
CIS 4521/5521: COMPILERS
Lecture 11



Announcements

• HW3: LLVM Backend
– Available on the course web pages.
– Due: Weds., February 26th at 10:00PM
– Note: test cases should be submitted 

24 hours earlier 
(so by Tues., Feb. 25th at 10pm)

• Midterm: March 6th

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– See Ed post (soon) for previous exams
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you should have
ALREADY 
STARTED



PARSING
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Creating an abstract representation of program syntax.



Parsing
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Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
  cmpq %eax, $0
  jeq l2
  jmp l3
l2:
  …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if ( b == 0 ) { a = 0 ; }

Analysis & 
Transformation

Intermediate code:
l1:
  %cnd = icmp eq i64 %b, 
0 
  br i1 %cnd, label %l2, 
label %l3
l2:
  store i64* %a, 1
  br label %l3
l3:



Parsing: Finding Syntactic Structure
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{
  if (b == 0) a = b;
  while (a != 1) {
    print_int(a);
    a = a – 1;
  }
}

Block

If While

Bop

b == 0

Bop

a != 1

Block

Expr

… …

Call

…

…

Source input

Abstract Syntax tree



Syntactic Analysis (Parsing): Overview
• Input: stream of tokens  (generated by lexer)
• Output: abstract syntax tree

• Strategy:
– Parse the token stream to traverse the “concrete” syntax
– During traversal, build a tree representing the “abstract” syntax

• Why abstract?  Consider these three different concrete inputs:
 a + b
 (a + ((b)))
 ((a) + (b))

• Note: parsing doesn’t check many things:
– Variable scoping, type agreement, initialization, …
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Bop

a + b

Same abstract syntax tree



Specifying Language Syntax
• First question: how to describe language syntax precisely and 

conveniently?
• Previously we described tokens using regular expressions

– Easy to implement, efficient DFA representation
– Why not use regular expressions on tokens to specify programming 

language syntax?

• Limits of regular expressions:
– DFA’s have only finite # of states
– So… DFA’s can’t “count” 
– For example, consider the language of all strings that contain balanced 

parentheses – easier than most programming languages, but not regular.

• So: we need more expressive power than DFA’s 
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CONTEXT FREE GRAMMARS
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Context-free Grammars
• Here is a specification of the language of balanced parens:

• The definition is recursive – S mentions itself.

• Idea: “derive” a string in the language by starting with S and rewriting 
according to the rules:
– Example:   

S ⟼  (S)S ⟼ ((S)S)S ⟼ ((e)S)S ⟼((e)S)e ⟼ ((e)e)e = (())

• You can replace the nonterminal S by one of its definitions anywhere
• A context-free grammar accepts a string iff there is a derivation from 

the start symbol
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S ⟼ (S)S

S ⟼ e

Note: Once again we 
have to take care to
distinguish meta-language
elements (e.g. “S” and “⟼”) 
from object-language 
elements (e.g. “(“ ).*

* And, since we’re writing this description in English, we are
careful distinguish the meta-meta-language (e.g. words) from the
meta-language and object-language (e.g. symbols) by using quotes.



CFGs Mathematically
• A Context-free Grammar (CFG) consists of 

– A set of terminals  (e.g., a lexical token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions:      LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example:   The balanced parentheses language:

• How many terminals?  How many nonterminals? Productions?
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S ⟼ (S)S

S ⟼ e



Another Example: Sum Grammar
• A grammar that accepts parenthesized sums of numbers:

  e.g.:  (1 + 2 + (3 + 4)) + 5

• Note the vertical bar ‘|’ is shorthand for multiple productions:

 S ⟼ E + S    4 productions

 S ⟼ E     2 nonterminals: S, E
 E ⟼ number   4 terminals: (, ), +, number
 E ⟼ (S)     Start symbol: S
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S  ⟼  E + S  |   E

E  ⟼  number |   ( S )



Derivations in CFGs
• Example: derive (1 + 2 + (3 + 4)) + 5
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S  
⟼ (1 + S) + S      
⟼ (1 + E + S) + S     
⟼ (1 + 2 + S) + S           
⟼ (1 + 2 + E) + S     
⟼ (1 + 2 + (S)) + S    
⟼ (1 + 2 + (E + S)) + S    
⟼ (1 + 2 + (3 + S)) + S   
⟼ (1 + 2 + (3 + E)) + S   
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E   
⟼ (1 + 2 + (3 + 4)) + 5      
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S ⟼ E + S  |  E
E ⟼ number | ( S )

For arbitrary strings a, b, g and
production rule   A ⟼ b
a single step of the derivation is:

  aAg  ⟼   abg

( substitute b for an occurrence of A)

In general, there are many possible
derivations for a given string.

Note: Underline indicates symbol
being expanded.



From Derivations to Parse Trees

• Tree representation of the 
derivation

• Leaves of the tree are 
terminals
– In-order traversal yields the 

input sequence of tokens

• Internal nodes: nonterminals 
• No information about the 

order of the derivation steps

(1 + 2 + (3 + 4)) + 5     
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Parse Tree

4

S

E   +   S

(    S    ) E

E   +   S 5

1 E   +   S

2 E

(    S    )

E   +   S

3 ES ⟼ E + S  |  E
E ⟼ number | ( S )



From Parse Trees to Abstract Syntax
• Parse tree:
“concrete syntax”

• Abstract syntax tree 
(AST):

• Hides, or abstracts, 
unneeded information.
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+

1 +

+ 5

2 +

3 4

4

S

E   +   S

(    S    ) E

E   +   S 5

1 E   +   S

2 E

(    S    )

E   +   S

3 E



Derivation Orders
• Productions of the grammar can be applied in any order.
• There are two standard orders:

– Leftmost derivation: Find the left-most nonterminal and apply a 
production to it.

– Rightmost derivation: Find the right-most nonterminal and apply a 
production there.

• Note that both strategies (and any other) yield the same 
parse tree!
– Parse tree doesn’t contain the information about what order the 

productions were applied.
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Example: Left- and rightmost derivations

• Rightmost derivation:
• S ⟼ E + S

⟼ E + E
⟼ E + 5
⟼ (S) + 5
⟼ (E + S) + 5
⟼ (E + E + S) + 5
⟼ (E + E + E) + 5
⟼ (E + E + (S)) + 5
⟼ (E + E + (E + S)) + 5
⟼ (E + E + (E + E)) + 5
⟼ (E + E + (E + 4)) + 5
⟼ (E + E + (3 + 4)) + 5
⟼ (E + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + 5
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• Leftmost Derivation
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S 
⟼ (1 + E + S) + S 
⟼ (1 + 2 + S) + S       
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S 
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5      



Loops and Termination
• Some care is needed when defining CFGs
• Consider:

– This grammar has nonterminal definitions that are “nonproductive”.
(i.e. they don’t mention any terminal symbols)

– There is no finite derivation starting from S, so the language is empty.

• Consider:

– This grammar is productive, but again there is no finite derivation starting from 
S, so the language is empty

• It is easy to generalize these examples to a “chain” of many nonterminals, 
which can be harder to find in a large grammar

• Upshot:  be aware of “vacuously empty” CFG grammars.
– Every nonterminal should eventually rewrite to an alternative that contains 

only terminal symbols.
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S ⟼   E
E ⟼   S

S ⟼   ( S )



GRAMMARS FOR 
PROGRAMMING LANGUAGES
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Associativity, ambiguity, and precedence.



Associativity

Leftmost derivation:
S ⟼ E + S 
 ⟼ 1 + S  
 ⟼ 1 + E + S 
 ⟼ 1 + 2 + S 
 ⟼ 1 + 2 + E 
 ⟼ 1 + 2 + 3

Rightmost derivation:
S ⟼ E + S 
 ⟼ E + E + S 
 ⟼ E + E + E
 ⟼ E + E + 3
 ⟼ E + 2 + 3
 ⟼ 1 + 2 + 3 
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S  

E   +   S

1 E   +   S

2 E

3Parse Tree

3

+

1 +

2
AST

Consider the input:    1 + 2 + 3

S ⟼ E + S  |  E
E ⟼ number | ( S )



Associativity
• This grammar makes ‘+’  right associative…

– i.e., the abstract syntax tree is the same for both 
1 + 2 + 3 and 1 + (2 + 3)

• Note that the grammar is right recursive…

• How would you make ‘+’ left associative?  
• What are the trees for “1 + 2 + 3”?
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S ⟼ E + S  |  E
E ⟼ number | ( S )

S refers to itself
on the right of +



Ambiguity
• Consider this grammar:

• Claim: it accepts the same set of strings as the previous one.
• What’s the difference?
• Consider these two leftmost derivations:

– S ⟼ S + S ⟼ 1+ S ⟼ 1+ S + S ⟼ 1+2+ S ⟼ 1+2+3
– S ⟼ S + S ⟼ S + S + S ⟼ 1+ S + S ⟼ 1+2+ S ⟼ 1+2+3

• One derivation gives left
associativity, the other gives
right associativity to ‘+’
– Which is which?
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S ⟼   S + S   |  ( S )  |  number

+ +

1 +

2 3

+ 3

1 2

AST 1 AST 2



Why do we care about ambiguity?
• The ‘+’ operation is associative, so it doesn’t matter which tree we 

pick.  Mathematically,   x + (y + z) = (x + y) + z
– But, some binary operations aren’t associative.    Examples?
– Some operations are only left (or right) associative.  Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar 
leads to ambiguity in their precedence

• Consider:  

• Input: 1 + 2 * 3
– One parse = (1 + 2) * 3 = 9
– The other = 1 + (2 * 3) = 7
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*
+ 3

1 2

+

1 *

2 3

vs.

S ⟼   S + S   |   S * S  |  ( S )  |  number



Eliminating Ambiguity
• We can often eliminate ambiguity by adding nonterminals and 

allowing recursion only on the left (or right) .
• Higher-precedence operators go farther from the start symbol.

• Example:  

• To disambiguate:  
– Decide (following math) to make ‘*’ higher precedence than ‘+’

– Make ‘+’ left associative

– Make ‘*’ right associative

• Note:
– S2 corresponds to ‘atomic’

expressions
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S ⟼   S + S   |   S * S  |  ( S )  |  number

S0 ⟼   S0 + S1 |   S1

S1  ⟼   S2 * S1  |   S2

S2  ⟼   number | ( S0) 



Context Free Grammars: Summary
• Context-free grammars allow concise specifications of 

programming languages.
– An unambiguous CFG specifies how to parse: convert a token 

stream to a (parse tree)

– Ambiguity can (often) be removed by encoding precedence and 
associativity in the grammar.

• Even with an unambiguous CFG, there may be more than 
one derivation 
– Though all derivations correspond to the same abstract syntax tree.

• Still to come:  finding a derivation
– But first: menhir
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LL & LR PARSING
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Searching for derivations.



CFGs Mathematically
• A Context-free Grammar (CFG) consists of 

– A set of terminals  (e.g., a token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions:      LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example:   The balanced parentheses language:

• How many terminals?  How many nonterminals? Productions?
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S ⟼ (S)S

S ⟼ e



Consider finding left-most derivations
• Look at only one input symbol at a time.

Partly-derived String  Look-ahead  Parsed/Unparsed Input
S      (   (1 + 2 + (3 + 4)) + 5
⟼ E + S     (   (1 + 2 + (3 + 4)) + 5
⟼ (S) + S    1   (1 + 2 + (3 + 4)) + 5
⟼ (E + S) + S    1   (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) + S   2   (1 + 2 + (3 + 4)) + 5
⟼ (1 + E + S) + S   2   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) + S   (   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E) + S   (   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)) + S  3   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (E + S)) + S 3   (1 + 2 + (3 + 4)) + 5
⟼ …
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S ⟼ E + S  |  E
E ⟼ number | ( S )



There is a problem
• We want to decide which production

to apply based on the look-ahead symbol.
• But, there is a choice:

(1)  S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1)
vs.

(1) + 2 S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E  
          ⟼  (1) + 2

• Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick 
S ⟼ E      or    S ⟼ E + S   first.
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S ⟼ E + S  |  E
E ⟼ number | ( S )



LL(1) GRAMMARS
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Grammar is the problem
• Not all grammars can be parsed “top-down” with only a single 

lookahead symbol.
• Top-down: starting from the start symbol (root of the parse tree) and 

going down

• LL(1)    means   
– Left-to-right scanning
– Left-most derivation, 
– 1 lookahead symbol

• This language isn’t “LL(1)”
• Is it LL(k) for some k?

• What can we do?
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S ⟼ E + S  |  E
E ⟼ number | ( S )



Making a grammar LL(1)
• Problem: We can’t decide which S production to apply until we see 

the symbol after the first expression.
• Solution: “Left-factor” the grammar.  There is a common S prefix for 

each choice, so add a new non-terminal S’ at the decision point:

• Also need to eliminate left-recursion somehow.  Why?
• Consider:
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S ⟼ E + S  |  E
E ⟼ number | ( S )

S ⟼ S + E  |  E
E ⟼ number | ( S )

S  ⟼ ES’
S’ ⟼ e 
S’ ⟼ + S
E  ⟼ number | ( S )

Infinite regress if we want to find the left-most derivation:
 S ⟼ S + E ⟼ S + E + E ⟼ S + E + E + E ⟼ S + E + E + E + E …
(this can't be resolved by left factoring!)



LL(1) Parse of the input string
• Look at only one input symbol at a time.

Partly-derived String  Look-ahead  Parsed/Unparsed Input
S      (   (1 + 2 + (3 + 4)) + 5
⟼ E S’     (   (1 + 2 + (3 + 4)) + 5
⟼ (S) S’     1   (1 + 2 + (3 + 4)) + 5
⟼ (E S’) S’    1   (1 + 2 + (3 + 4)) + 5
⟼ (1 S’) S’    +   (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) S’    2   (1 + 2 + (3 + 4)) + 5
⟼ (1 + E S’) S’   2   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 S’) S’   +   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) S’   (   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E S’) S’  (   (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)S’) S’  3   (1 + 2 + (3 + 4)) + 5
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S  ⟼ ES’
S’ ⟼ e 
S’ ⟼ + S
E  ⟼ number | ( S )



Predictive Parsing
• Given an LL(1) grammar:

– For a given nonterminal, the lookahead symbol uniquely determines the 
production to apply.

– Top-down parsing = predictive parsing
– Driven by a predictive parsing table:  

   nonterminal * input token → production

• Note: it is convenient to add a special end-of-file token $ and a start 
symbol T (top-level) that requires $.
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number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ ( S )

T  ⟼ S$
S  ⟼ ES’
S’ ⟼ e 
S’ ⟼ + S
E  ⟼ number | ( S )



How do we construct the parse table?
• Consider a given production:   A à g
• Construct the set of all input tokens  that may appear first in strings 

that can be derived from g
– Add the production à g to the entry (A,token) for each such token.

• If g can derive e (the empty string), then we construct the set of all 
input tokens that may follow the nonterminal A in the grammar.
– Add the production à g to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the 
grammar is not LL(1)
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Example
• First(T) = First(S)
• First(S) = First(E)
• First(S’) = { + }
• First(E) = { number, ‘(‘ }

• Follow(S’) = Follow(S)
• Follow(S) = { $, ‘)’ } ∪ Follow(S’)
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number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ ( S )

T  ⟼ S$
S  ⟼ ES’
S’ ⟼ e 
S’ ⟼ + S
E  ⟼ number | ( S )

Note: we want the least 
solution to this system of set 
equations… a fixpoint 
computation.  More on 
these later in the course.



Converting the table to code
• Define n mutually recursive functions

– one for each nonterminal A:  parse_A
– The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
– Parse functions for auxiliary nonterminals (e.g. S’)  take extra ast’s as 

inputs, one for each nonterminal in the “factored” prefix.

• Each function “peeks” at the lookahead token and then follows the 
production rule in the corresponding entry.
– Consume terminal tokens from the input stream
– Call parse_X to create sub-tree for nonterminal X
– If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s. 

(The auxiliary rule is responsible for creating the ast after looking at more 
input.)

– Otherwise, this function builds the ast tree itself and returns it.
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DEMO: HANDWRITTEN.ML
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Hand-generated LL(1) code for the table above.

number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ ( S )



LL(1) Summary
• Top-down parsing that finds the leftmost derivation.
• Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser

• Problems: 
– Grammar must be LL(1)
– Can extend to LL(k)  (it just makes the table bigger)
– Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?
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LR GRAMMARS
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Bottom-up Parsing  (LR Parsers)
• LR(k) parser:  

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all 

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique:  “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
– Better error detection/recovery
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Top-down vs. Bottom up
• Consider the left-

recursive grammar:

• (1 + 2 + (3 + 4)) + 5

• What part of the
tree must we 
know after scanning
just “(1 + 2” ?

• In top-down, must
be able to guess
which productions
to use…
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S

S   +   E

E 5

S   +   E

1

S   +   E

E 2

(    S    )

E 4

(   S   )

S   +   E

3
Top-down

S

S   +   E

E 5

S   +   E

1

S   +   E

E 2

(   S  )

E 4

(   S   )

S   +   E

3
Bottom-up

Note: ‘(‘ has 
been scanned 
but not 
consumed.  
Processing it is 
still pending.

S ⟼ S + E  |  E
E ⟼ number | ( S )



Progress of Bottom-up Parsing
Reductions     Scanned    Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻      (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻ (        1 + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻ (1     + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻ (1 + 2    + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻  (1 + 2    + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻  (1 + 2 + (3   + 4)) + 5
(S + (S + 4)) + 5 ⟻  (1 + 2 + (3   + 4)) + 5
(S + (S + E)) + 5 ⟻   (1 + 2 + (3 + 4 )) + 5
(S + (S)) + 5 ⟻   (1 + 2 + (3 + 4 )) + 5
(S + E) + 5 ⟻    (1 + 2 + (3 + 4) ) + 5
(S) + 5 ⟻     (1 + 2 + (3 + 4) ) + 5
E + 5 ⟻      (1 + 2 + (3 + 4)) + 5 
S + 5 ⟻      (1 + 2 + (3 + 4)) + 5 
S + E ⟻      (1 + 2 + (3 + 4)) + 5          
S
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S ⟼ S + E  |  E
E ⟼ number | ( S )
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Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is        stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack
• Reduce: Replace symbols g at top of stack with nonterminal X such 

that X ⟼ g is a production.  (pop g, push X)
Stack     Input    Action
        (1 + 2 + (3 + 4)) + 5 shift (
(           1 + 2 + (3 + 4)) + 5 shift 1
(1          + 2 + (3 + 4)) + 5  reduce: E ⟼ number
(E         + 2 + (3 + 4)) + 5  reduce: S ⟼ E
(S            + 2 + (3 + 4)) + 5  shift +
(S +          2 + (3 + 4)) + 5  shift 2
(S + 2          + (3 + 4)) + 5   reduce: E ⟼ number
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S ⟼ S + E  |  E
E ⟼ number | ( S )



DEMO: BOOLEAN LOGIC
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parser.mly, lexer.mll, range.ml, ast.ml, main.ml


