
CIS 4521/5521: COMPILERS
Lecture 15

Announcements

• HW4: OAT v. 1.0
– Parsing & basic code generation
– Due: Wednesday, March 26th

– Test case Due: TUESDAY, March 25th

Zdancewic CIS 4521/5521: Compilers 2

UNTYPED LAMBDA CALCULUS

Zdancewic CIS 4521/5521: Compilers 3

Untyped Lambda Calculus Syntax
Abstract syntax in OCaml:

Concrete syntax:

CIS 4521/5521: Compilers 4

type exp =
 | Var of var (* variables *)
 | Fun of var * exp (* functions: fun x → e *)
 | App of exp * exp (* function application *)

exp ::=
 | x variables
 | fun x → exp functions
 | exp1 exp2 function application
 | (exp) parentheses

Operational Semantics
• Key operation: capture-avoiding substitution: e2{e1/x}

– replaces all free occurrences of x in e2 by e1

– must respect scope and alpha equivalence (renaming)

• Reduction Strategies
Various ways of simplifying (or “reducing”) lambda calculus terms.
– call-by-value evaluation:

• simplify the function argument before substitution
• does not reduce under lambda (a.k.a. fun)

– call-by-name evaluation:
• does not simplify the argument before substitution
• does not reduce under lambda

– weak-head normalization:
• does not simplify the argument before substitution
• does not reduce under lambda
• works on open terms, ”suspending” reduction at variables

– normal order reduction:
• does reduce under lambda
• first does weak-head normalization and then

recursively continues to reduce
• works on open terms – guaranteed to find a “normal form”

if such a form exists

Zdancewic CIS 4521/5521: Compilers 5

A “normal form” is
one that has no
substitution steps
possible, i.e., there
are no subterms of
the form
(fun x → e1) e2
anywhere.

IMPLEMENTING THE
INTERPRETER

Zdancewic CIS 4521/5521: Compilers 6

See fun.ml
Examples of encoding Booleans, integers, conditionals, loops, etc., in
untyped lambda calculus.

CBV Operational Semantics

• This is call-by-value semantics:
function arguments are evaluated before substitution

Zdancewic CIS 4521/5521: Compilers 7

v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3) exp2 ⇓ v exp3{v/x} ⇓ w

exp1 exp2 ⇓ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

CBN Operational Semantics

• This is call-by-name semantics:
function arguments are evaluated before substitution

Zdancewic CIS 4521/5521: Compilers 8

v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3) exp3{exp2/x} ⇓ w

exp1 exp2 ⇓ w

“To evaluate function application: Evaluate the function to a value,
substitute the argument into the function body, and then keep evaluating. ”

ENVIRONMENT BASED
INTERPRETERS

Zdancewic CIS 4521/5521: Compilers 9

See fun.ml
Eval2, Eval3

Environment Based Interpreters
• Thread through an environment, which maps variables to their values.

– extend the environment when doing a function call
– lookup variables in the current environment

• To properly handle first-class functions: use closures
– a closure is a pair of a

(1) a datastructure representing the saved environment, and
(2) the function body definition

Zdancewic CIS 4521/5521: Compilers 10

CLOSURE CONVERSION

Zdancewic CIS 4521/5521: Compilers 11

See cc.ml

Closure Conversion Summary
• A closure is a pair of an environment and a code pointer

– the environment is a map data structure binding variables to values
– environment could just be a list of the values (with known indices)

• Building a closure value:
– code pointer is a function that takes an extra argument for the

environment: A → B becomes (Env * A → B)
– body of the closure “projects out” then variables from the environment
– creates the environment map by bundling the free variables

• Applying a closure:
– project out the environment, invoke the function (pointer) with the

environment and its “real” argument

• Hoisting:
– Once closure converted, all functions can be lifted to the top level

Zdancewic CIS 4521/5521: Compilers 12

