilers 3

Lexical analysis, tokens, regular expressions, automata

Compilation in a Nutshell

CIS 4521/5521: Compilers 4

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b,
0
 br i1 %cnd, label %l2,
label %l3
l2:
 store i64* %a, 1
 br label %l3
l3:

Today: Lexing

CIS 4521/5521: Compilers 5

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b,
0
 br i1 %cnd, label %l2,
label %l3
l2:
 store i64* %a, 1
 br label %l3
l3:

First Step: Lexical Analysis
• Change the character stream “if (b == 0) a = 0;” into tokens:

IF; LPAREN; Ident(“b”); EQEQ; Int(0); RPAREN; LBRACE;
Ident(“a”); EQ; Int(0); SEMI; RBRACE

• Token: data type that represents indivisible “chunks” of text:
– Identifiers: a y11 elsex _100
– Keywords: if else while
– Integers: 2 200 -500 5L
– Floating point: 2.0 .02 1e5
– Symbols: + * ` { } () ++ << >> >>>
– Strings: “x” “He said, \”Are you?\””
– Comments: (* CIS4521/5521: Project 1 … *) /* foo */

• Often delimited by whitespace (‘ ‘, \t, etc.)
– In some languages (e.g., Python or Haskell) whitespace is significant

CIS 4521/5521: Compilers 6

if (b == 0) { a = 0 ; }

DEMO: HANDLEX

Zdancewic CIS 4521/5521: Compilers 7

How hard can it be?
handlex0.ml and handlex.ml

Lexing By Hand
• How hard can it be?

– Tedious and painful!

CIS 4521/5521: Compilers 8

• Problems:
– Precisely define tokens

– Matching tokens simultaneously
– Reading too much input (need look ahead)
– Error handling
– Hard to compose/interleave tokenizer code
– Hard to maintain

PRINCIPLED SOLUTION TO
LEXING

Zdancewic CIS 4521/5521: Compilers 9

Regular Expressions
• Regular expressions precisely describe sets of strings.
• A regular expression R has one of the following forms:

– e Epsilon stands for the empty string
– ‘a’ An ordinary character stands for itself
– R1 | R2 Alternatives, stands for choice of R1 or R2
– R1R2 Concatenation, stands for R1 followed by R2
– R* Kleene star, stands for zero or more repetitions of R

• Useful extensions:
– “foo” Strings, equivalent to 'f''o''o'
– R+ One or more repetitions of R, equivalent to RR*
– R? Zero or one occurrences of R, equivalent to (e|R)
– ['a'-'z'] One of a or b or c or … z, equivalent to (a|b|…|z)
– [^'0'-'9'] Any character except 0 through 9
– R as x Name the string matched by R as x

CIS 4521/5521: Compilers 10

Example Regular Expressions
• Recognize the keyword “if”: ”if”
• Recognize a digit: ['0'-'9']
• Recognize an integer literal: '-'?['0'-'9']+
• Recognize an identifier:

 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|['A'-'Z'])*

• In practice, it’s useful to be able to name regular expressions:

let lowercase = ['a'-'z']
let uppercase = ['A'-'Z']
let character = uppercase | lowercase

CIS 4521/5521: Compilers 11

How to Match?
• Consider the input string: ifx = 0

– Could lex as: or as:

• Regular expressions alone are ambiguous: they need a rule for
choosing between the options above

• Most languages choose “longest match”
– So, the 2nd option above will be picked
– Note that only the first option is “correct” for parsing purposes

• Conflicts: arise due to two tokens whose regular expressions have a
shared prefix
– Ties broken by giving some matches higher priority
– Example: keywords have priority over identifiers
– Usually specified by order the rules appear in the lex input file

CIS 4521/5521: Compilers 12

if x = 0 ifx = 0

Lexer Generators
• Reads a list of regular expressions: R1,…,Rn , one per token.
• Each token has an attached “action” Ai (just a piece of code to run

when the regular expression is matched):

rule token = parse
| '-'?digit+ { Int (Int32.of_string (lexeme lexbuf)) }
| '+' { PLUS }
| 'if' { IF }
| character (digit|character|'_')* { Ident (lexeme lexbuf) }
| whitespace+ { token lexbuf }

• Generates scanning code that:
1. Decides whether the input is of the form (R1|…|Rn)*
2. Whenever the scanner matches a (longest) token, it runs the associated

action

CIS 4521/5521: Compilers 13

actions
token
regular expressions

DEMO: OCAMLLEX

Zdancewic CIS 4521/5521: Compilers 14

lexlex.mll

Implementation Strategies
• Most Tools: lex, ocamllex, flex, etc.:

– Table-based
– Deterministic Finite Automata (DFA)
– Goal: Efficient, compact representation, high performance

• Other approaches:
– Brzozowski derivatives
– Idea: directly manipulate the (abstract syntax of) the regular expression
– Compute partial “derivatives”

• Regular expression that is “left-over” after seeing the next character

– Elegant, purely functional, implementation
– (very cool!)

Zdancewic CIS 4521/5521: Compilers 15

Finite Automata
• Consider the regular expression: ‘”’[^’”’]*’”’
• An automaton (DFA) can be represented as:

– A transition table:

– A graph:

CIS 4521/5521: Compilers 16

" Non-"

0 1 ERROR

1 2 1

2 ERROR ERROR

0 1 2
" "

Non-"

RE to Finite Automaton?
• Can we build a finite automaton for every regular expression?

– Yes! Recall CIS 2620/5110 for the complete theory…

• Strategy: consider every possible regular expression (by induction on
the structure of the regular expressions):

CIS 4521/5521: Compilers 17

What about?

R1|R2

a'a'

e

R1 R2
??R1R2

Nondeterministic Finite Automata
• A finite set of states, a start state, and accepting state(s)
• Transition arrows connecting states

– Labeled by input symbols
– Or e (which does not consume input)

• Nondeterministic: two arrows leaving the same state may have the
same label

CIS 4521/5521: Compilers 18

a

b

e

e

b

a
a

RE to NFA?
• Converting regular expressions to NFAs is easy.
• Assume each NFA has one start state, unique accept state

CIS 4521/5521: Compilers 19

a

R1 R2
e

‘a’

e

R1R2

RE to NFA (cont’d)
• Sums and Kleene star are easy with NFAs

CIS 4521/5521: Compilers 20

R1

R2
e

e

e

e

R1|R2

R*
R

e e

e

e

DFA versus NFA
• DFA:

– Action of the automaton for each input is fully determined
– Automaton accepts if the input is consumed upon reaching an accepting

state
– Obvious table-based implementation

• NFA:
– Automaton potentially has a choice at every step
– Automaton accepts an input string if there exists a way to reach an

accepting state
– Less obvious how to implement efficiently

CIS 4521/5521: Compilers 21

NFA to DFA conversion (Intuition)
• Idea: Run all possible executions of the NFA “in parallel”
• Keep track of a set of possible states: “finite fingers”
• Consider: -?[0-9]+

• NFA representation:

• DFA representation:

CIS 4521/5521: Compilers 22

1 2 3
[0-9] e

[0-9]

0

e

-

{1}

{2,3}{0,1}

- [0-9]

[0-9]
[0-9]

Summary of Lexer Generator Behavior
• Take each regular expression Ri and it’s action Ai
• Compute the NFA formed by (R1 | R2 | … | Rn)

– Remember the actions associated with the accepting states of the Ri
• Compute the DFA for this big NFA

– There may be multiple accept states (why?)
– A single accept state may correspond to one or more actions (why?)

• Compute the minimal equivalent DFA
– There is a standard algorithm due to Myhill & Nerode

• Produce the transition table
• Implement longest match:

– Start from initial state
– Follow transitions, remember last accept state entered (if any)
– Accept input until no transition is possible (i.e. next state is “ERROR”)
– Perform the highest-priority action associated with the last accept state; if

no accept state there is a lexing error

CIS 4521/5521: Compilers 23

Lexer Generators in Practice
• Many existing implementations: lex, Flex, Jlex, ocamllex, …

– For example ocamllex program
• see lexlex.mll, olex.mll, piglatin.mll on course website

• Error reporting:
– Associate line number/character position with tokens
– Use a rule to recognize ‘\n’ and increment the line number
– The lexer generator itself usually provides character position info.

• Sometimes useful to treat comments specially
– Nested comments: keep track of nesting depth

• Lexer generators are usually designed to work closely with parser
generators…

CIS 4521/5521: Compilers 24

