
CIS 4521/5521: COMPILERS
Lecture 12

Announcements

• HW3: LLVM Backend
– Available on the course web pages.
– Due: Weds., February 26th at 10:00PM
– Note: test cases should be submitted

TONIGHT at 10pm

• Midterm: March 6th

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– Coverage: interpreters, x86, IRs, LLVM IR, calling conventions, lexing,

parsing
– See Ed post for previous exams

Zdancewic CIS 4521/5521: Compilers 2

PARSING

Zdancewic CIS 4521/5521: Compilers 3

Creating an abstract representation of program syntax.

CFGs Mathematically
• A Context-free Grammar (CFG) consists of

– A set of terminals (e.g., a token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions: LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

CIS 4521/5521: Compilers 4

S ⟼ S + E | E
E ⟼ number | (S)

Example: Left- and rightmost derivations

CIS 4521/5521: Compilers 5

• Leftmost Derivation
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5

S ⟼ S + E | E
E ⟼ number | (S)

Predictive Parsing
• Given an LL(1) grammar:

– For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

– Top-down parsing = predictive parsing
– Driven by a predictive parsing table:

 nonterminal * input token → production

• Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 4521/5521: Compilers 6

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

LR GRAMMARS

Zdancewic CIS 4521/5521: Compilers 7

Bottom-up Parsing (LR Parsers)
• LR(k) parser:

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique: “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
– Better error detection/recovery
– But… harder to implement by hand

CIS 4521/5521: Compilers 8

Top-down vs. Bottom up
• Consider the left-

recursive grammar:

• (1 + 2 + (3 + 4)) + 5

• What part of the
tree must we
know after scanning
just “(1 + 2” ?

• In top-down, must
be able to guess
which productions
to use…

CIS 4521/5521: Compilers 9

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Top-down

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Bottom-up

Note: ‘(‘ has
been scanned
but not
consumed.
Processing it is
still pending.

S ⟼ S + E | E
E ⟼ number | (S)

Example: Left- and rightmost derivations

• Rightmost derivation:
• S ⟼ E + S

⟼ E + E
⟼ E + 5
⟼ (S) + 5
⟼ (E + S) + 5
⟼ (E + E + S) + 5
⟼ (E + E + E) + 5
⟼ (E + E + (S)) + 5
⟼ (E + E + (E + S)) + 5
⟼ (E + E + (E + E)) + 5
⟼ (E + E + (E + 4)) + 5
⟼ (E + E + (3 + 4)) + 5
⟼ (E + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + 5

CIS 4521/5521: Compilers 10

• Leftmost Derivation
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5

S ⟼ S + E | E
E ⟼ number | (S)

Progress of Bottom-up Parsing
Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(E + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + E) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

E + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + E ⟻ (1 + 2 + (3 + 4)) + 5
S

CIS 4521/5521: Compilers 11

S ⟼ S + E | E
E ⟼ number | (S)

R
ig

ht
m

os
t d

er
iv

at
io

n

Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(E + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S + E) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

(S) + 5 ⟻ (1 + 2 + (3 + 4)) + 5

E + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + E ⟻ (1 + 2 + (3 + 4)) + 5
S

Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack
• Reduce: Replace symbols g at top of stack with nonterminal X such

that X ⟼ g is a production. (pop g, push X)
Stack Input Action
 (1 + 2 + (3 + 4)) + 5 shift (
(1 + 2 + (3 + 4)) + 5 shift 1
(1 + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(E + 2 + (3 + 4)) + 5 reduce: S ⟼ E
(S + 2 + (3 + 4)) + 5 shift +
(S + 2 + (3 + 4)) + 5 shift 2
(S + 2 + (3 + 4)) + 5 reduce: E ⟼ number

CIS 4521/5521: Compilers 12

S ⟼ S + E | E
E ⟼ number | (S)

DEMO: BOOLEAN LOGIC

Zdancewic CIS 4521/5521: Compilers 13

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

LR(0) GRAMMARS

Zdancewic CIS 4521/5521: Compilers 14

Simple LR parsing with no look ahead.

LR Parser States
• Goal: know what set of reductions are legal at any given point.
• Idea: Summarize all possible stack prefixes a as a finite parser state.

– Parser state is computed by a DFA that reads the stack s.
– Accept states of the DFA correspond to unique reductions that apply.

• Example: LR(0) parsing
– Left-to-right scanning, Right-most derivation, zero look-ahead tokens
– Too weak to handle many language grammars (e.g. the “sum” grammar)
– But, helpful for understanding how the shift-reduce parser works.

CIS 4521/5521: Compilers 15

Example LR(0) Grammar: Tuples
• Example grammar for non-empty tuples and identifiers:

• Example strings:
x
(x,y)
((((x))))
(x, (y, z), w)
(x, (y, (z, w)))

CIS 4521/5521: Compilers 16

S ⟼ (L) | id
L ⟼ S | L , S

Parse tree for:
(x, (y, z), w)

(L)

L , S

L , S

(L)

L , Sx

S

y

S z

w

S

Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack: e.g.

Stack Input Action
 (x, (y, z), w) shift (
(x, (y, z), w) shift x

• Reduce: Replace symbols g at top of stack with nonterminal X such
that X ⟼ g is a production. (pop g, push X): e.g.

 Stack Input Action
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S

CIS 4521/5521: Compilers 17

S ⟼ (L) | id
L ⟼ S | L , S

Example Run
Stack Input Action
 (x, (y, z), w) shift (
(x, (y, z), w) shift x
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S
(L , (y, z), w) shift ,
(L, (y, z), w) shift (
(L, (y, z), w) shift y
(L, (y , z), w) reduce S ⟼ id
(L, (S , z), w) reduce L ⟼ S
(L, (L , z), w) shift ,
(L, (L, z), w) shift z
(L, (L, z), w) reduce S ⟼ id
(L, (L, S), w) reduce L ⟼ L, S
(L, (L), w) shift)
(L, (L) , w) reduce S ⟼ (L)
(L, S , w) reduce L ⟼ L, S
(L , w) shift ,
(L, w) shift w

CIS 4521/5521: Compilers 18

S ⟼ (L) | id
L ⟼ S | L , S

Action Selection Problem
• Given a stack s and a look-ahead symbol b, should the parser:

– Shift b onto the stack (new stack is sb)
– Reduce a production X ⟼ g, assuming that s = ag (new stack is aX)?

• Sometimes the parser can reduce but shouldn’t
– For example, X ⟼ e can always be reduced

• Sometimes the stack can be reduced in different ways

• Main idea: decide what to do based on a prefix a of the stack plus the
look-ahead symbol.
– The prefix a is different for different possible reductions since in

productions X ⟼ g and Y ⟼ b, g and b might have different lengths.

• Main goal: know what set of reductions are legal at any point.
– How do we keep track?

CIS 4521/5521: Compilers 19

LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible

upcoming reductions.
• An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side

• Example items: S ⟼ .(L) or S ⟼ (. L) or L ⟼ S.
• Intuition:

– Stuff before the ‘.’ is already on the stack
(beginnings of possible g’s to be reduced)

– Stuff after the ‘.’ is what might be seen next
– The prefixes a are represented by the state itself

CIS 4521/5521: Compilers 20

S ⟼ (L) | id
L ⟼ S | L , S

Constructing the DFA: Start state & Closure

• First step: Add a new production
S’ ⟼ S$ to the grammar

• Start state of the DFA = empty stack,
so it contains the item:
 S’ ⟼ .S$

• Closure of a state:
– Adds items for all productions whose LHS nonterminal occurs in an item

in the state just after the ‘.’
– The added items have the ‘.’ located at the beginning (no symbols for

those items have been added to the stack yet)
– Note that newly added items may cause yet more items to be added to the

state… keep iterating until a fixed point is reached.

• Example: CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions
that might be reduced next.

CIS 4521/5521: Compilers 21

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$

CIS 4521/5521: Compilers 22

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$

Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar

CIS 4521/5521: Compilers 23

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

Example: Constructing the DFA

• Next we add the transitions:
• First, we see what terminals and

nonterminals can appear after the
‘.’ in the source state.
– Outgoing edges have those label.

• The target state (initially) includes
all items from the source state that
have the edge-label symbol after
the ‘.’, but we advance the ‘.’ (to
simulate shifting the item onto the
stack)

CIS 4521/5521: Compilers 24

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute

CLOSURE({S ⟼ (. L)})
– First iteration adds L ⟼ .S and L ⟼ .L, S
– Second iteration adds S ⟼ .(L) and S ⟼ .id

CIS 4521/5521: Compilers 25

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(

Full DFA for the Example

CIS 4521/5521: Compilers 26

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .(L)
S ⟼ .id

L ⟼ L, S.

S ⟼ (L .)
L ⟼ L . , S

S ⟼ (L).L ⟼ S.S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at the
end of the production

• Current state: run the
 DFA on the stack.

• If a reduce state is
 reached, reduce

• Otherwise, if the next
 token matches an
 outgoing edge, shift.

• If no such transition,
 it is a parse error.

1 2

3

4

5

67

8 9

Using the DFA
• Run the parser stack through the DFA.
• The resulting state tells us which productions might be

reduced next.
– If not in a reduce state, then shift the next symbol and transition

according to DFA.
– If in a reduce state, X ⟼ g with stack ag, pop g and push X.

• Optimization: No need to re-run the DFA from beginning
every step
– Store the state with each symbol on the stack: e.g. 1(3(3L5)6
– On a reduction X ⟼ g, pop stack to reveal the state too:

e.g. From stack 1(3(3L5)6 reduce S ⟼ (L) to reach stack 1(3
– Next, push the reduction symbol: e.g. to reach stack 1(3S
– Then take just one step in the DFA to find next state: 1(3S7

CIS 4521/5521: Compilers 27

Implementing the Parsing Table
Represent the DFA as a table of shape:

 state * (terminals + nonterminals)
• Entries for the “action table” specify two kinds of actions:

– Shift and goto state n
– Reduce using reduction X ⟼ g

• First pop g off the stack to reveal the state
• Look up X in the “goto table” and goto that state

CIS 4521/5521: Compilers 28

Action
table

Goto
tableSt

at
e

Terminal Symbols Nonterminal Symbols

Example Parse Table

CIS 4521/5521: Compilers 29

() id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx = shift and goto state x
gx = goto state x

Example
• Parse the token stream: (x, (y, z), w)$

Stack Stream Action (according to table)

e1 (x, (y, z), w)$ s3
e1(3 x, (y, z), w)$ s2
e1(3x2 , (y, z), w)$ Reduce: S⟼id
e1(3S , (y, z), w)$ g7 (from state 3 follow S)
e1(3S7 , (y, z), w)$ Reduce: L⟼S
e1(3L , (y, z), w)$ g5 (from state 3 follow L)
e1(3L5 , (y, z), w)$ s8
e1(3L5,8 (y, z), w)$ s3

e1(3L5,8(3 y, z), w)$ s2

Zdancewic CIS 4521/5521: Compilers 30

