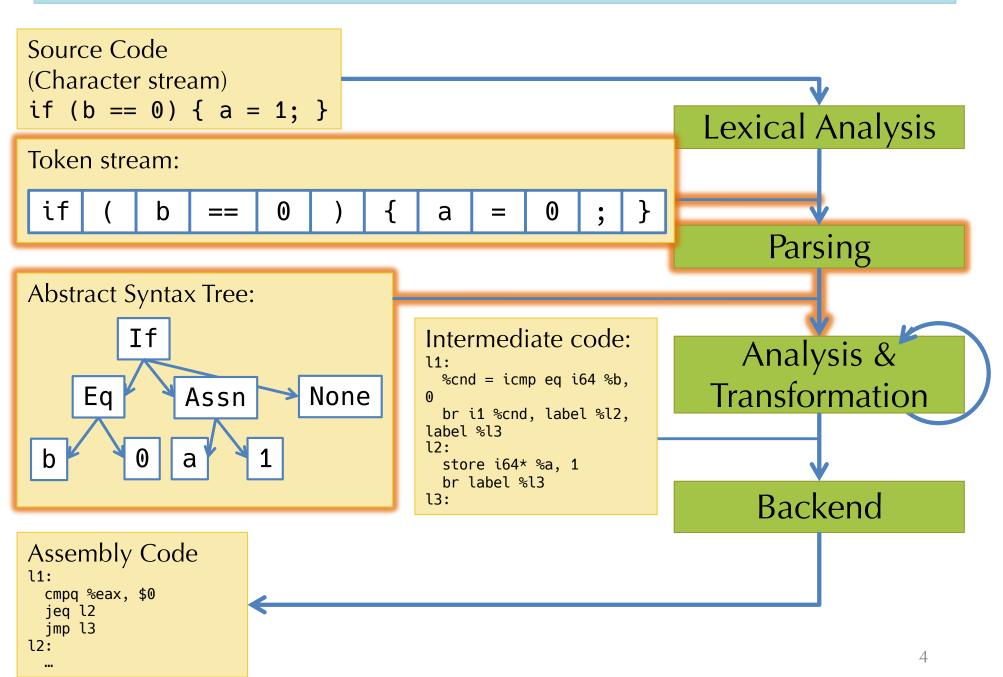
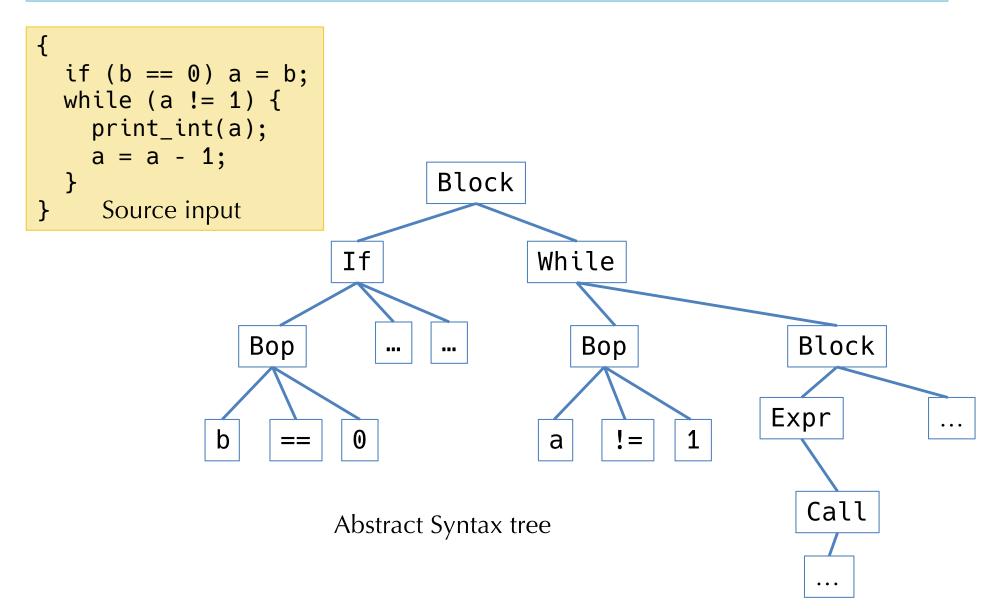
Lecture 11 CIS 4521/5521: COMPILERS

Announcements


- HW3: LLVM Backend
 - Available on the course web pages.
 - Due: Weds., February 26th at 10:00PM
 - Note: test cases should be submitted 24 hours earlier (so by Tues., Feb. 25th at 10pm)
- Midterm: March 6th
 - In class
 - One-page, letter-sized, double-sided "cheat sheet" of notes permitted
 - See Ed post (soon) for previous exams

you should have ALREADY STARTED Creating an abstract representation of program syntax.


PARSING

Zdancewic CIS 4521/5521: Compilers

Parsing

Parsing: Finding Syntactic Structure

Syntactic Analysis (Parsing): Overview

Input: stream of tokens

(generated by lexer)

- Output: abstract syntax tree
- Strategy:
 - Parse the token stream to traverse the "concrete" syntax
 - During traversal, build a tree representing the "abstract" syntax
- Why abstract? Consider these three *different* concrete inputs:

- Note: parsing doesn't check many things:
 - Variable scoping, type agreement, initialization, ...

Specifying Language Syntax

- First question: how to describe language syntax precisely and conveniently?
- Previously we described tokens using regular expressions
 - Easy to implement, efficient DFA representation
 - Why not use regular expressions on tokens to specify programming language syntax?
- Limits of regular expressions:
 - DFA's have only finite # of states
 - So... DFA's can't "count"
 - For example, consider the language of all strings that contain balanced parentheses easier than most programming languages, but not regular.
- So: we need more expressive power than DFA's

CONTEXT FREE GRAMMARS

Zdancewic CIS 4521/5521: Compilers

Context-free Grammars

• Here is a specification of the language of balanced parens:

$$S \mapsto (S)S$$
$$S \mapsto \varepsilon$$

Note: Once again we have to take care to distinguish meta-language elements (e.g. "S" and " \mapsto ") from object-language elements (e.g. "(").*

- The definition is *recursive* S mentions itself.
- Idea: "derive" a string in the language by starting with S and rewriting according to the rules:
 - Example:

 $S \mapsto (S)S \mapsto ((S)S)S \mapsto ((\varepsilon)S)S \mapsto ((\varepsilon)S)\varepsilon \mapsto ((\varepsilon)\varepsilon)\varepsilon = (())$

- You can replace the *nonterminal* S by one of its definitions anywhere
- A context-free grammar accepts a string iff there is a derivation from the start symbol

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a lexical token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the *start symbol*
 - A set of productions: $LHS \mapsto RHS$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$
$$S \mapsto \varepsilon$$

• How many terminals? How many nonterminals? Productions?

Another Example: Sum Grammar

• A grammar that accepts parenthesized sums of numbers:

$$S \mapsto E + S | E$$

$$E \mapsto number | (S)$$

e.g.: (1 + 2 + (3 + 4)) + 5

- Note the vertical bar '|' is shorthand for multiple productions:
 - $S \mapsto E + S$ $S \mapsto E$ $E \mapsto number$ $E \mapsto (S)$

4 productions 2 nonterminals: S, E 4 terminals: (,), +, number Start symbol: S

Derivations in CFGs

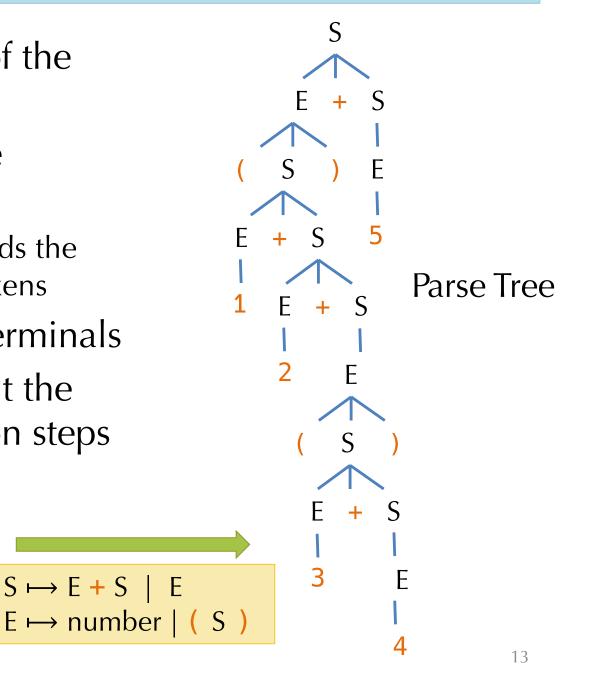
- Example: derive (1 + 2 + (3 + 4)) + 5
- $\mathbf{S} \mapsto \mathbf{E} + \mathbf{S}$ → **(S)** + S \mapsto (**E** + S) + S \mapsto (1 + S) + S \mapsto (1 + E + S) + S \mapsto (1 + 2 + S) + S $\mapsto (\mathbf{1} + \mathbf{2} + \mathbf{E}) + \mathbf{S}$ \mapsto (1 + 2 + (S)) + S \mapsto (1 + 2 + (E + S)) + S \mapsto (1 + 2 + (3 + S)) + S \mapsto (1 + 2 + (3 + E)) + S \mapsto (1 + 2 + (3 + 4)) + S \mapsto (1 + 2 + (3 + 4)) + E \mapsto (1 + 2 + (3 + 4)) + 5

 $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

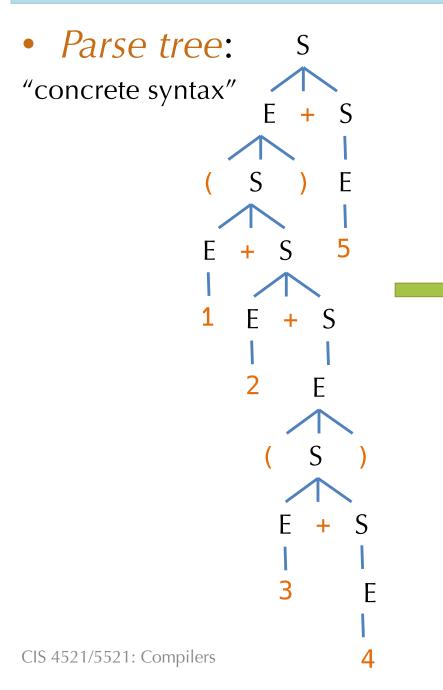
For arbitrary strings α , β , γ and production rule $A \mapsto \beta$ a single step of the derivation is:

 $\alpha A \gamma \mapsto \alpha \beta \gamma$

(*substitute* β for an occurrence of A)


In general, there are many possible derivations for a given string.

Note: Underline indicates symbol being expanded.


From Derivations to Parse Trees

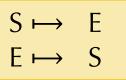
- Tree representation of the derivation
- Leaves of the tree are terminals
 - In-order traversal yields the input sequence of tokens
- Internal nodes: nonterminals
- No information about the *order* of the derivation steps

(1 + 2 + (3 + 4)) + 5

From Parse Trees to Abstract Syntax

- Abstract syntax tree (AST): ┿ ┿
- Hides, or *abstracts*, unneeded information.

Derivation Orders


- Productions of the grammar can be applied in any order.
- There are two standard orders:
 - *Leftmost derivation*: Find the left-most nonterminal and apply a production to it.
 - *Rightmost derivation*: Find the right-most nonterminal and apply a production there.
- Note that both strategies (and any other) yield the same parse tree!
 - Parse tree doesn't contain the information about what order the productions were applied.

Example: Left- and rightmost derivations

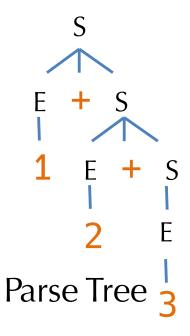
- Leftmost Derivation
- $\mathbf{S} \mapsto \mathbf{E} + \mathbf{S}$ \mapsto (S) + S \mapsto (**E** + S) + S \mapsto (1 + S) + S \mapsto (1 + E + S) + S $\mapsto (\mathbf{1} + \mathbf{2} + \mathbf{S}) + \mathbf{S}$ \mapsto (1 + 2 + E) + S \mapsto (1 + 2 + (S)) + S \mapsto (1 + 2 + (E + S)) + S \mapsto (1 + 2 + (3 + S)) + S \mapsto (1 + 2 + (3 + E)) + S \mapsto (1 + 2 + (3 + 4)) + S \mapsto (1 + 2 + (3 + 4)) + E \mapsto (1 + 2 + (3 + 4)) + 5
- Rightmost derivation:
- $S \mapsto E + S$ → E **+ E** \mapsto **E** + 5 \mapsto (S) + 5 \mapsto (E + S) + 5 \mapsto (E + E + S) + 5 \mapsto (E + E + E) + 5 \mapsto (E + E + (S)) + 5 $\mapsto (E + E + (E + S)) + 5$ \mapsto (E + E + (E + E)) + 5 \mapsto (E + E + (E + 4)) + 5 \mapsto (E + E + (3 + 4)) + 5 \mapsto (**E** + 2 + (3 + 4)) + 5 \mapsto (1 + 2 + (3 + 4)) + 5

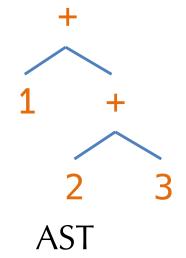
Loops and Termination

- Some care is needed when defining CFGs
- Consider:

- This grammar has nonterminal definitions that are "nonproductive".
 (i.e. they don't mention any terminal symbols)
- There is no finite derivation starting from S, so the language is empty.
- Consider: $S \mapsto (S)$
 - This grammar is productive, but again there is no finite derivation starting from S, so the language is empty
- It is easy to generalize these examples to a "chain" of many nonterminals, which can be harder to find in a large grammar
- Upshot: be aware of "vacuously empty" CFG grammars.
 - Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.

Associativity, ambiguity, and precedence.


GRAMMARS FOR PROGRAMMING LANGUAGES


Associativity

$$S \mapsto E + S \mid E$$
$$E \mapsto number \mid (S)$$

Consider the input: 1 + 2 + 3

Leftmost derivation: $\underline{S} \mapsto \underline{E} + S$
 $\mapsto 1 + \underline{S}$
 $\mapsto 1 + \underline{E} + S$
 $\mapsto 1 + 2 + \underline{S}$
 $\mapsto 1 + 2 + \underline{S}$
 $\mapsto 1 + 2 + 3$ Rightmost derivation: $\underline{S} \mapsto \underline{E} + \underline{S}$
 $\mapsto E + \underline{E} + \underline{S}$
 $\mapsto E + \underline{E} + \underline{S}$
 $\mapsto E + \underline{E} + 3$
 $\mapsto \underline{E} + 2 + 3$
 $\mapsto 1 + 2 + 3$

Associativity

- This grammar makes '+' right associative...
 - i.e., the abstract syntax tree is the same for both

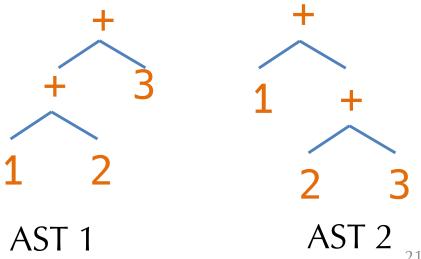
1 + 2 + 3 and 1 + (2 + 3)

• Note that the grammar is *right recursive*...

 $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

S refers to itself on the right of +

- How would you make '+' left associative?
- What are the trees for "1 + 2 + 3"?


Consider this grammar: •

$$S \mapsto S + S \mid (S) \mid number$$

- Claim: it accepts the *same* set of strings as the previous one. ۲
- What's the difference? •
- Consider these *two* leftmost derivations: ۲
 - $\underline{S} \mapsto \underline{S} + S \mapsto \underline{1} + \underline{S} \mapsto \underline{1} + \underline{S} + S \mapsto \underline{1} + \underline{2} + \underline{S} \mapsto \underline{1} + \underline{2} + \underline{3}$

$$- \underline{\mathbf{S}} \mapsto \underline{\mathbf{S}} + \mathbf{S} \mapsto \underline{\mathbf{S}} + \mathbf{S} + \mathbf{S} \mapsto \mathbf{1} + \underline{\mathbf{S}} + \mathbf{S} \mapsto \mathbf{1} + \mathbf{2} + \underline{\mathbf{S}} \mapsto \mathbf{1} + \mathbf{2} + \mathbf{3}$$

- One derivation gives left ulletassociativity, the other gives right associativity to '+'
 - Which is which?

Why do we care about ambiguity?

- The '+' operation is associative, so it doesn't matter which tree we pick. Mathematically, x + (y + z) = (x + y) + z
 - But, some binary operations aren't associative. Examples?
 - Some operations are only left (or right) associative. Examples?
- Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their *precedence*

 \star

VS.

• Consider:

$$S \mapsto S + S | S \star S | (S) |$$
 number

- Input: 1 + 2 * 3
 - One parse = $(1 + 2) \times 3 = 9$
 - The other = $1 + (2 \times 3) = 7$

*

Eliminating Ambiguity

- We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right) .
- Higher-precedence operators go *farther* from the start symbol.
- Example:

$$S \mapsto S + S | S \star S | (S) |$$
 number

- To disambiguate:
 - Decide (following math) to make ' \star ' higher precedence than '+'
 - Make '+' left associative
 - Make '*' right associative
- Note:
 - S₂ corresponds to 'atomic' expressions

$S_0 \mapsto$	$S_0 + S_1$	S ₁
$S_1 \mapsto$	$S_2 \star S_1$	S ₂
$S_2 \mapsto$	number	(S ₀)

Context Free Grammars: Summary

- Context-free grammars allow concise specifications of programming languages.
 - An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 - Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.
- Even with an unambiguous CFG, there may be more than one derivation
 - Though all derivations correspond to the same abstract syntax tree.
- Still to come: finding a derivation
 - But first: menhir

Searching for derivations.

LL & LR PARSING

Zdancewic CIS 4521/5521: Compilers

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the *start symbol*
 - A set of productions: $LHS \mapsto RHS$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$
$$S \mapsto \varepsilon$$

• How many terminals? How many nonterminals? Productions?

Consider finding left-most derivations

• Look at only one input symbol at a time. S

 $\begin{array}{l} S \longmapsto E + S \mid E \\ E \longmapsto number \mid (S) \end{array}$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
$\mapsto \underline{\mathbf{E}} + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
\mapsto (S) + S	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} + S) + S$	2	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{E}}) + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + (\underline{\mathbf{S}})) + \mathbf{S}$	3	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + (\underline{\mathbf{E}} + \mathbf{S})) + \mathbf{E} + \mathbf{E}$	S 3	(1 + 2 + (3 + 4)) + 5
$\mapsto \dots$		

There is a problem

 $S \mapsto E + S \mid E$

 $E \mapsto number \mid (S)$

- We want to decide which production to apply based on the look-ahead symbol.
- But, there is a choice:

(1)
$$S \mapsto E \mapsto (S) \mapsto (E) \mapsto (1)$$

vs.
(1) + 2
$$S \mapsto E + S \mapsto (S) + S \mapsto (E) + S \mapsto (1) + S \mapsto (1) + E$$

 $\mapsto (1) + 2$

• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

LL(1) GRAMMARS

Zdancewic CIS 4521/5521: Compilers

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- *Top-down*: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
 - Left-to-right scanning
 - <u>L</u>eft-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?

• What can we do?

$$S \mapsto E + S \mid E$$
$$E \mapsto number \mid (S)$$

Making a grammar LL(1)

- *Problem:* We can't decide which S production to apply until we see the symbol after the first expression.
- *Solution: "*Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S' at the decision point:

$$\begin{array}{c|c} S \mapsto E + S & | & E \\ E \mapsto number \mid (S) \end{array} \xrightarrow{} & S \mapsto ES' \\ S' \mapsto \varepsilon \\ S' \mapsto + S \\ E \mapsto number \mid (S) \end{array}$$

- Also need to eliminate left-recursion somehow. Why?
- Consider: $S \mapsto S + E \mid E$ $E \mapsto number \mid (S)$

Infinite regress if we want to find the left-most derivation: $\underline{S} \mapsto \underline{S} + \underline{E} \mapsto \underline{S} + \underline{E} + \underline{E} \mapsto \underline{S} + \underline{E} +$

LL(1) Parse of the input string

• Look at only one input symbol at a time.

$$S \mapsto ES'$$

$$S' \mapsto \varepsilon$$

$$S' \mapsto + S$$

$$E \mapsto number \mid (S)$$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
$\longmapsto \underline{\mathbf{E}} S'$	((1 + 2 + (3 + 4)) + 5
\mapsto (<u>S</u>) S'	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} S') S'$	1	(1 + 2 + (3 + 4)) + 5
→ (1 <u>S'</u>) S'	+	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{S}}) \mathbf{S'}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} S') S'$	2	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 \mathbf{\underline{S'}}) \mathbf{S'}$	+	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{S}}) \mathbf{S'}$	((1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{E}} S') S'$	((1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + (\underline{\mathbf{S}})S') S'$	3	(1 + 2 + (3 + 4)) + 5

Predictive Parsing

- Given an LL(1) grammar:
 - For a given nonterminal, the lookahead symbol uniquely determines the production to apply.
 - Top-down parsing = predictive parsing
 - Driven by a predictive parsing table: nonterminal * input token \rightarrow production

 $T \mapsto S\$$ $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto number \mid (S)$

	number	+	()	\$ (EOF)
Т	\mapsto S\$		⊢→S\$		
S	$\mapsto E S'$		⊷E S′		
S'		$\mapsto + S$		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊢ num.		$\mapsto (S)$		

• Note: it is convenient to add a special *end-of-file* token \$ and a start symbol T (top-level) that requires \$.

How do we construct the parse table?

- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ
 - Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ε (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 - Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the grammar is not LL(1)

Example

First(T) = First(S)ullet $T \mapsto S$ \$ First(S) = First(E)۲ $S \mapsto ES'$ $First(S') = \{ + \}$ ٠ $S' \mapsto \varepsilon$ $First(E) = \{ number, '(') \}$ ۲ $S' \mapsto + S$ $E \mapsto number \mid (S)$ Follow(S') = Follow(S)٠ **Note:** we want the *least* Follow(S) = { \$, ')' } U Follow(S') solution to this system of set • equations... a *fixpoint* computation. More on these later in the course. number \$ (EOF) + \mapsto S\$ →S\$ Τ $\mapsto E S'$ $\mapsto E S'$ S \mapsto + S **S'** $\mapsto \epsilon$ $\mapsto \epsilon$ \mapsto (S) E \mapsto num.

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g. S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's. (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

	number	+	()	\$ (EOF)
Т	\mapsto S\$		⊢→S\$		
S	$\mapsto E S'$		⊷E S′		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊢ num.		$\mapsto (S)$		

Hand-generated LL(1) code for the table above.

DEMO: HANDWRITTEN.ML

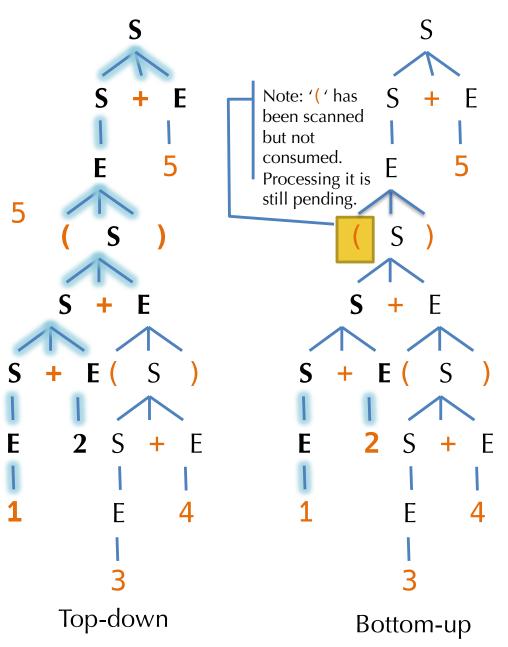
LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursivedescent parser
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)
- Is there a better way?

LR GRAMMARS

Zdancewic CIS 4521/5521: Compilers

Bottom-up Parsing (LR Parsers)


- LR(k) parser:
 - <u>L</u>eft-to-right scanning
 - <u>R</u>ightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
 - Better error detection/recovery

Top-down vs. Bottom up

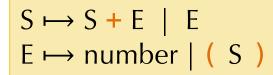
• Consider the leftrecursive grammar:

> $S \mapsto S + E \mid E$ $E \mapsto number \mid (S)$

- (1 + 2 + (3 + 4)) + 5
- What part of the tree must we know after scanning just "(1 + 2"?
- In top-down, must be able to guess which productions to use...

Progress of Bottom-up Parsing

Reductions	Scanned	Input Remaining
$(1 + 2 + (3 + 4)) + 5 \leftrightarrow$		(1 + 2 + (3 + 4)) + 5
$(\underline{\mathbf{E}} + 2 + (3 + 4)) + 5 \longleftrightarrow$	(1 + 2 + (3 + 4)) + 5
$(\underline{S} + 2 + (3 + 4)) + 5 \leftarrow 1$	(1	+ 2 + (3 + 4)) + 5
(S + <u>E</u> + (3 + 4)) + 5 ↔	(1 + 2	+ (3 + 4)) + 5
$(\underline{S} + (3 + 4)) + 5 \leftarrow 1$	(1 + 2	+ (3 + 4)) + 5
$(S + (\underline{E} + 4)) + 5 \leftarrow 1$	(1 + 2 + (3	+ 4)) + 5
$(S + (\underline{S} + 4)) + 5 \leftarrow 1$	(1 + 2 + (3	+ 4)) + 5
$(S + (S + \underline{E})) + 5 \leftarrow i$	(1 + 2 + (3 + 4)))) + 5
(S + (<u>S</u>)) + 5 ↔	(1 + 2 + (3 + 4)))) + 5
(S + <u>E</u>) + 5 ↔	(1 + 2 + (3 + 4))) + 5
(<u>S</u>) + 5 ↔	(1 + 2 + (3 + 4))) + 5
<u>E</u> + 5 ↔	(1 + 2 + (3 + 4))	+ 5
<u>S</u> + 5 ↔	(1 + 2 + (3 + 4))	+ 5
S + <u>E</u> ← →	(1 + 2 + (3 + 4))	+ 5
S		


 $S \mapsto S + E \mid E$ E \low number | (S)

CIS 4521/5521: Compilers

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that X $\mapsto \gamma$ is a production. (pop γ , push X)

Stack	Input	Action
	(1 + 2 + (3 + 4)) + 5	shift (
(1 + 2 + (3 + 4)) + 5	shift <mark>1</mark>
(1	+ 2 + (3 + 4)) + 5	reduce: $E \mapsto number$
<mark>(</mark> E	+ 2 + (3 + 4)) + 5	reduce: $S \mapsto E$
(S	+ 2 + (3 + 4)) + 5	shift +
(S+	2 + (3 + 4)) + 5	shift <mark>2</mark>
(S + 2	+ (3 + 4)) + 5	reduce: $E \mapsto number$

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC

Zdancewic CIS 4521/5521: Compilers