
CIS 4521/5521: COMPILERS
Lecture 11

Announcements

• HW3: LLVM Backend
– Available on the course web pages.
– Due: Weds., February 26th at 10:00PM
– Note: test cases should be submitted

24 hours earlier
(so by Tues., Feb. 25th at 10pm)

• Midterm: March 6th

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– See Ed post (soon) for previous exams

Zdancewic CIS 4521/5521: Compilers 2

you should have
ALREADY
STARTED

PARSING

Zdancewic CIS 4521/5521: Compilers 3

Creating an abstract representation of program syntax.

Parsing

CIS 4521/5521: Compilers 4

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b,
0
 br i1 %cnd, label %l2,
label %l3
l2:
 store i64* %a, 1
 br label %l3
l3:

Parsing: Finding Syntactic Structure

CIS 4521/5521: Compilers 5

{
 if (b == 0) a = b;
 while (a != 1) {
 print_int(a);
 a = a – 1;
 }
}

Block

If While

Bop

b == 0

Bop

a != 1

Block

Expr

… …

Call

…

…

Source input

Abstract Syntax tree

Syntactic Analysis (Parsing): Overview
• Input: stream of tokens (generated by lexer)
• Output: abstract syntax tree

• Strategy:
– Parse the token stream to traverse the “concrete” syntax
– During traversal, build a tree representing the “abstract” syntax

• Why abstract? Consider these three different concrete inputs:
 a + b
 (a + ((b)))
 ((a) + (b))

• Note: parsing doesn’t check many things:
– Variable scoping, type agreement, initialization, …

CIS 4521/5521: Compilers 6

Bop

a + b

Same abstract syntax tree

Specifying Language Syntax
• First question: how to describe language syntax precisely and

conveniently?
• Previously we described tokens using regular expressions

– Easy to implement, efficient DFA representation
– Why not use regular expressions on tokens to specify programming

language syntax?

• Limits of regular expressions:
– DFA’s have only finite # of states
– So… DFA’s can’t “count”
– For example, consider the language of all strings that contain balanced

parentheses – easier than most programming languages, but not regular.

• So: we need more expressive power than DFA’s

CIS 4521/5521: Compilers 7

CONTEXT FREE GRAMMARS

Zdancewic CIS 4521/5521: Compilers 8

Context-free Grammars
• Here is a specification of the language of balanced parens:

• The definition is recursive – S mentions itself.

• Idea: “derive” a string in the language by starting with S and rewriting
according to the rules:
– Example:

S ⟼ (S)S ⟼ ((S)S)S ⟼ ((e)S)S ⟼((e)S)e ⟼ ((e)e)e = (())

• You can replace the nonterminal S by one of its definitions anywhere
• A context-free grammar accepts a string iff there is a derivation from

the start symbol

CIS 4521/5521: Compilers 9

S ⟼ (S)S

S ⟼ e

Note: Once again we
have to take care to
distinguish meta-language
elements (e.g. “S” and “⟼”)
from object-language
elements (e.g. “(“).*

* And, since we’re writing this description in English, we are
careful distinguish the meta-meta-language (e.g. words) from the
meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically
• A Context-free Grammar (CFG) consists of

– A set of terminals (e.g., a lexical token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions: LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example: The balanced parentheses language:

• How many terminals? How many nonterminals? Productions?

CIS 4521/5521: Compilers 10

S ⟼ (S)S

S ⟼ e

Another Example: Sum Grammar
• A grammar that accepts parenthesized sums of numbers:

 e.g.: (1 + 2 + (3 + 4)) + 5

• Note the vertical bar ‘|’ is shorthand for multiple productions:

 S ⟼ E + S 4 productions

 S ⟼ E 2 nonterminals: S, E
 E ⟼ number 4 terminals: (,), +, number
 E ⟼ (S) Start symbol: S

CIS 4521/5521: Compilers 11

S ⟼ E + S | E

E ⟼ number | (S)

Derivations in CFGs
• Example: derive (1 + 2 + (3 + 4)) + 5
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5

CIS 4521/5521: Compilers 12

S ⟼ E + S | E
E ⟼ number | (S)

For arbitrary strings a, b, g and
production rule A ⟼ b
a single step of the derivation is:

 aAg ⟼ abg

(substitute b for an occurrence of A)

In general, there are many possible
derivations for a given string.

Note: Underline indicates symbol
being expanded.

From Derivations to Parse Trees

• Tree representation of the
derivation

• Leaves of the tree are
terminals
– In-order traversal yields the

input sequence of tokens

• Internal nodes: nonterminals
• No information about the

order of the derivation steps

(1 + 2 + (3 + 4)) + 5

CIS 4521/5521: Compilers 13

Parse Tree

4

S

E + S

(S) E

E + S 5

1 E + S

2 E

(S)

E + S

3 ES ⟼ E + S | E
E ⟼ number | (S)

From Parse Trees to Abstract Syntax
• Parse tree:
“concrete syntax”

• Abstract syntax tree
(AST):

• Hides, or abstracts,
unneeded information.

CIS 4521/5521: Compilers 14

+

1 +

+ 5

2 +

3 4

4

S

E + S

(S) E

E + S 5

1 E + S

2 E

(S)

E + S

3 E

Derivation Orders
• Productions of the grammar can be applied in any order.
• There are two standard orders:

– Leftmost derivation: Find the left-most nonterminal and apply a
production to it.

– Rightmost derivation: Find the right-most nonterminal and apply a
production there.

• Note that both strategies (and any other) yield the same
parse tree!
– Parse tree doesn’t contain the information about what order the

productions were applied.

CIS 4521/5521: Compilers 15

Example: Left- and rightmost derivations

• Rightmost derivation:
• S ⟼ E + S

⟼ E + E
⟼ E + 5
⟼ (S) + 5
⟼ (E + S) + 5
⟼ (E + E + S) + 5
⟼ (E + E + E) + 5
⟼ (E + E + (S)) + 5
⟼ (E + E + (E + S)) + 5
⟼ (E + E + (E + E)) + 5
⟼ (E + E + (E + 4)) + 5
⟼ (E + E + (3 + 4)) + 5
⟼ (E + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + 5

CIS 4521/5521: Compilers 16

• Leftmost Derivation
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5

Loops and Termination
• Some care is needed when defining CFGs
• Consider:

– This grammar has nonterminal definitions that are “nonproductive”.
(i.e. they don’t mention any terminal symbols)

– There is no finite derivation starting from S, so the language is empty.

• Consider:

– This grammar is productive, but again there is no finite derivation starting from
S, so the language is empty

• It is easy to generalize these examples to a “chain” of many nonterminals,
which can be harder to find in a large grammar

• Upshot: be aware of “vacuously empty” CFG grammars.
– Every nonterminal should eventually rewrite to an alternative that contains

only terminal symbols.

Zdancewic CIS 4521/5521: Compilers 17

S ⟼ E
E ⟼ S

S ⟼ (S)

GRAMMARS FOR
PROGRAMMING LANGUAGES

Zdancewic CIS 4521/5521: Compilers 18

Associativity, ambiguity, and precedence.

Associativity

Leftmost derivation:
S ⟼ E + S
 ⟼ 1 + S
 ⟼ 1 + E + S
 ⟼ 1 + 2 + S
 ⟼ 1 + 2 + E
 ⟼ 1 + 2 + 3

Rightmost derivation:
S ⟼ E + S
 ⟼ E + E + S
 ⟼ E + E + E
 ⟼ E + E + 3
 ⟼ E + 2 + 3
 ⟼ 1 + 2 + 3

CIS 4521/5521: Compilers 19

S

E + S

1 E + S

2 E

3Parse Tree

3

+

1 +

2
AST

Consider the input: 1 + 2 + 3

S ⟼ E + S | E
E ⟼ number | (S)

Associativity
• This grammar makes ‘+’ right associative…

– i.e., the abstract syntax tree is the same for both
1 + 2 + 3 and 1 + (2 + 3)

• Note that the grammar is right recursive…

• How would you make ‘+’ left associative?
• What are the trees for “1 + 2 + 3”?

Zdancewic CIS 4521/5521: Compilers 20

S ⟼ E + S | E
E ⟼ number | (S)

S refers to itself
on the right of +

Ambiguity
• Consider this grammar:

• Claim: it accepts the same set of strings as the previous one.
• What’s the difference?
• Consider these two leftmost derivations:

– S ⟼ S + S ⟼ 1+ S ⟼ 1+ S + S ⟼ 1+2+ S ⟼ 1+2+3
– S ⟼ S + S ⟼ S + S + S ⟼ 1+ S + S ⟼ 1+2+ S ⟼ 1+2+3

• One derivation gives left
associativity, the other gives
right associativity to ‘+’
– Which is which?

CIS 4521/5521: Compilers 21

S ⟼ S + S | (S) | number

+ +

1 +

2 3

+ 3

1 2

AST 1 AST 2

Why do we care about ambiguity?
• The ‘+’ operation is associative, so it doesn’t matter which tree we

pick. Mathematically, x + (y + z) = (x + y) + z
– But, some binary operations aren’t associative. Examples?
– Some operations are only left (or right) associative. Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar
leads to ambiguity in their precedence

• Consider:

• Input: 1 + 2 * 3
– One parse = (1 + 2) * 3 = 9
– The other = 1 + (2 * 3) = 7

CIS 4521/5521: Compilers 22

*
+ 3

1 2

+

1 *

2 3

vs.

S ⟼ S + S | S * S | (S) | number

Eliminating Ambiguity
• We can often eliminate ambiguity by adding nonterminals and

allowing recursion only on the left (or right) .
• Higher-precedence operators go farther from the start symbol.

• Example:

• To disambiguate:
– Decide (following math) to make ‘*’ higher precedence than ‘+’

– Make ‘+’ left associative

– Make ‘*’ right associative

• Note:
– S2 corresponds to ‘atomic’

expressions

CIS 4521/5521: Compilers 23

S ⟼ S + S | S * S | (S) | number

S0 ⟼ S0 + S1 | S1

S1 ⟼ S2 * S1 | S2

S2 ⟼ number | (S0)

Context Free Grammars: Summary
• Context-free grammars allow concise specifications of

programming languages.
– An unambiguous CFG specifies how to parse: convert a token

stream to a (parse tree)

– Ambiguity can (often) be removed by encoding precedence and
associativity in the grammar.

• Even with an unambiguous CFG, there may be more than
one derivation
– Though all derivations correspond to the same abstract syntax tree.

• Still to come: finding a derivation
– But first: menhir

CIS 4521/5521: Compilers 24

LL & LR PARSING

Zdancewic CIS 4521/5521: Compilers 25

Searching for derivations.

CFGs Mathematically
• A Context-free Grammar (CFG) consists of

– A set of terminals (e.g., a token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions: LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example: The balanced parentheses language:

• How many terminals? How many nonterminals? Productions?

CIS 4521/5521: Compilers 26

S ⟼ (S)S

S ⟼ e

Consider finding left-most derivations
• Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input
S ((1 + 2 + (3 + 4)) + 5
⟼ E + S ((1 + 2 + (3 + 4)) + 5
⟼ (S) + S 1 (1 + 2 + (3 + 4)) + 5
⟼ (E + S) + S 1 (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) + S 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + E + S) + S 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) + S ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E) + S ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)) + S 3 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (E + S)) + S 3 (1 + 2 + (3 + 4)) + 5
⟼ …

CIS 4521/5521: Compilers 27

S ⟼ E + S | E
E ⟼ number | (S)

There is a problem
• We want to decide which production

to apply based on the look-ahead symbol.
• But, there is a choice:

(1) S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1)
vs.

(1) + 2 S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E
 ⟼ (1) + 2

• Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick
S ⟼ E or S ⟼ E + S first.

CIS 4521/5521: Compilers 28

S ⟼ E + S | E
E ⟼ number | (S)

LL(1) GRAMMARS

Zdancewic CIS 4521/5521: Compilers 29

Grammar is the problem
• Not all grammars can be parsed “top-down” with only a single

lookahead symbol.
• Top-down: starting from the start symbol (root of the parse tree) and

going down

• LL(1) means
– Left-to-right scanning
– Left-most derivation,
– 1 lookahead symbol

• This language isn’t “LL(1)”
• Is it LL(k) for some k?

• What can we do?

CIS 4521/5521: Compilers 30

S ⟼ E + S | E
E ⟼ number | (S)

Making a grammar LL(1)
• Problem: We can’t decide which S production to apply until we see

the symbol after the first expression.
• Solution: “Left-factor” the grammar. There is a common S prefix for

each choice, so add a new non-terminal S’ at the decision point:

• Also need to eliminate left-recursion somehow. Why?
• Consider:

CIS 4521/5521: Compilers 31

S ⟼ E + S | E
E ⟼ number | (S)

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

Infinite regress if we want to find the left-most derivation:
 S ⟼ S + E ⟼ S + E + E ⟼ S + E + E + E ⟼ S + E + E + E + E …
(this can't be resolved by left factoring!)

LL(1) Parse of the input string
• Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input
S ((1 + 2 + (3 + 4)) + 5
⟼ E S’ ((1 + 2 + (3 + 4)) + 5
⟼ (S) S’ 1 (1 + 2 + (3 + 4)) + 5
⟼ (E S’) S’ 1 (1 + 2 + (3 + 4)) + 5
⟼ (1 S’) S’ + (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) S’ 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + E S’) S’ 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 S’) S’ + (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) S’ ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E S’) S’ ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)S’) S’ 3 (1 + 2 + (3 + 4)) + 5

CIS 4521/5521: Compilers 32

S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

Predictive Parsing
• Given an LL(1) grammar:

– For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

– Top-down parsing = predictive parsing
– Driven by a predictive parsing table:

 nonterminal * input token → production

• Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 4521/5521: Compilers 33

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

How do we construct the parse table?
• Consider a given production: A à g
• Construct the set of all input tokens that may appear first in strings

that can be derived from g
– Add the production à g to the entry (A,token) for each such token.

• If g can derive e (the empty string), then we construct the set of all
input tokens that may follow the nonterminal A in the grammar.
– Add the production à g to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the
grammar is not LL(1)

CIS 4521/5521: Compilers 34

Example
• First(T) = First(S)
• First(S) = First(E)
• First(S’) = { + }
• First(E) = { number, ‘(‘ }

• Follow(S’) = Follow(S)
• Follow(S) = { $, ‘)’ } ∪ Follow(S’)

Zdancewic CIS 4521/5521: Compilers 35

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

Note: we want the least
solution to this system of set
equations… a fixpoint
computation. More on
these later in the course.

Converting the table to code
• Define n mutually recursive functions

– one for each nonterminal A: parse_A
– The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
– Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as

inputs, one for each nonterminal in the “factored” prefix.

• Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.
– Consume terminal tokens from the input stream
– Call parse_X to create sub-tree for nonterminal X
– If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
input.)

– Otherwise, this function builds the ast tree itself and returns it.

CIS 4521/5521: Compilers 36

DEMO: HANDWRITTEN.ML

Zdancewic CIS 4521/5521: Compilers 37

Hand-generated LL(1) code for the table above.

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

LL(1) Summary
• Top-down parsing that finds the leftmost derivation.
• Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser

• Problems:
– Grammar must be LL(1)
– Can extend to LL(k) (it just makes the table bigger)
– Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?

CIS 4521/5521: Compilers 38

LR GRAMMARS

Zdancewic CIS 4521/5521: Compilers 39

Bottom-up Parsing (LR Parsers)
• LR(k) parser:

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique: “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
– Better error detection/recovery

CIS 4521/5521: Compilers 40

Top-down vs. Bottom up
• Consider the left-

recursive grammar:

• (1 + 2 + (3 + 4)) + 5

• What part of the
tree must we
know after scanning
just “(1 + 2” ?

• In top-down, must
be able to guess
which productions
to use…

CIS 4521/5521: Compilers 41

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Top-down

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Bottom-up

Note: ‘(‘ has
been scanned
but not
consumed.
Processing it is
still pending.

S ⟼ S + E | E
E ⟼ number | (S)

Progress of Bottom-up Parsing
Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
E + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + E ⟻ (1 + 2 + (3 + 4)) + 5
S

CIS 4521/5521: Compilers 42

S ⟼ S + E | E
E ⟼ number | (S)

R
ig

ht
m

os
t d

er
iv

at
io

n

Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack
• Reduce: Replace symbols g at top of stack with nonterminal X such

that X ⟼ g is a production. (pop g, push X)
Stack Input Action
 (1 + 2 + (3 + 4)) + 5 shift (
(1 + 2 + (3 + 4)) + 5 shift 1
(1 + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(E + 2 + (3 + 4)) + 5 reduce: S ⟼ E
(S + 2 + (3 + 4)) + 5 shift +
(S + 2 + (3 + 4)) + 5 shift 2
(S + 2 + (3 + 4)) + 5 reduce: E ⟼ number

CIS 4521/5521: Compilers 43

S ⟼ S + E | E
E ⟼ number | (S)

DEMO: BOOLEAN LOGIC

Zdancewic CIS 4521/5521: Compilers 44

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

