
CIS 4521/5521: COMPILERS
Lecture 14

Announcements

• Midterm: March 6th

– In class this Thursday!
– One-page, letter-sized, hand-written, double-sided “cheat sheet” of notes

permitted
– Coverage: interpreters, x86, IRs, LLVM IR, calling conventions, lexing,

parsing (up to today)
– See Ed post for previous exams

• Looking ahead: HW4: Oat compiler Frontend
– released later week (i.e., before Spring Break)
– Due: Wednesday, March 26th at 10:00pm

• Final exam:
Thursday, May 8, 2025: 12:00pm to 2:00pm in TOWN 100

Zdancewic CIS 4521/5521: Compilers 2

https://www.facilities.upenn.edu/maps/locations/towne-building

OAT V. 1

Zdancewic CIS 4521/5521: Compilers 3

See HW4

FIRST-CLASS FUNCTIONS

Zdancewic CIS 4521/5521: Compilers 4

Untyped lambda calculus
Substitution

Evaluation

“Functional” languages
• Oat (like C) has only top-level functions
• In languages like OCaml, Haskell, Scheme, Python, C#, Java, Swift

– Functions can be passed as arguments (e.g., to map or fold)
– Functions can be returned as values (e.g., from compose)
– Functions nest: inner function can refer to variables bound in the outer

function

• How do we implement such functions?
– in an interpreter? in a compiled language?

CIS 4521/5521: Compilers 5

let add = fun x -> fun y -> x + y
let inc = add 1
let dec = add -1

let compose = fun f -> fun g -> fun x -> f (g x)
let id = compose inc dec

(Untyped) Lambda Calculus
• The lambda calculus is a minimal programming language

– OCaml: (fun x -> e)
– lambda-calculus notation: l x. e

• It has variables, functions, and function application.
– That’s it!
– It’s Turing Complete(!!)
– It’s the foundation for a lot of research in programming languages.
– Basis for “functional” languages like Scheme, ML, Haskell, etc.

CIS 4521/5521: Compilers 6

Lambda calculus is the c. elegans
of programming languages. Its minimal
(but not too minimal!) form lets us
deeply characterize its properties.

c. elegans – with 6 chromosomes, fully sequence DNA,
302 neurons, and extremely well-studied life cycle is
a "model organism" used in biology.

Untyped Lambda Calculus Syntax
Abstract syntax in OCaml:

Concrete syntax:

CIS 4521/5521: Compilers 7

type exp =
 | Var of var (* variables *)
 | Fun of var * exp (* functions: fun x → e *)
 | App of exp * exp (* function application *)

exp ::=
 | x variables
 | fun x → exp functions
 | exp1 exp2 function application
 | (exp) parentheses

Values and Substitution
• The only values of the lambda calculus are (closed) functions:

• To substitute a (closed) value v for some variable x in an expression e
– Replace all free occurrences of x in e by v.
– In OCaml: written subst v x e
– In Math: written e{v/x}

• Function application is interpreted by substitution:
 (fun x → fun y → x + y) 1
 = subst 1 x (fun y → x + y)
 = (fun y → 1 + y)

CIS 4521/5521: Compilers 8

val ::=
 | fun x → exp functions are values

Note: for the sake of examples we
may add integers and arithmetic
operations to the “pure” untyped
lambda calculus. These can be
encoded as lambda terms.

Lambda Calculus Operational Semantics
• Substitution function (in Math):

 x{v/x} = v (replace the free x by v)
 y{v/x} = y (assuming y ≠ x)
(fun x → exp){v/x} = (fun x → exp) (x is bound in exp)
(fun y → exp){v/x} = (fun y → exp{v/x}) (assuming y ≠ x)
 (e1 e2){v/x} = (e1{v/x} e2{v/x}) (substitute everywhere)

• Examples:
(x y) {(fun z → z z)/y}
 = x (fun z → z z)

(fun x → x y){(fun z → z z)/y}
 = fun x → x (fun z → z z)

(fun x → x){(fun z → z z)/x}
 = fun x → x // x is not free!

Zdancewic CIS 4521/5521: Compilers 9

Free Variables and Scoping

• The result of add 1 is itself a function
– After calling add, we can’t throw away its argument (or its local variables)

because those are needed in the function returned by add.

• We say that the variable x is free in fun y → x + y
– Free variables are defined in an outer scope

• We say that the variable y is bound by “fun y” and its scope is the
body “x + y” in the expression fun y → x + y

• A term with no free variables is called closed.
• A term with one or more free variables is called open.

CIS 4521/5521: Compilers 10

let add = fun x → fun y → x + y
let inc = add 1

Free Variable Calculation
• An OCaml function to calculate the set of free variables in a lambda

expression:

• A lambda expression e is closed if free_vars e returns
VarSet.empty

• In mathematical notation:

 fv(x) = {x}
 fv(fun x → exp) = fv(exp) \ {x} (‘x’ is a bound in exp)
 fv(exp1 exp2) = fv(exp1) ∪ fv(exp2)

Zdancewic CIS 4521/5521: Compilers 11

let rec free_vars (e:exp) : VarSet.t =
 begin match e with
 | Var x -> VarSet.singleton x
 | Fun(x, body) -> VarSet.remove x (free_vars body)
 | App(e1, e2) -> VarSet.union (free_vars e1) (free_vars e2)
 end

Variable Capture
• Note that if we try to naively "substitute" an open term, a bound

variable might capture the free variables:

 (fun x → (x y)){(fun z → x)/y}
 = fun x → (x (fun z -> x))

• Usually not the desired behavior
– This property is sometimes called "dynamic scoping"

The meaning of "x" is determined by where it is bound dynamically,
not where it is bound statically.

– Some languages (e.g., emacs lisp) are implemented with this as a "feature"
– But: it leads to hard-to-debug scoping issues

Zdancewic CIS 4521/5521: Compilers 12

Note: x is free
in (fun z → x)

free x is
 “captured”!!

Alpha Equivalence
• Note that the names of bound variables don't matter to the semantics

– i.e., it doesn't matter which variable names you use, if you use them
consistently:

 (fun x → y x) is the "same" as (fun z → y z)
 the choice of "x" or "z" is arbitrary, so long as we consistently
 rename them

• The names of free variables do matter:
 (fun x → y x) is not the "same" as (fun x → z x)

Intuitively: y and z can refer to different things from some outer scope

Zdancewic CIS 4521/5521: Compilers 13

Two terms that differ only by consistent renaming of
bound variables are called alpha equivalent

Students who cheat by “renaming variables” are
trying to exploit alpha equivalence…

Fixing Substitution
• Consider the substitution operation:

e1{e2/x}

• To avoid capture, we define substitution to pick an alpha equivalent
version of e1 such that the bound names of e1 don't mention the free
names of e2.
– Harder said than done! (Many ”obvious” implementations are wrong.)
– Then do the "naïve" substitution.

For example: (fun x → (x y)){(fun z → x)/y}
 = (fun x' → (x' (fun z → x))

On the other hand, this requires no renaming:
 (fun x → (x y)){(fun x → x)/y}
 = (fun x → (x (fun x → x))
 = (fun a → (a (fun b → b))

Zdancewic CIS 4521/5521: Compilers 14

rename x to x'

Operational Semantics
• Specified using just two inference rules with judgments of the form

exp ⇓ val
– Read this notation as “program exp evaluates to value val”
– This is call-by-value semantics: function arguments are evaluated before

substitution

Zdancewic CIS 4521/5521: Compilers 15

v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3) exp2 ⇓ v exp3{v/x} ⇓ w

exp1 exp2 ⇓ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

IMPLEMENTING THE
INTERPRETER

Zdancewic CIS 4521/5521: Compilers 16

See fun.ml
Examples of encoding Booleans, integers, conditionals, loops, etc., in
untyped lambda calculus.

