Lecture 11

CIS 4521/5521: COMPILERS

Announcements

« HW3: LLVM Backend

— Available on the course web pages. you ShOUId have

— Due: Weds., February 26™ at 10:00PM ALREADY
— Note: test cases should be submitted

24 hours earlier STARTED

(so by Tues., Feb. 25™ at 10pm)

« Midterm: March 6th

— Inclass
— One-page, letter-sized, double-sided “cheat sheet” of notes permitted
— See Ed post (soon) for previous exams

Zdancewic CIS 4521/5521: Compilers

Creating an abstract representation of program syntax.

PARSING

Zdancewic CIS 4521/5521: Compilers 3

Source Code

(Character stream)
if (b==0) {a=1;}

Token stream:

ifl (|[b|=]0])]{

Abstract Syntax Tree:

Intermediate code:
11:

%scnd = icmp eq 164 %b,
None 0

br 11 %cnd, label %12,
label %13
12:
store 164* %a, 1

br label %13
13:

Assembly Code
11:

cmpg %eax, $0
jeq 12 (
jmp 13

12:

Parsing: Finding Syntactic Structure

{
if (b ==0) a = b;
while (a !'= 1) {
print_int(a);

a=a- 1;
} Block
} Source input
If While
Bop || Bop Block

b == 0 d = 1 \

Call

Abstract Syntax tree

CIS 4521/5521: Compilers

Syntactic Analysis (Parsing): Overview

* Input: stream of tokens (generated by lexer)
« Output: abstract syntax tree

« Strategy:
— Parse the token stream to traverse the “concrete” syntax
— During traversal, build a tree representing the “abstract” syntax

« Why abstract? Consider these three different concrete inputs:

e

a+b Bop
(a + ((b))) =~ /\\Same abstract syntax tree
((a) + (b))

- al |+ b

Note: parsing doesn’t check many things:
— Variable scoping, type agreement, initialization, ...

CIS 4521/5521: Compilers

Specifying Language Syntax

First question: how to describe language syntax precisely and
conveniently?

Previously we described tokens using regular expressions

— Easy to implement, efficient DFA representation

— Why not use regular expressions on tokens to specify programming
language syntax?

Limits of regular expressions:

— DFA’s have only finite # of states
— So... DFA’s can’t “count”

— For example, consider the language of all strings that contain balanced
parentheses — easier than most programming languages, but not regular.

So: we need more expressive power than DFA’s

CIS 4521/5521: Compilers

CONTEXT FREE GRAMMARS

Zdancewic CIS 4521/5521: Compilers

Context-free Grammars

* Here is a specification of the language of balanced parens:

Note: Once again we

S — (S)S have to take care to
distinguish meta-language
elements (e.g. “S” and “+")

S > & from object-language
elements (e.g. “(“).*

e The definition is recursive — S mentions itself.

* lIdea: “derive” a string in the language by starting with S and rewriting
according to the rules:

— Example:
S— (§)S— ((S)S)S— ((£)S)S—((eg)S)ew— ((gle)e= (())

* You can replace the nonterminal S by one of its definitions anywhere

* A context-free grammar accepts a string iff there is a derivation from
the start symbol

* And, since we're writing this description in English, we are
CIS 4521/5521: Compilers careful distinguish the meta-meta-language (e.g. words) from the 9
meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically

* A Context-free Grammar (CFG) consists of
— A set of terminals (e.g., a lexical token or ¢)
— Aset of nonterminals (e.g., S and other syntactic variables)
— A designated nonterminal called the start symbol
— A set of productions: ~ LHS +— RHS

* LHS is a nonterminal
* RHS is a string of terminals and nonterminals

« Example: The balanced parentheses language:

S+— (S)S

S ¢

* How many terminals? How many nonterminals? Productions?

CIS 4521/5521: Compilers

10

Another Example: Sum Grammar

« A grammar that accepts parenthesized sums of numbers:

S — E+S | E

E +— number | (S)

eg: (1 +2+ (3 +4)) +5

* Note the vertical bar ‘| is shorthand for multiple productions:

e

S—E+S 4 productions

S— E 2 nonterminals: S, E

E — number - 4 terminals: (,), +, number
E— (S) Start symbol: S

CIS 4521/5521: Compilers

11

Derivations in CFGs

» Example:derive (1 + 2 + (3 + 4)) + 5 GSwsE+S | E

* S—E+S
— (S) +S
— (E+S)+S
— (1 +S) +8S
— (1 +E+S) +S
— (1 + 2 +S) +S
— (1 + 2 +E) +S
— (1 + 2 + (S)) +S
— (1 + 2 + (E+S)) +5S
— (1 +2+ (3 +S)) +S
— (1 +2+ (3 +E)) +5S
— (1 +2+ (3 +4)) +S
— (1 +2+ (3 +4)) +E
— (1 +2+ (3 +4))+5

CIS 4521/5521: Compilers

E+— number | (S)

For arbitrary strings a, 8, v and
production rule A +— B
a single step of the derivation is:

aAy = aPy

(substitute for an occurrence of A)

In general, there are many possible
derivations for a given string.

Note: Underline indicates symbol
being expanded.

12

From Derivations to Parse Trees

* Tree representation of the PN
derivation E + S
* Leaves of the tree are : /SI\) é
terminals AN
— In-order traversal yields the E-+ S o
input sequence of tokens 1 E/]+\S Parse Tree
* Internal nodes: nonterminals |
* No information about the c F
N TN
order of the derivation steps (s)
TN
E + S
(1 +2+ (3 +4)) +5 | > | |
3 F

S—E+S | E
E— number | (S) |
CIS 4521/5521: Compilers 4 13

From Parse Trees to Abstract Syntax

* Parse tree: S * Abstract syntax tree
“concrete syntax” ZTN (AST):
E + S +
TN P
(S) E
AN o
E + S 5 RN
| AT e 1+
PES R
. 2
PON N
S) 3 4
E/I+\S Hides, or abstracts,
| unneeded information.
3 E

CIS 4521/5521: Compilers 4 14

Derivation Orders

* Productions of the grammar can be applied in any order.

 There are two standard orders:

— Leftmost derivation: Find the left-most nonterminal and apply a
production to it.

— Rightmost derivation: Find the right-most nonterminal and apply a
production there.

* Note that both strategies (and any other) yield the same
parse tree!

— Parse tree doesn’t contain the information about what order the
productions were applied.

CIS 4521/5521: Compilers 15

Example: Left- and rightmost derivations

Leftmost Derivation

S—E+S

— (S) +S

— (E+S)+S

— (1 +S) +S

— (1 +E+S) +8S

— (1 + 2 +S) +S

— (1 + 2 +E) +5S

— (1 + 2 + (S)) +S

— (1 + 2 + (E+S)) +S

— (1 + 2 + (3 +S)) +S
— (1 + 2 + (3 +E)) +S
— (1 +2 + (3 +4)) +S
— (1 +2 + (3 +4)) +E
— (1 +2+(3+4))+5

CIS 4521/5521: Compilers

Rightmost derivation:

S— E+S

— E+E

— E+ 5

— (S)+ 5

— (E+S) + 5

— (E+E+S) + 5

— (E+E+E) + 5

— (E+E+ (S)) + 5

— (E+E+ (E+S)) + 5

— (E+E+ (E+E)) + 5

— (E+E+ (E+ 4)) + 5
— (E+E+ (3 +4)) + 5
— (E+ 2 + (3 + 4)) +
— (1 + 2+ (3 +4)) +

16

Loops and Termination

Some care is needed when defining CFGs

Consider:
S— E

E— S

— This grammar has nonterminal definitions that are “nonproductive”.
(i.e. they don’t mention any terminal symbols)

— There is no finite derivation starting from S, so the language is empty.
Consider: S+— (S)

— This grammar is productive, but again there is no finite derivation starting from
S, so the language is empty

It is easy to generalize these examples to a “chain” of many nonterminals,
which can be harder to find in a large grammar

Upshot: be aware of “vacuously empty” CFG grammars.

— Every nonterminal should eventually rewrite to an alternative that contains
only terminal symbols.

Zdancewic CIS 4521/5521: Compilers 17

Associativity, ambiguity, and precedence.

GRAMMARS FOR
PROGRAMMING LANGUAGES

Zdancewic CIS 4521/5521: Compilers

Associativity

E +— number | (S) E + S
AN
1 E+ S

Consider the input: 1 + 2 + 3

I
)
Leftmost derivation: Rightmost derivation: Parce Trop |
S—E+S S—E+S 3
— 1 + S — E+E+S N
— 1 +E+S — E+E+E
— 1+ 2 +S — E+E+ 3 7N
—1 + 2 +E —E+ 2 + 3 - N
— 1 + 2 + 3 —1 + 2 + 3 2/\3

AST

CIS 4521/5521: Compilers 19

Associativity

 This grammar makes ‘+’ right associative...
— i.e., the abstract syntax tree is the same for both

1 + 2 + 3and1l + (2 + 3)
Note that the grammar is right recursive...

S refers to itself
S—E+S | E on the right of +

E+— number | (S)

» How would you make ‘+’ left associative?
* What are the trees for “1 + 2 + 3"¢

Zdancewic CIS 4521/5521: Compilers 20

Ambiguity
« Consider this grammar:

S+ S+S | (S) | number

« Claim: it accepts the same set of strings as the previous one.
* What's the difference?
« Consider these two leftmost derivations:

— S—S+S— 1+S+— 1+S+S+— 1+2+ S+ 1+2+3

- S$S—»S$S+S—S+S+S— 1+S+S+— 1+24+S+— 1+2+3

- +
* One derivation gives left N PN
associativity, the other gives + 3 1
right associativity to ‘+’ PN T

PN

AST 1 AST2

— Which is which?

CIS 4521/5521: Compilers

Why do we care about ambiguity?

* The '+’ operation is associative, so it doesn’t matter which tree we
pick. Mathematically, x+(y+2z)=(x+vy)+z

— But, some binary operations aren’t associative. Examples?

— Some operations are only left (or right) associative. Examples?

* Moreover, if there are multiple operations, ambiguity in the grammar
leads to ambiguity in their precedence

« Consider:

S+ S+S | S*S | (S) | number

¢ Input: 1 + 2 * 3 5 +
— Oneparse=(1 + 2) * 3=9 P N
— Theother=1 + (2 * 3) =7 + 3 VS. 1 x

N\ N\

1 2 2

CIS 4521/5521: Compilers 22

Eliminating Ambiguity

* We can often eliminate ambiguity by adding nonterminals and
allowing recursion only on the left (or right) .

* Higher-precedence operators go farther from the start symbol.
* Example:

S+— S+S | S*S | (S) | number

* To disambiguate:
— Decide (following math) to make ‘*” higher precedence than ‘+’

— Make ‘+’ left associative

— Make “*’ right associative Sy — S+ S; S,
* Note:
: S1 = 5 % 5y 5
— S, corresponds to ‘atomic’
expressions S, — number (Sp)

CIS 4521/5521: Compilers 23

Context Free Grammars: Summary

» Context-free grammars allow concise specifications of
programming languages.
— An unambiguous CFG specifies how to parse: convert a token
stream to a (parse tree)

— Ambiguity can (often) be removed by encoding precedence and
associativity in the grammar.

* Even with an unambiguous CFG, there may be more than
one derivation

— Though all derivations correspond to the same abstract syntax tree.

» Still to come: finding a derivation

— But first: menhir

CIS 4521/5521: Compilers 24

Searching for derivations.

LL & LR PARSING

Zdancewic CIS 4521/5521: Compilers

25

CFGs Mathematically

* A Context-free Grammar (CFG) consists of
— A set of terminals (e.g., a token or g)
— Aset of nonterminals (e.g., S and other syntactic variables)
— A designated nonterminal called the start symbol
— A set of productions: ~ LHS +— RHS

* LHS is a nonterminal
* RHS is a string of terminals and nonterminals

« Example: The balanced parentheses language:

S+— (S)S

S ¢

* How many terminals? How many nonterminals? Productions?

CIS 4521/5521: Compilers

26

Consider finding left-most derivations

S—E+S | E
E +— number | (S)

Look at only one input symbol at a time.

CIS 4521/5521: Compilers

Partly-derived String Look-ahead Parsed/Unparsed Input
S ((T+2+3+4)+5
— E+ S ((T+2+3+4)+5
— (8 + S 1 (T+2+3+4)+5
— (E+9S)+ S 1 (T+2+3+4)+5
—(1+8+S 2 (T+2+3+4)+5
— (1T+E+S)+S 2 (T+2+3+4)+5

+2+8)+S ((T+2+3+4)+5
+2+E+S ((T+2+3+4)+5
+24+(08)+S 3 (T+2+3+4)+5
+2+(E+S)+S 3 (T+2+3+4)+5

There is a problem

* We want to decide which production S—E+S | E
to apply based on the look-ahead symbol. E — number | (S)

« But, there is a choice:

(1) St— E|— (S) — (F) — (1)

M+2 [SL,E+S—S)+S—E+S—(1)+S—(1)+E
— (1) + 2

* Given the look-ahead symbol: ‘(" it isnt clear whether to pick
S—E or S—E+S first

CIS 4521/5521: Compilers

28

LL(1T) GRAMMARS

Zdancewic CIS 4521/5521: Compilers

Grammar is the problem

* Not all grammars can be parsed “top-down” with only a single
lookahead symbol.

« Top-down: starting from the start symbol (root of the parse tree) and
going down

 LL(1) means
— Left-to-right scanning S—E+5 | E

— Left-most derivation, F — number | (S)
— 1 lookahead symbol

 This language isn’t “LL(1)”
* s it LL(k) for some k?

What can we do?

CIS 4521/5521: Compilers 30

Making a grammar LL(1)

Problem: We can’t decide which S production to apply until we see
the symbol after the first expression.

Solution: “Left-factor” the grammar. There is a common S prefix for
each choice, so add a new non-terminal S’ at the decision point:

S—E+S | E S — EY
E+— number | (S) > § g
S"+— +S

E +— number | (S)

Also need to eliminate left-recursion somehow. Why?

Consider: g+ S+ E | E
E +— number | (S)
Infinite regress if we want to find the left-most derivation:

S—S+E—S+E+E—S+E+E+E—S+E+E+E+E ...
(this can't be resolved by left factoring!)

CIS 4521/5521: Compilers

LL(1) Parse of the input string

* Look at only one input symbol at a time. § s ES’
S"+— ¢
S"+— +S
E — number | (S

Partly-derived String Look-ahead Parsed/Unparsed Input

S ((1T+2+3+4)+5

— E S’ (1T+2+3+4)+5
— (S) § 1 T+2+3+4)+5
— (ES) S 1 1T+2+3+4)+5
— (185 + (1T+2+3+4)+5
— (1+9) 5 2 (1T+2+3+4)+5
— (1T +ES)S 2 (1T+2+B3+4)+5
— (1+28)5 + (1T+2+3+4)+5
— (1+2+9 Y ((1T+2+3+4)+5
— (1+2+ES)S ((1T+2+3+4)+5
— 3 (1 ()

1+2+(08S5)S +2+3+4)+

CIS 4521/5521: Compilers

Predictive Parsing

* Given an LL(T) grammar:

— For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

— Top-down parsing = predictive parsing T —S$

S — EY

S '+ &

S"— + S

E — number | (S

—m---

— Driven by a predictive parsing table:
nonterminal * input token — production

— S$
— E S —E S’

— + S — g — €
— num. — (S)

* Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 4521/5521: Compilers 33

How do we construct the parse table?

« Consider a given production: A 2>y
« Construct the set of all input tokens that may appear first in strings
that can be derived from vy
— Add the production = v to the entry (A, token) for each such token.

 If y can derive ¢ (the empty string), then we construct the set of all
input tokens that may fo/low the nonterminal A in the grammar.

— Add the production = v to the entry (A, token) for each such token.

* Note: if there are two different productions for a given entry, the
grammar is not LL(T)

CIS 4521/5521: Compilers 34

Example

* First(T) = First(S)
+ First(S) = First(E) g - Eg
e First(S) ={+} S s ¢
* First(E) = { number, ‘(* } S/ — + S
E +— number | (S)
* Follow(S’) = Follow(S) PN

Note: we want the least

* Follow(S) = { $, Y }1U Follow(S’) solution to this system of set

equations... a fixpoint
computation. More on
these later in the course.

> g > g

Zdancewic CIS 4521/5521: Compilers 35

Converting the table to code

* Define n mutually recursive functions
— one for each nonterminal A: parse_A
— The type of parse_A isunit -> ast if A is not an auxiliary nonterminal

— Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as
inputs, one for each nonterminal in the “factored” prefix.

 Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.

— Consume terminal tokens from the input stream
— Call parse_X to create sub-tree for nonterminal X

— If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
Input.)

— Otherwise, this function builds the ast tree itself and returns it.

CIS 4521/5521: Compilers 36

_W---

— S$ —S$
— E S —E S’

— + S — g — g

— num. — (S)

Hand-generated LL(1) code for the table above.

DEMO: HANDWRITTEN.ML

Zdancewic CIS 4521/5521: Compilers

37

LL(1) Summary

« Top-down parsing that finds the leftmost derivation.

« Language Grammar = LL(1) grammar = prediction table = recursive-
descent parser

* Problems:
— Grammar must be LL(1)
— Can extend to LL(k) (it just makes the table bigger)

— Grammar cannot be left recursive (parser functions will loop!)

* Is there a better way?

CIS 4521/5521: Compilers 38

LR GRAMMARS

Zdancewic CIS 4521/5521: Compilers

Bottom-up Parsing (LR Parsers)

* LR(k) parser:
— Left-to-right scanning
— Rightmost derivation
— k lookahead symbols

* LR grammars are more expressive than LL
— Can handle left-recursive (and right recursive) grammars; virtually all
programming languages
— Easier to express programming language syntax (no left factoring)

» Technique: “Shift-Reduce” parsers
— Work bottom up instead of top down
— Construct right-most derivation of a program in the grammar
— Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
— Better error detection/recovery

CIS 4521/5521: Compilers 40

Top-down vs. Bottom up

 Consider the left- S
recursive grammar: PN
S + E
S—S+E | E | |
E+— number | (S) E 5
¢« (1+2+(3+4))+5 ZIN
(S)
* What part of the S/I-I-\E
free must we
know after scanning ZIN AN
just“(1 + 277 S + E(S
I | TN
* In top-down, must E 25 +
be able to guess | |
which productions 1 E 4
to use... |
3
Top-down

CIS 4521/5521: Compilers

S
N

Note: ‘(“has § 4+ F

been scanned

but not I I
consumed. E 5
Processing it is

stillpending./]\
P S)

TN AT
TN

S + E
|
E
I

+
M
o
W
~

|
2
4

3

Bottom-up
41

Progress of Bottom-up Parsing

Reductions

(1 +2+(3+4)) + 5
(E+ 2+ (3 +4)) + 5«
(S+ 2+ (3 +4)) + 5
(S+E+ (3 +4)) + 5«
(S+ (3 +4)) + 5
(S+ (E+ 4)) + 5 ¢
(S+ (S+ 4)) + 5«
(S+ (S+E)) + 5 ¢

(S+ (8)) + 5«

(S+E) + 5 ¢

(S) + 5«

E+ 5«

htmost derivation

Ri

S+ 5 &
S + E «—

S

CIS 4521/5521: Compilers

(

(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
(1

+ + + + + + + + 4+ + o+

N N N N DN N N DN DN NN
+ + + 4+ + + + + +

Scanned

(3
(3
(3
(3
(3
(3
(3
(3
(3

Input Remaining

(1 +2+ (3 +4)) +5
1+2+ (3 +4)) +5
2 + (3 +4)) +5
(3 +4)) +5

(3 +4)) +5
4)) + 5

4)) + 5

+ + + + + + +

S—S+E | E
E+— number | (S)

Shift/Reduce Parsing

* Parser state: S—S+E | E
— Stack of terminals and nonterminals. E+— number | (S)
— Unconsumed input is a string of terminals
— Current derivation step is stack + input

 Parsing is a sequence of shift and reduce operations:
* Shift: move look-ahead token to the stack

» Reduce: Replace symbols y at top of stack with nonterminal X such
that X + y is a production. (pop v, push X)
Stack Input Action

(1 +2 + (3 +4)) + 5 shift (
(1+ 2+ (3 +4)) +5 shift1
(1 + 2+ (3+4)) +5 reduce: E — number
(E + 2+ (3 +4)) +5 reduce: S — E
(S + 2+ (3 +4)) +5 shift +
(S + 2 + (3 +4)) +5 shift 2
(S+ 2 + (3 +4)) +5 reduce: E — number

CIS 4521/5521: Compilers

43

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC

Zdancewic CIS 4521/5521: Compilers 44

