Lecture 13

CIS 4521/5521: COMPILERS

Announcements

- Midterm: March 6th
 - In class
 - One-page, letter-sized, *hand-written*, double-sided "cheat sheet" of notes permitted
 - Coverage: interpreters, x86, IRs, LLVM IR, calling conventions, lexing, parsing (up to today)
 - See Ed post for previous exams

- Looking ahead: HW4: Oat compiler Frontend
 - released next week (i.e., before Spring Break)
 - Due: Wednesday, March 26th at 10:00pm

LR GRAMMARS

Bottom-up Parsing (LR Parsers)

- LR(k) parser:
 - <u>L</u>eft-to-right scanning
 - Rightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
 - Better error detection/recovery

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack: e.g.

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X): e.g.

Stack	Input	Action
(x	, (y, z), w)	reduce $S \mapsto id$
(S	, (y, z), w)	reduce $L \mapsto S$

 $S \mapsto (L) \mid id$ $L \mapsto S \mid L, S$

LR(0) States

- An LR(0) *state* is a *set* of *items* keeping track of progress on possible upcoming reductions.
- An LR(0) *item* is a production from the language with an extra separator "." somewhere in the right-hand-side

$$S \mapsto (L) \mid id$$

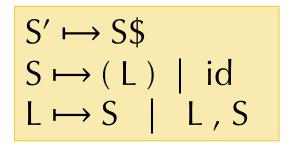
 $L \mapsto S \mid L, S$

- Example items: $S \mapsto .(L)$ or $S \mapsto (.L)$ or $L \mapsto S$.
- Intuition:
 - Stuff before the '.' is already on the stack (beginnings of possible γ 's to be reduced)
 - Stuff after the '.' is what might be seen next
 - The prefixes α are represented by the state itself

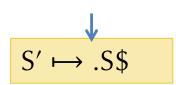
Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ \$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:

$$S' \mapsto .S$$
\$



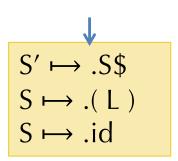
- Closure of a state:
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.'
 - The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state... keep iterating until a *fixed point* is reached.
- Example: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.



$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

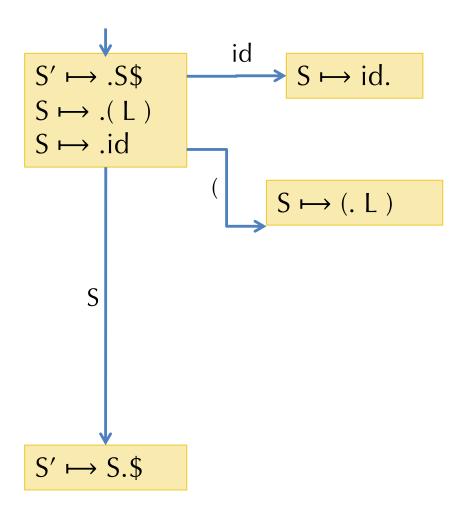
• First, we construct a state with the initial item $S' \mapsto .S$ \$



$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

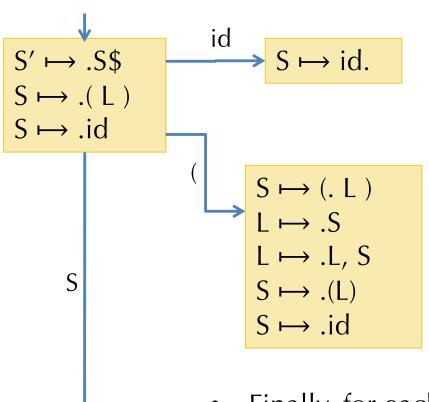
- Next, we take the closure of that state: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar



$$S' \mapsto S\$$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)



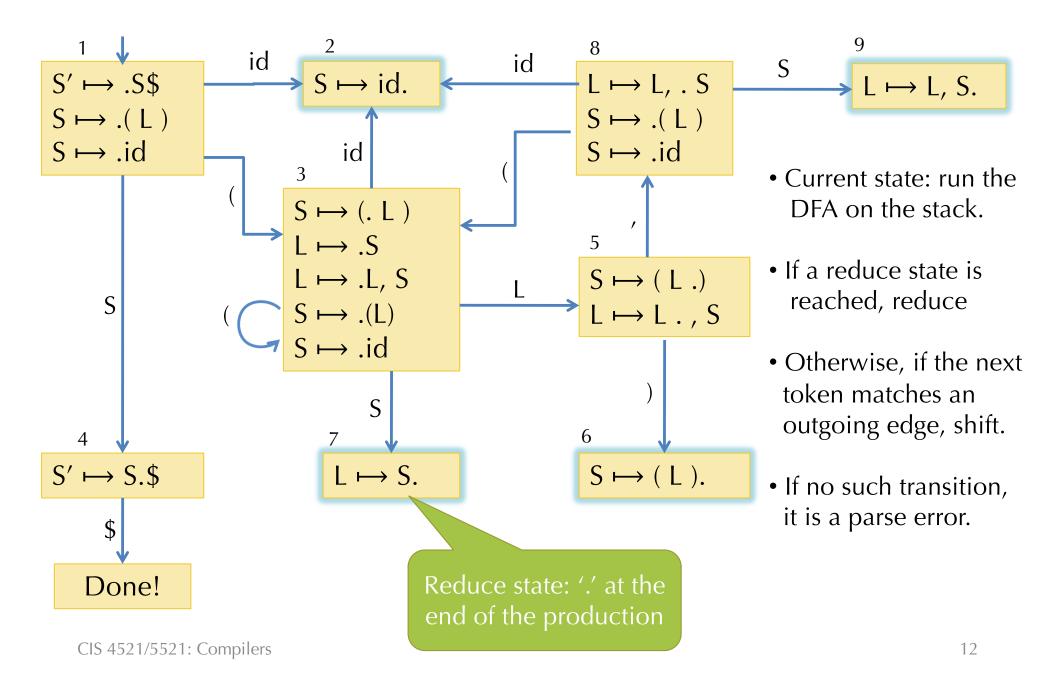
$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute $CLOSURE(\{S \mapsto (.L)\})$
 - First iteration adds $L \mapsto .S$ and $L \mapsto .L$, S
 - Second iteration adds $S \mapsto .(L)$ and $S \mapsto .id$

 $S' \mapsto S.\$$

Full DFA for the Example



Parsing Using the DFA

- 1. Run the parser stack through the DFA.
 - If in an accept state: done!
- 2. Otherwise, the resulting state tells us which productions might be reduced next.
 - If not in a reduce state, then shift the next symbol and transition according to DFA. (If no transition, then parse error!)
 - If in a reduce state, $X \mapsto \gamma$ with stack $\alpha \gamma$, pop γ and push X.
- 3. Go to step 1

Optimization: No need to re-run the DFA from beginning every step

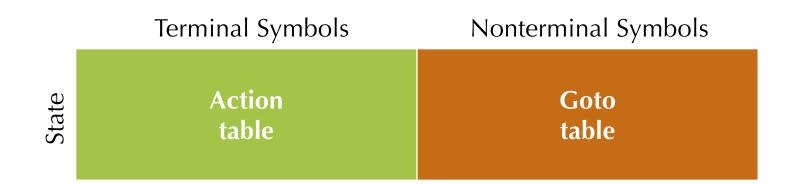
- Store the state with each symbol on the stack: e.g. $_1(_3(_3L_5)_6)$
- On a reduction $X \mapsto g$, pop stack to reveal the state too: e.g. From stack $_1(_3(_3L_5)_6$ reduce $S \mapsto (L)$ to reach stack $_1(_3$
- Next, push the reduction symbol: e.g. to reach stack 1(3S)
- Then take just one step in the DFA to find next state: $_{1}(_{3}S_{7})$

Implementing the Parsing Table

Represent the DFA as a table of shape:

state * (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
 - Shift and goto state n (transitions of the DFA)
 - Reduce using reduction $X \mapsto \gamma$
 - First pop γ off the stack to reveal the state
 - Look up X in the "goto table" and goto that state



Example Parse Table

	()	id	,	\$	S	L
1	s3		s2			g4	
2	S⊷id	S⊷id	S⊷id	S⊷id	S⊷id		
3	s3		s2			g7	g5
4					DONE		
5		s6		s8			
6	$S \mapsto (L)$						
7	$L \mapsto S$						
8	s3		s2			g9	
9	$L \mapsto L,S$						

sx = shift and goto state x
gx = goto state x

Example

• Parse the token stream: (x, (y, z), w)\$

Stack	Stream	Action (according to table)
ϵ_1	(x, (y, z), w)\$	s3
$\varepsilon_1(_3$	x, (y, z), w)\$	s2
$\varepsilon_1(_3X_2$	(y, z), w)\$	Reduce: S⊷id
$\varepsilon_1({}_3S$	(y, z), w)\$	g7 (from state 3 follow S)
$\varepsilon_1({}_3S_7$	(y, z), w)\$	Reduce: L→S
$\varepsilon_1(_3L$	(y, z), w)\$	g5 (from state 3 follow L)
$\varepsilon_1(_3L_5$, (y, z), w)\$	s8
$\varepsilon_1(_3L_5,_8)$	(y, z), w)\$	s 3
$\varepsilon_1(_3L_5,_8(_3$	y, z), w)\$	s2

LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a *single* reduce action.
 - In such states, the machine always reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce

 $S \mapsto (L).$

$$S \mapsto (L).$$

 $L \mapsto .L, S$

$$S \mapsto L, S.$$

 $S \mapsto S.$

 Such conflicts can often be resolved by using a look-ahead symbol: LR(1)

Examples

• Consider the left associative and right associative "sum" grammars:

left right $S \mapsto S + E \mid E$ $E \mapsto \text{number} \mid (S)$ $S \mapsto E + S \mid E$ $E \mapsto \text{number} \mid (S)$

- One is LR(0) the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?

Answer: left grammar is LR(0), right grammar is not. In a state where the stack has E on top, the state will have items $S \mapsto E + S$ and $S \mapsto E$. which is a shift/reduce conflict.

 Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

SLR(1): "simple" LR(1) Parsers

- What conflicts are there in LR(0) parsing?
 - reduce/reduce conflict: an LR(0) state has two reduce actions
 - shift/reduce conflict: an LR(0) state mixes reduce and shift actions
- Can we use lookahead to disambiguate?
- SLR(1) uses the same DFA construction as LR(0)
 - modifies the actions based on lookahead
- Suppose reducing nonterminal A is possible in some state:
 - compute Follow(A) for the given grammar
 - if the lookahead symbol is in Follow(A), then reduce, otherwise shift
 - can disambiguate between reduce/reduce conflicts if the follow sets are disjoint

Note: easiest LR variant to construct "by hand".

LR(1) Parsing

- SLR parsing is a simple refinement of LR(0). We can do more.
- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols \mathcal{L} : A $\mapsto \alpha.\beta$, \mathcal{L}
- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \mapsto .\gamma$ is added because $A \mapsto \beta.C\delta$, \mathcal{L} is already in the set, we need to compute its look-ahead set \mathcal{M} :
 - 1. The look-ahead set \mathcal{M} includes FIRST(δ) (the set of terminals that may start strings derived from δ)
 - 2. If δ is itself ϵ or can derive ϵ (*i.e.*, it is *nullable*), then the look-ahead $\mathcal M$ also contains $\mathcal L$

Example LR(1) Closure

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$, {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$
 $S \mapsto .E$, $\{\$\}$

Note: {\$} is FIRST(\$)

Need to keep closing, since E appears to the right of a '.' in '.E + S':

$$E \mapsto .number$$
, $\{+\}$
 $E \mapsto .(S)$, $\{+\}$

Note: + added for reason 1 FIRST(+ S) = {+}

Because E also appears to the right of '.' in '.E' we get:

 $E \mapsto .number$, $\{\$\}$ $E \mapsto .(S)$, $\{\$\}$ Note: \$ added for reason 2 δ is ϵ

All items are distinct, so we're done

Using the DFA



The behavior is determined if:

- There is no overlap among the look-ahead sets for each reduce item, and
- None of the look-ahead symbols appear to the right of a '.'

Fragment of the Action & Goto tables

LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton
- In practice, LR(1) tables are big.
 - Modern implementations (e.g., menhir) directly generate code
- LALR(1) = "Look-ahead LR"

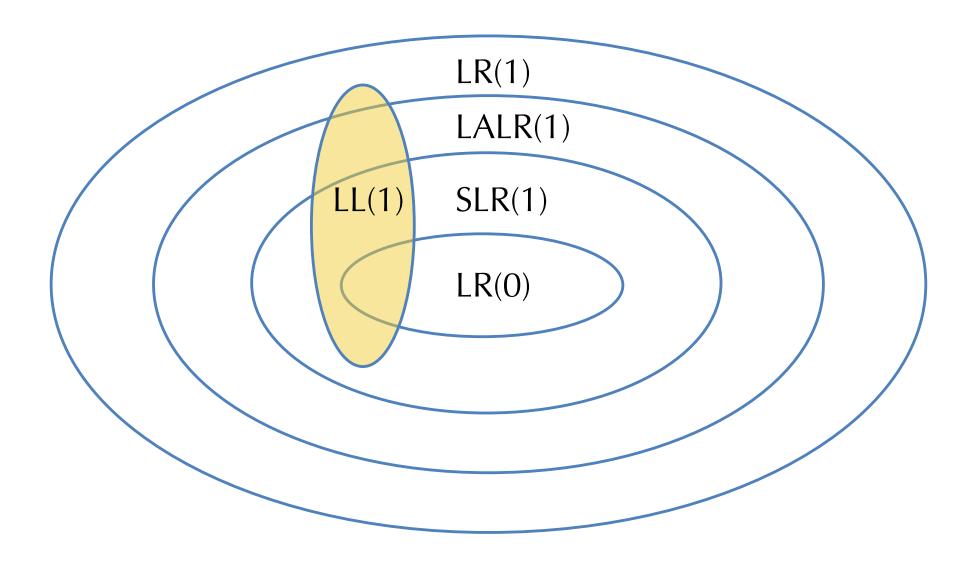
Merge any two LR(1) states whose items are identical except for the look-

ahead sets:



- Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
 - Efficiently compute the set of *all* parses for a given input
 - Later passes should disambiguate based on context

Classification of Grammars



Debugging parser conflicts.

Disambiguating grammars.

MENHIR IN PRACTICE

Zdancewic CIS 4521/5521: Compilers

Practical Issues

- Dealing with source file location information
 - In the lexer and parser
 - In the abstract syntax
 - See range.ml, ast.ml
- Lexing comments / strings

Menhir output

- You can get verbose ocamlyacc debugging information by doing:
 - menhir --explain ...
 or, if using dune, adding this stanza:
 (menhir
 (modules parser)
 (flags --dump)
 (explain true))
- The result is a <basename>.conflicts file that contains a description of the error
 - The parser items of each state use the '.' just as described above
- The flag --dump generates a full description of the automaton
- Example: see start-parser.mly

Precedence and Associativity Declarations

- Parser generators, like menhir often support precedence and associativity declarations.
 - Hints to the parser about how to resolve conflicts.
 - See: good-parser.mly

• Pros:

- Avoids having to manually resolve those ambiguities by manually introducing extra nonterminals (as seen in parser.mly)
- Easier to maintain the grammar

Cons:

- Can't as easily re-use the same terminal (if associativity differs)
- Introduces another level of debugging

• Limits:

 Not always easy to disambiguate the grammar based on just precedence and associativity.

Example Ambiguity in Real Languages

Consider this grammar:

$$S \mapsto \text{if } (E) S$$

 $S \mapsto \text{if } (E) S \text{ else } S$
 $S \mapsto X = E$
 $E \mapsto \dots$

Is this grammar OK?

Consider how to parse:

if
$$(E_1)$$
 if $(E_2) S_1$ else S_2

- This is known as the "dangling else" problem.
- What should the "right" answer be?
- How do we change the grammar?

How to Disambiguate if-then-else

Want to rule out:

if
$$(E_1)$$
 if (E_2) S_1 else S_2

Observation: An un-matched 'if' should not appear as the 'then' clause of a containing 'if'.

```
S \mapsto M \mid U  // M = \text{``matched''}, U = \text{``unmatched''}

U \mapsto \text{if (E)} S  // Unmatched 'if'

U \mapsto \text{if (E)} M \text{ else } U  // Nested if is matched

M \mapsto \text{if (E)} M \text{ else } M  // Matched 'if'

M \mapsto X = E  // Other statements
```

See: else-resolved-parser.mly

Alternative: Use {}

Ambiguity arises because the 'then' branch is not well bracketed:

```
if (E_1) { if (E_2) { S_1 } else S_2 // unambiguous if (E_1) { if (E_2) { S_1 } else S_2 } // unambiguous
```

- So: could just require brackets
 - But requiring them for the else clause too leads to ugly code for chained if-statements:

```
if (c1) {
    ...
} else {
    if (c2) {
    } else {
       if (c3) {
       } else {
       }
    }
}
```

So, compromise? Allow unbracketed else block only if the body is 'if':

```
if (c1) {
} else if (c2) {
} else if (c3) {
} else {
}
```

Benefits:

- Less ambiguous
- Easy to parse
- Enforces good style