
CIS 4521/5521: COMPILERS
Lecture 14



Announcements

• Midterm: March 6th

– In class this Thursday!
– One-page, letter-sized, hand-written, double-sided “cheat sheet” of notes 

permitted
– Coverage: interpreters, x86, IRs, LLVM IR, calling conventions, lexing, 

parsing (up to today)
– See Ed post for previous exams

• Looking ahead: HW4: Oat compiler Frontend
– released later week (i.e., before Spring Break)
– Due: Wednesday, March 26th at 10:00pm

• Final exam: 
Thursday, May 8, 2025: 12:00pm to 2:00pm in TOWN 100
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https://www.facilities.upenn.edu/maps/locations/towne-building


OAT  V. 1
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See HW4



FIRST-CLASS FUNCTIONS
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Untyped lambda calculus
Substitution

Evaluation



“Functional” languages
• Oat (like C) has only top-level functions
• In languages like OCaml, Haskell, Scheme, Python, C#, Java, Swift

– Functions can be passed as arguments (e.g., to map or fold)
– Functions can be returned as values (e.g., from compose)
– Functions nest: inner function can refer to variables bound in the outer 

function

• How do we implement such functions?
– in an interpreter?  in a compiled language?
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let add = fun x -> fun y -> x + y
let inc = add 1
let dec = add -1

let compose = fun f -> fun g -> fun x -> f (g x)
let id = compose inc dec 



(Untyped) Lambda Calculus
• The lambda calculus is a minimal programming language

– OCaml:  (fun x -> e) 
– lambda-calculus notation:  l x. e

• It has variables, functions, and function application.
– That’s it! 
– It’s Turing Complete(!!)
– It’s the foundation for a lot of research in programming languages.
– Basis for “functional” languages like Scheme, ML, Haskell, etc.
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Lambda calculus is the c. elegans
of programming languages.  Its minimal
(but not too minimal!) form lets us 
deeply characterize its properties.

c. elegans – with 6 chromosomes, fully sequence DNA,
302 neurons, and extremely well-studied life cycle is
a "model organism" used in biology.



Untyped Lambda Calculus Syntax
Abstract syntax in OCaml:

Concrete syntax:
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type exp = 
 | Var of var        (* variables             *)
 | Fun of var * exp  (* functions: fun x → e  *)
 | App of exp * exp  (* function application  *)

exp ::= 
 | x    variables 
 | fun x → exp  functions
 | exp1 exp2  function application
 | ( exp )   parentheses



Values and Substitution
• The only values of the lambda calculus are (closed) functions:

• To substitute a (closed) value v for some variable x in an expression e
– Replace all free occurrences of x in e by v.
– In OCaml: written subst v x e
– In Math: written e{v/x}
 

• Function application is interpreted by substitution:
   (fun x → fun y → x + y) 1
 = subst 1 x (fun y → x + y)
 = (fun y → 1 + y)
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val ::= 
 | fun x → exp  functions are values

Note: for the sake of examples we 
may add integers and arithmetic 
operations to the “pure” untyped 
lambda calculus.  These can be 
encoded as lambda terms.



Lambda Calculus Operational Semantics
• Substitution function (in Math):

       x{v/x}  =  v      (replace the free  x by v)
       y{v/x}  =  y      (assuming y ≠ x)
(fun x → exp){v/x} = (fun x → exp)   (x is bound in exp)
(fun y → exp){v/x} = (fun y → exp{v/x})  (assuming y ≠ x)
     (e1 e2){v/x}  = (e1{v/x} e2{v/x})  (substitute everywhere)

• Examples:
(x y) {(fun z → z z)/y}
   =    x (fun z → z z)

(fun x → x y){(fun z → z z)/y}  
          =     fun x → x (fun z → z z)

(fun x → x){(fun z → z z)/x}  
          =     fun x → x      // x is not free!
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Free Variables and Scoping

• The result of add 1 is itself a function
– After calling add, we can’t throw away its argument (or its local variables) 

because those are needed in the function returned by add.

• We say that the variable x is free in fun y → x + y
– Free variables are defined in an outer scope

• We say that the variable y is bound by “fun y” and its scope is the 
body “x + y” in the expression fun y → x + y

• A term with no free variables is called closed.
• A term with one or more free variables is called open.
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let add = fun x → fun y → x + y
let inc = add 1



Free Variable Calculation
• An OCaml function to calculate the set of free variables in a lambda 

expression:

• A lambda expression e is closed if free_vars e returns 
VarSet.empty

• In mathematical notation:

  fv(x)    = {x}
  fv(fun x → exp) = fv(exp) \ {x}      (‘x’ is a bound in exp)
  fv(exp1 exp2)  = fv(exp1) ∪ fv(exp2)
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let rec free_vars (e:exp) : VarSet.t =
  begin match e with
    | Var x        -> VarSet.singleton x
    | Fun(x, body) -> VarSet.remove x (free_vars body)
    | App(e1, e2)  -> VarSet.union (free_vars e1) (free_vars e2)
  end



Variable Capture
• Note that if we try to naively "substitute" an open term, a bound 

variable might capture the free variables:

 (fun x → (x y)){(fun z → x)/y}
     =    fun x → (x (fun z -> x))

• Usually not the desired behavior
– This property is sometimes called "dynamic scoping"  

The meaning of "x" is determined by where it is bound dynamically,
not where it is bound statically.

– Some languages (e.g., emacs lisp) are implemented with this as a "feature"
– But: it leads to hard-to-debug scoping issues
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Note:  x is free 
in (fun z → x)

free x is
 “captured”!!



Alpha Equivalence
• Note that the names of bound variables don't matter to the semantics

– i.e., it doesn't matter which variable names you use, if you use them 
consistently:

                (fun x → y x)     is the  "same"  as   (fun z → y z)
     the choice of "x" or "z" is arbitrary, so long as we consistently 
     rename them

• The names of free variables do matter:
       (fun x → y x)   is not the "same" as   (fun x → z x)

Intuitively: y and z can refer to different things from some outer scope
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Two terms that differ only by consistent renaming of 
bound variables are called alpha equivalent

Students who cheat by “renaming variables” are 
trying to exploit alpha equivalence…



Fixing Substitution
• Consider the substitution operation:  

e1{e2/x} 

• To avoid capture, we define substitution to pick an alpha equivalent 
version of e1 such that the bound names of e1 don't mention the free 
names of e2.
– Harder said than done!  (Many ”obvious” implementations are wrong.)
– Then do the "naïve" substitution.

For example:    (fun x → (x y)){(fun z → x)/y} 
   =  (fun x' → (x' (fun z → x))

On the other hand, this requires no renaming:
   (fun x → (x y)){(fun x → x)/y} 
   =  (fun x → (x (fun x → x))
   = (fun a → (a (fun b → b))
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rename x to x'



Operational Semantics
• Specified using just two inference rules with judgments of the form 

exp ⇓  val
– Read this notation as “program exp evaluates to value val”
– This is call-by-value semantics: function arguments are evaluated before 

substitution
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v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3)  exp2 ⇓ v    exp3{v/x} ⇓ w
    

exp1 exp2  ⇓ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”



IMPLEMENTING THE 
INTERPRETER
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See fun.ml
Examples of encoding Booleans, integers, conditionals, loops, etc., in
untyped lambda calculus.


