
CIS 4521/5521: COMPILERS
Lecture 16



Announcements

• HW4:  OAT v. 1.0
– Parsing & basic code generation
– Due: Wednesday, March 26th

– Test case Due: TUESDAY, March 25th 
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Midterm 2024

• Average: 60.5/90 = 67%
• Median: 60.5/90 = 67%
• Std. Dev.: 14.5 ~ 16%
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Rough letter grades:

60 - 90 pts. ~ A
45 – 60 pts. ~ B
35 – 45 pts. ~ C
< 35           ~ D



ENVIRONMENT BASED 
INTERPRETERS

Zdancewic     CIS 4521/5521: Compilers    4

See fun.ml
Eval2,  Eval3 



Environment Based Interpreters
• Thread through an environment, which maps variables to their values.

– extend the environment when doing a function call
– lookup variables in the current environment

• To properly handle first-class functions: use closures
– a closure is a pair of a 

(1) a datastructure representing the saved environment, and 
(2) the function body definition
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CLOSURE CONVERSION
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See cc.ml



Closure Conversion Summary
• A closure is a pair of an environment and a code pointer

– the environment is a map data structure binding variables to values
– environment could just be a list of the values (with known indices)

• Building a closure value:
– code pointer is a function that takes an extra argument for the 

environment:  A → B   becomes (Env * A → B)
– body of the closure “projects out” then variables from the environment
– creates the environment map by bundling the free variables 

• Applying a closure:
– project out the environment, invoke the function (pointer) with the 

environment and its “real” argument

• Hoisting:
– Once closure converted, all functions can be lifted to the top level
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STATIC ANALYSIS
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Scope, Types, and Context



Variable Scoping
• Consider the problem of determining whether a programmer-declared 

variable is in scope.
• Issues:

– Which variables are available at a given point in the program?
– Shadowing – is it permissible to re-use the same identifier, or is it an error?

• Example:  The following program is syntactically correct but not well-
formed.  (y and q are used without being defined anywhere)
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int fact(int x) {
var acc = 1;

  while (x > 0) {
acc = acc * y;
x = q - 1;

}
  return acc;
}

Q: Can we solve this problem 
by changing the parser to rule
out such programs?



Inference Rules
• We can read a judgment G ⊢ e    as 

“the expression e is well scoped and has free variables in G”
• For any environment G, expression e, and statements s1, s2.

   
      G ⊢ if (e) s1 else s2 

holds if   G ⊢ e     and   G ⊢ s1     and  G ⊢ s2     all  hold.
• More succinctly: we summarize these constraints as an inference rule:

• Such a rule can be used for any substitution of the syntactic 
metavariables G, e, s1 and s2.

CIS 4521/5521: Compilers 10

G ⊢ e    G ⊢ s1   G ⊢ s2 

G ⊢ if (e) s1 else s2 

Premises

Conclusion



Scope-Checking Lambda Calculus
• Consider how to identify “well-scoped” lambda calculus terms

– Given:  G, a set of variable identifiers,  e,  a term of the lambda calculus
– Judgment:    G ⊢ e    “the free variables of e are included in G”
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x ∊ G

G ⊢ x

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

G ∪ {x} ⊢ e
G ⊢ fun x → e

“the variable x is free, but in scope”

“G contains the free variables of e1 and e2”

“x is available in the function body e”



Scope-checking Code
• Compare the OCaml code to the inference rules:

– structural recursion over syntax
– the check either “succeeds” or ”fails"
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let rec scope_check (g:VarSet.t) (e:exp) : unit =
    begin match e with
    | Var x -> if VarSet.member x g then () else failwith (x ^ "not in scope")
    | App(e1, e2) -> ignore (scope_check g e1); scope_check g e2
    | Fun(x, e)   -> scope_check (VarSet.union g (VarSet.singleton x)) e
    end

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

APP

x ∊ G

G ⊢ x

VAR

G ∪ {x} ⊢ e

G ⊢ fun x → e

FUN

• The inference rules are a specification of the intended behavior of this 
scope checking code.
– they don’t specify the order in which the premises are checked 



Judgments
• A judgment is a (meta-syntactic) notation that names a relation among 

one or more sets.
– The sets are usually built from object-language syntax elements and other 

“math” sets (e.g., integers, natural numbers, etc.)
– We usually describe them using metavariables that range over the sets.
– Often use domain-specific notation to ease reading.
– The meaning of judgments, i.e., which sets they represent, is defined by 

(collections of) inference rules

• Example:  When we say   “G ⊢ e   is a judgment where G is a context of 
variables and e is a term, defined by these […] inference rules” that is 
shorthand for this “math speak”:

– Let       Var be the set of all (syntactic) variables
– Let       Exp be the set  {e | e is a term of the untyped lambda calculus}
– Let       P(Var)  be the (finite) powerset of variables (set of all finite sets)
– Define   well-scoped ⊆ (P(Var), Exp) to be a relation satisfying the properties 

defined by the associated inference rules […]
– Then     “G ⊢ e” is notation that means that   (G, e) ∊ well-scoped
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Checking Derivations
• A derivation or proof tree has (instances of) judgments as its nodes and 

edges that connect premises to a conclusion according to an inference 
rule.  

• Leaves of the tree are axioms 
– axiom: rule with no premises that are judgments 
– Example: the VAR rule is an axiom (it doesn't have any ⊢

• Goal of the static checking algorithm: verify that such a tree exists.
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Example: we can scope check the following lambda 
calculus term by finding a derivation tree for it:

(fun x -> fun y -> x y) (fun z -> z)



Example Derivation Tree 

• Note: the OCaml function scope_check verifies the existence of 
this tree.  The structure of the recursive calls when running 
scope_check is the same shape as this tree! 

• Note that  x  ∈  E is implemented by the function VarSet.mem
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{} ⊢ (fun x -> fun y -> x y) (fun z -> z)

{} ⊢ (fun x -> fun y -> x y) ⊢ (fun z -> z)
APP

x ∈  {x,y}
VAR

{x, y} ⊢ x {x, y} ⊢ y
APP

{x, y} ⊢ x y
FUN

VAR
y ∈  {x,y}

FUN
{x} ⊢ fun y -> x y

FUN
{z} ⊢ z

VAR z ∈  {z}



Example Failed Derivation

• This program is not well scoped
– The variable z is not bound in the body of the left function.
– The typing derivation fails because the VAR rule cannot succeed
– (The other parts of the derivation are OK, though!)
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{} ⊢ (fun x -> fun y -> z y) (fun z -> z)

{} ⊢ (fun x -> fun y -> z y) {} ⊢ (fun z -> z)
APP

{x, y} ⊢ z {x, y} ⊢ y
APP

{x, y} ⊢ z y
FUN

VAR
y ∈  {x,y}

FUN
{x} ⊢ fun y -> z y

FUN
{z} ⊢ z

VAR z ∈  {z}

z ∈  {x,y}
VAR



Uses of the inference rules
• We can do proofs by induction on the structure of the derivation.
• For example:
Lemma: If  G ⊢ e then fv(e) ⊆ G.
Proof.
 By induction on the derivation that G ⊢ e.

– case: VAR    then we have e = x (for some variable x) and
 x ∊ G.  But fv(e) = fv(x) = {x}, but then {x} ⊆ G.

– case: APP   then we have e = e1 e2 (for some e1 e2) and, 
by induction, we have fv(e1) ⊆ G and fv(e2) ⊆ G, so
fv(e1 e2) = fv(e1) ∪ fv(e2) ⊆ G

– case: FUN   then we have e = (fun x -> e1) for some x, e1 and,
by induction, we have fv(e1) ⊆ G ∪ {x}, but then we also
have fv(fun x -> e1) = fv(e1) \ {x} ⊆ ((G ∪ {x}) \ {x}) ⊆ G
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fv(x)    = {x}
fv(fun x → exp) = fv(exp) \ {x}      (‘x’ is a bound in exp)
fv(exp1 exp2)  = fv(exp1) ∪ fv(exp2)

x ∊ G

G ⊢ x

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

G ∪ {x} ⊢ e1

G ⊢ fun x → e1



Why Inference Rules?
• They are a compact, precise way of specifying language properties.

– E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

• Inference rules correspond closely to the recursive AST traversal that 
implements them

• Compiling in a context is nothing more an “interpretation” of the 
inference rules that specify typechecking*:  ⟦C ⊢ e : t⟧
– Compilation follows the typechecking judgment

• Strong mathematical foundations
– The “Curry-Howard correspondence”:  

Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

– See CIS 5000 next Fall if you’re interested 
in type systems!

– Types and Programming Languages by Pierce
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*Here (and later) we’ll write context C for G;L, the combination of the
global and local contexts.  



CBV Operational Semantics

• This is call-by-value semantics: 
function arguments are evaluated before substitution
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v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3)  exp2 ⇓ v    exp3{v/x} ⇓ w
    

exp1 exp2  ⇓ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”



CBN Operational Semantics

• This is call-by-name semantics: 
function arguments are evaluated before substitution
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v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3)   exp3{exp2/x} ⇓ w
    

exp1 exp2  ⇓ w

“To evaluate function application: Evaluate the function to a value, 
substitute the argument into the function body, and then keep evaluating. ”



Simply-typed Lambda Calculus
• Consider how to identify “well-scoped” lambda calculus terms

– Recall the free variable calculation
– Given:  G, a map of variable identifiers to types,  e,  a term of the lambda 

calculus
– Judgment:    G ⊢ e : T     means “the expression e computes a value of 

type T, assuming its free variables have the types given in G”
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x:T ∊ G

G ⊢ x : T

G ⊢ e1 : T → S G ⊢ e2 : T

G ⊢ e1 e2 : S

G, x : T ⊢ e : S

G ⊢ fun (x:T) → e : T → S

“the variable x has type T an is in scope”

“e1 is a function from T2 to T  and e2 is an expression of type T2”

“Given an input of type T, this function
  computes a result of type S”



Adding Integers
• For the language in “tc.ml” we have five inference rules:

• Note how these rules correspond to the code.
• By convention, if G is empty we leave that spot blank.
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G ⊢ i : int

G ⊢ e1 : int   G ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T  ∈  G
 

G ⊢ x : T

G, x : T ⊢ e : S

G ⊢ fun (x:T) → e  : T → S

G ⊢ e1 : T → S G ⊢ e2 : T 

G ⊢ e1 e2 : S

INT VAR ADD

FUN APP



Type Checking Derivations
• A derivation or proof tree has (instances of) judgments as its nodes and 

edges that connect premises to a conclusion according to an inference 
rule.  

• Leaves of the tree are axioms (i.e. rules with no premises)
– Example: the INT rule is an axiom

• Goal of the typechecker: verify that such a tree exists.
• Example:  Find a tree for the following program using the inference 

rules on the previous slide:
                             

                    ⊢ (fun (x:int) → x + 3) 5  : int
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Example Derivation Tree 

• Note: the OCaml function typecheck verifies the existence of this 
tree.  The structure of the recursive calls when running typecheck is 
the same shape as this tree! 

• Note that  x : int  ∈  E is implemented by the function lookup
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⊢ (fun (x:int) → x + 3) 5  : int

⊢ (fun (x:int) →x + 3) : int → int ⊢ 5 : int 
APP

INT

INT
x : int  ∈  x : int

VAR

x : int ⊢ x  : int x : int ⊢ 3  : int
ADD

x : int ⊢ x + 3 : int
FUN



Ill-typed Programs
• Programs without derivations are ill-typed

Example:  There is no type T such that
                     ⊢ (fun (x:int) → x 3) 5  : T
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⊢ (fun (x:int) → x 3) 5  : T

⊢ (fun (x:int) →x 3) : int → T ⊢ 5 : int 
APP

x : int → T  ∉ x : int
VAR

x : int ⊢ x  : int → T x : int ⊢ 3  : int
APP

x : int ⊢ x 3 : T
FUN



Type Safety

"Well typed programs do not go wrong." 
  – Robin Milner, 1978

• Note: this is a very strong property.
– Well-typed programs cannot "go wrong" by trying to execute undefined  

code (such as    3 + (fun x -> 2))
– Simply-typed lambda calculus is guaranteed to terminate!  

(i.e. it isn't Turing complete)
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Theorem:  (simply typed lambda calculus with integers)   

   If   ⊢ e : t  then there exists a value v such that   e  ⇓  v .



Notes about this Typechecker
• The interpreter evaluates the body of a function only when it's applied.
• The typechecker always checks the body of the function 

– even if it's never applied
– We assume the input has some type (say t1) and reflect this in the type of the 

function (t1 -> t2).

• Dually, at a call site (e1 e2), we don't know what closure we're going 
to get. 
– But we can calculate e1's type, check that e2 is an argument of the right 

type, and determine what type e1 will return.

• Question:  Why is this an approximation?
• Question: What if well_typed always returns false?


