
CIS 4521/5521: COMPILERS
Lecture 16

Announcements

• HW4: OAT v. 1.0
– Parsing & basic code generation
– Due: Wednesday, March 26th

– Test case Due: TUESDAY, March 25th

Zdancewic CIS 4521/5521: Compilers 2

Midterm 2024

• Average: 60.5/90 = 67%
• Median: 60.5/90 = 67%
• Std. Dev.: 14.5 ~ 16%

Zdancewic CIS 4521/5521: Compilers 3

Rough letter grades:

60 - 90 pts. ~ A
45 – 60 pts. ~ B
35 – 45 pts. ~ C
< 35 ~ D

ENVIRONMENT BASED
INTERPRETERS

Zdancewic CIS 4521/5521: Compilers 4

See fun.ml
Eval2, Eval3

Environment Based Interpreters
• Thread through an environment, which maps variables to their values.

– extend the environment when doing a function call
– lookup variables in the current environment

• To properly handle first-class functions: use closures
– a closure is a pair of a

(1) a datastructure representing the saved environment, and
(2) the function body definition

Zdancewic CIS 4521/5521: Compilers 5

CLOSURE CONVERSION

Zdancewic CIS 4521/5521: Compilers 6

See cc.ml

Closure Conversion Summary
• A closure is a pair of an environment and a code pointer

– the environment is a map data structure binding variables to values
– environment could just be a list of the values (with known indices)

• Building a closure value:
– code pointer is a function that takes an extra argument for the

environment: A → B becomes (Env * A → B)
– body of the closure “projects out” then variables from the environment
– creates the environment map by bundling the free variables

• Applying a closure:
– project out the environment, invoke the function (pointer) with the

environment and its “real” argument

• Hoisting:
– Once closure converted, all functions can be lifted to the top level

Zdancewic CIS 4521/5521: Compilers 7

STATIC ANALYSIS

Zdancewic CIS 4521/5521: Compilers 8

Scope, Types, and Context

Variable Scoping
• Consider the problem of determining whether a programmer-declared

variable is in scope.
• Issues:

– Which variables are available at a given point in the program?
– Shadowing – is it permissible to re-use the same identifier, or is it an error?

• Example: The following program is syntactically correct but not well-
formed. (y and q are used without being defined anywhere)

Zdancewic CIS 4521/5521: Compilers 9

int fact(int x) {
var acc = 1;

 while (x > 0) {
acc = acc * y;
x = q - 1;

}
 return acc;
}

Q: Can we solve this problem
by changing the parser to rule
out such programs?

Inference Rules
• We can read a judgment G ⊢ e as

“the expression e is well scoped and has free variables in G”
• For any environment G, expression e, and statements s1, s2.

 G ⊢ if (e) s1 else s2

holds if G ⊢ e and G ⊢ s1 and G ⊢ s2 all hold.
• More succinctly: we summarize these constraints as an inference rule:

• Such a rule can be used for any substitution of the syntactic
metavariables G, e, s1 and s2.

CIS 4521/5521: Compilers 10

G ⊢ e G ⊢ s1 G ⊢ s2

G ⊢ if (e) s1 else s2

Premises

Conclusion

Scope-Checking Lambda Calculus
• Consider how to identify “well-scoped” lambda calculus terms

– Given: G, a set of variable identifiers, e, a term of the lambda calculus
– Judgment: G ⊢ e “the free variables of e are included in G”

Zdancewic CIS 4521/5521: Compilers 11

x ∊ G

G ⊢ x

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

G ∪ {x} ⊢ e
G ⊢ fun x → e

“the variable x is free, but in scope”

“G contains the free variables of e1 and e2”

“x is available in the function body e”

Scope-checking Code
• Compare the OCaml code to the inference rules:

– structural recursion over syntax
– the check either “succeeds” or ”fails"

Zdancewic CIS 4521/5521: Compilers 12

let rec scope_check (g:VarSet.t) (e:exp) : unit =
 begin match e with
 | Var x -> if VarSet.member x g then () else failwith (x ^ "not in scope")
 | App(e1, e2) -> ignore (scope_check g e1); scope_check g e2
 | Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
 end

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

APP

x ∊ G

G ⊢ x

VAR

G ∪ {x} ⊢ e

G ⊢ fun x → e

FUN

• The inference rules are a specification of the intended behavior of this
scope checking code.
– they don’t specify the order in which the premises are checked

Judgments
• A judgment is a (meta-syntactic) notation that names a relation among

one or more sets.
– The sets are usually built from object-language syntax elements and other

“math” sets (e.g., integers, natural numbers, etc.)
– We usually describe them using metavariables that range over the sets.
– Often use domain-specific notation to ease reading.
– The meaning of judgments, i.e., which sets they represent, is defined by

(collections of) inference rules

• Example: When we say “G ⊢ e is a judgment where G is a context of
variables and e is a term, defined by these […] inference rules” that is
shorthand for this “math speak”:

– Let Var be the set of all (syntactic) variables
– Let Exp be the set {e | e is a term of the untyped lambda calculus}
– Let P(Var) be the (finite) powerset of variables (set of all finite sets)
– Define well-scoped ⊆ (P(Var), Exp) to be a relation satisfying the properties

defined by the associated inference rules […]
– Then “G ⊢ e” is notation that means that (G, e) ∊ well-scoped

Zdancewic CIS 4521/5521: Compilers 13

Checking Derivations
• A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

• Leaves of the tree are axioms
– axiom: rule with no premises that are judgments
– Example: the VAR rule is an axiom (it doesn't have any ⊢

• Goal of the static checking algorithm: verify that such a tree exists.

CIS 4521/5521: Compilers 14

Example: we can scope check the following lambda
calculus term by finding a derivation tree for it:

(fun x -> fun y -> x y) (fun z -> z)

Example Derivation Tree

• Note: the OCaml function scope_check verifies the existence of
this tree. The structure of the recursive calls when running
scope_check is the same shape as this tree!

• Note that x ∈ E is implemented by the function VarSet.mem

CIS 4521/5521: Compilers 15

{} ⊢ (fun x -> fun y -> x y) (fun z -> z)

{} ⊢ (fun x -> fun y -> x y) ⊢ (fun z -> z)
APP

x ∈ {x,y}
VAR

{x, y} ⊢ x {x, y} ⊢ y
APP

{x, y} ⊢ x y
FUN

VAR
y ∈ {x,y}

FUN
{x} ⊢ fun y -> x y

FUN
{z} ⊢ z

VAR z ∈ {z}

Example Failed Derivation

• This program is not well scoped
– The variable z is not bound in the body of the left function.
– The typing derivation fails because the VAR rule cannot succeed
– (The other parts of the derivation are OK, though!)

CIS 4521/5521: Compilers 16

{} ⊢ (fun x -> fun y -> z y) (fun z -> z)

{} ⊢ (fun x -> fun y -> z y) {} ⊢ (fun z -> z)
APP

{x, y} ⊢ z {x, y} ⊢ y
APP

{x, y} ⊢ z y
FUN

VAR
y ∈ {x,y}

FUN
{x} ⊢ fun y -> z y

FUN
{z} ⊢ z

VAR z ∈ {z}

z ∈ {x,y}
VAR

Uses of the inference rules
• We can do proofs by induction on the structure of the derivation.
• For example:
Lemma: If G ⊢ e then fv(e) ⊆ G.
Proof.
 By induction on the derivation that G ⊢ e.

– case: VAR then we have e = x (for some variable x) and
 x ∊ G. But fv(e) = fv(x) = {x}, but then {x} ⊆ G.

– case: APP then we have e = e1 e2 (for some e1 e2) and,
by induction, we have fv(e1) ⊆ G and fv(e2) ⊆ G, so
fv(e1 e2) = fv(e1) ∪ fv(e2) ⊆ G

– case: FUN then we have e = (fun x -> e1) for some x, e1 and,
by induction, we have fv(e1) ⊆ G ∪ {x}, but then we also
have fv(fun x -> e1) = fv(e1) \ {x} ⊆ ((G ∪ {x}) \ {x}) ⊆ G

Zdancewic CIS 4521/5521: Compilers 17

fv(x) = {x}
fv(fun x → exp) = fv(exp) \ {x} (‘x’ is a bound in exp)
fv(exp1 exp2) = fv(exp1) ∪ fv(exp2)

x ∊ G

G ⊢ x

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

G ∪ {x} ⊢ e1

G ⊢ fun x → e1

Why Inference Rules?
• They are a compact, precise way of specifying language properties.

– E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

• Inference rules correspond closely to the recursive AST traversal that
implements them

• Compiling in a context is nothing more an “interpretation” of the
inference rules that specify typechecking*: ⟦C ⊢ e : t⟧
– Compilation follows the typechecking judgment

• Strong mathematical foundations
– The “Curry-Howard correspondence”:

Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

– See CIS 5000 next Fall if you’re interested
in type systems!

– Types and Programming Languages by Pierce

CIS 4521/5521: Compilers 18
*Here (and later) we’ll write context C for G;L, the combination of the
global and local contexts.

CBV Operational Semantics

• This is call-by-value semantics:
function arguments are evaluated before substitution

Zdancewic CIS 4521/5521: Compilers 19

v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3) exp2 ⇓ v exp3{v/x} ⇓ w

exp1 exp2 ⇓ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

CBN Operational Semantics

• This is call-by-name semantics:
function arguments are evaluated before substitution

Zdancewic CIS 4521/5521: Compilers 20

v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3) exp3{exp2/x} ⇓ w

exp1 exp2 ⇓ w

“To evaluate function application: Evaluate the function to a value,
substitute the argument into the function body, and then keep evaluating. ”

Simply-typed Lambda Calculus
• Consider how to identify “well-scoped” lambda calculus terms

– Recall the free variable calculation
– Given: G, a map of variable identifiers to types, e, a term of the lambda

calculus
– Judgment: G ⊢ e : T means “the expression e computes a value of

type T, assuming its free variables have the types given in G”

Zdancewic CIS 4521/5521: Compilers 21

x:T ∊ G

G ⊢ x : T

G ⊢ e1 : T → S G ⊢ e2 : T

G ⊢ e1 e2 : S

G, x : T ⊢ e : S

G ⊢ fun (x:T) → e : T → S

“the variable x has type T an is in scope”

“e1 is a function from T2 to T and e2 is an expression of type T2”

“Given an input of type T, this function
 computes a result of type S”

Adding Integers
• For the language in “tc.ml” we have five inference rules:

• Note how these rules correspond to the code.
• By convention, if G is empty we leave that spot blank.

CIS 4521/5521: Compilers 22

G ⊢ i : int

G ⊢ e1 : int G ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T ∈ G

G ⊢ x : T

G, x : T ⊢ e : S

G ⊢ fun (x:T) → e : T → S

G ⊢ e1 : T → S G ⊢ e2 : T

G ⊢ e1 e2 : S

INT VAR ADD

FUN APP

Type Checking Derivations
• A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

• Leaves of the tree are axioms (i.e. rules with no premises)
– Example: the INT rule is an axiom

• Goal of the typechecker: verify that such a tree exists.
• Example: Find a tree for the following program using the inference

rules on the previous slide:

 ⊢ (fun (x:int) → x + 3) 5 : int

CIS 4521/5521: Compilers 23

Example Derivation Tree

• Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is
the same shape as this tree!

• Note that x : int ∈ E is implemented by the function lookup

CIS 4521/5521: Compilers 24

⊢ (fun (x:int) → x + 3) 5 : int

⊢ (fun (x:int) →x + 3) : int → int ⊢ 5 : int
APP

INT

INT
x : int ∈ x : int

VAR

x : int ⊢ x : int x : int ⊢ 3 : int
ADD

x : int ⊢ x + 3 : int
FUN

Ill-typed Programs
• Programs without derivations are ill-typed

Example: There is no type T such that
 ⊢ (fun (x:int) → x 3) 5 : T

Zdancewic CIS 4521/5521: Compilers 25

⊢ (fun (x:int) → x 3) 5 : T

⊢ (fun (x:int) →x 3) : int → T ⊢ 5 : int
APP

x : int → T ∉ x : int
VAR

x : int ⊢ x : int → T x : int ⊢ 3 : int
APP

x : int ⊢ x 3 : T
FUN

Type Safety

"Well typed programs do not go wrong."
 – Robin Milner, 1978

• Note: this is a very strong property.
– Well-typed programs cannot "go wrong" by trying to execute undefined

code (such as 3 + (fun x -> 2))
– Simply-typed lambda calculus is guaranteed to terminate!

(i.e. it isn't Turing complete)

Zdancewic CIS 4521/5521: Compilers 26

Theorem: (simply typed lambda calculus with integers)

 If ⊢ e : t then there exists a value v such that e ⇓ v .

Notes about this Typechecker
• The interpreter evaluates the body of a function only when it's applied.
• The typechecker always checks the body of the function

– even if it's never applied
– We assume the input has some type (say t1) and reflect this in the type of the

function (t1 -> t2).

• Dually, at a call site (e1 e2), we don't know what closure we're going
to get.
– But we can calculate e1's type, check that e2 is an argument of the right

type, and determine what type e1 will return.

• Question: Why is this an approximation?
• Question: What if well_typed always returns false?

