
CIS 4521/5521: COMPILERS
Lecture 17

Announcements

• HW4: OAT v. 1.0
– Parsing & basic code generation
– Due: Wednesday, March 26th

– Test case Due: TONIGHT at 10:00PM

• HW5: OAT v. 2.0
– records, function pointers, type checking, array-bounds checks, etc.
– Due: Wednesday, April 9th

– Available on Thursday
– Start early!

Zdancewic CIS 4521/5521: Compilers 2

Inference Rules
• We can read a judgment G ⊢ e as

“the expression e is well scoped and has free variables in G”
• For any environment G, expression e, and statements s1, s2.

 G ⊢ if (e) s1 else s2

holds if G ⊢ e and G ⊢ s1 and G ⊢ s2 all hold.
• More succinctly: we summarize these constraints as an inference rule:

• Such a rule can be used for any substitution of the syntactic
metavariables G, e, s1 and s2.

CIS 4521/5521: Compilers 3

G ⊢ e G ⊢ s1 G ⊢ s2

G ⊢ if (e) s1 else s2

Premises

Conclusion

CBV Operational Semantics

• This is call-by-value semantics:
function arguments are evaluated before substitution

Zdancewic CIS 4521/5521: Compilers 4

v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3) exp2 ⇓ v exp3{v/x} ⇓ w

exp1 exp2 ⇓ w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

CBN Operational Semantics

• This is call-by-name semantics:
function arguments are evaluated before substitution

Zdancewic CIS 4521/5521: Compilers 5

v ⇓ v
“Values evaluate to themselves”

exp1 ⇓ (fun x → exp3) exp3{exp2/x} ⇓ w

exp1 exp2 ⇓ w

“To evaluate function application: Evaluate the function to a value,
substitute the argument into the function body, and then keep evaluating. ”

Simply-typed Lambda Calculus
• Consider how to identify “well-scoped” lambda calculus terms

– Recall the free variable calculation
– Given: G, a map of variable identifiers to types, e, a term of the lambda

calculus
– Judgment: G ⊢ e : T means “the expression e computes a value of

type T, assuming its free variables have the types given in G”

Zdancewic CIS 4521/5521: Compilers 6

x:T ∊ G

G ⊢ x : T

G ⊢ e1 : T → S G ⊢ e2 : T

G ⊢ e1 e2 : S

G, x : T ⊢ e : S

G ⊢ fun (x:T) → e : T → S

“the variable x has type T an is in scope”

“e1 is a function from T2 to T and e2 is an expression of type T2”

“Given an input of type T, this function
 computes a result of type S”

Adding Integers
• For the language in “tc.ml” we have five inference rules:

• Note how these rules correspond to the code.
• By convention, if G is empty we leave that spot blank.

CIS 4521/5521: Compilers 7

G ⊢ i : int

G ⊢ e1 : int G ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T ∈ G

G ⊢ x : T

G, x : T ⊢ e : S

G ⊢ fun (x:T) → e : T → S

G ⊢ e1 : T → S G ⊢ e2 : T

G ⊢ e1 e2 : S

INT VAR ADD

FUN APP

Type Checking Derivations
• A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

• Leaves of the tree are axioms (i.e. rules with no premises)
– Example: the INT rule is an axiom

• Goal of the typechecker: verify that such a tree exists.
• Example: Find a tree for the following program using the inference

rules on the previous slide:

 ⊢ (fun (x:int) → x + 3) 5 : int

CIS 4521/5521: Compilers 8

Example Derivation Tree

• Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is
the same shape as this tree!

• Note that x : int ∈ E is implemented by the function lookup

CIS 4521/5521: Compilers 9

⊢ (fun (x:int) → x + 3) 5 : int

⊢ (fun (x:int) →x + 3) : int → int ⊢ 5 : int
APP

INT

INT
x : int ∈ x : int

VAR

x : int ⊢ x : int x : int ⊢ 3 : int
ADD

x : int ⊢ x + 3 : int
FUN

Ill-typed Programs
• Programs without derivations are ill-typed

Example: There is no type T such that
 ⊢ (fun (x:int) → x 3) 5 : T

Zdancewic CIS 4521/5521: Compilers 10

⊢ (fun (x:int) → x 3) 5 : T

⊢ (fun (x:int) →x 3) : int → T ⊢ 5 : int
APP

x : int → T ∉ x : int
VAR

x : int ⊢ x : int → T x : int ⊢ 3 : int
APP

x : int ⊢ x 3 : T
FUN

Type Safety

"Well typed programs do not go wrong."
 – Robin Milner, 1978

• Note: this is a very strong property.
– Well-typed programs cannot "go wrong" by trying to execute undefined

code (such as 3 + (fun x -> 2))
– Simply-typed lambda calculus is guaranteed to terminate!

(i.e. it isn't Turing complete)

Zdancewic CIS 4521/5521: Compilers 11

Theorem: (simply typed lambda calculus with integers)

 If ⊢ e : t then there exists a value v such that e ⇓ v .

Notes about this Typechecker
• The interpreter evaluates the body of a function only when it's applied.
• The typechecker always checks the body of the function

– even if it's never applied
– We assume the input has some type (say t1) and reflect this in the type of the

function (t1 -> t2).

• Dually, at a call site (e1 e2), we don't know what closure we're going
to get.
– But we can calculate e1's type, check that e2 is an argument of the right

type, and determine what type e1 will return.

• Question: Why is this an approximation?
• Question: What if well_typed always returns false?

Type Safety For General Languages

• Well-defined termination could include:
– halting with a return value
– raising an exception

• Type safety rules out undefined behaviors:
– abusing "unsafe" casts: converting pointers to integers, etc.
– treating non-code values as code (and vice-versa)
– breaking the type abstractions of the language

• What is "defined" depends on the language semantics…

Zdancewic CIS 4521/5521: Compilers 13

Theorem: (Type Safety)

 If ⊢ P : t is a well-typed program, then either:
 (a) the program terminates in a well-defined way, or
 (b) the program continues computing forever

MORE TYPES

Zdancewic CIS 4521/5521: Compilers 14

B

Tuples
• ML-style tuples with statically known number of products:
• First: add a new type constructor: T1 * … * Tn

CIS 4521/5521: Compilers 15

G ⊢ e1 : T1 … G ⊢ en : Tn

G ⊢ (e1, …, en) : T1 * … * Tn

TUPLE

G ⊢ e : T1 * … * Tn 1 ≤ i ≤ n

G ⊢ prji e : Ti

PROJ

Arrays
• Array constructs are not hard
• First: add a new type constructor: T[]

CIS 4521/5521: Compilers 16

G ⊢ e1 : int G ⊢ e2 : T

G ⊢ new T[e1](e2) : T[]

NEW
e1 is the size of the newly
allocated array. e2
initializes the elements of
the array.

G ⊢ e1 : T[] G ⊢ e2 : int

G ⊢ e1[e2] : T

INDEX

Note: These rules don’t
ensure that the array index
is in bounds – that should
be checked dynamically.G ⊢ e1 : T[] G ⊢ e2 : int G ⊢ e3 : T

G ⊢ e1[e2] = e3 ok

UPDATE

References
• ML-style references (note that ML uses only expressions)
• First, add a new type constructor: T ref

CIS 4521/5521: Compilers 17

G ⊢ e : T

G ⊢ ref e : T ref

REF

E ⊢ e : T ref

G ⊢ !e : T

DEREF

Note the similarity with the
rules for arrays…G ⊢ e1 : T ref E ⊢ e2 : T

G ⊢ e1 := e2 : unit

ASSIGN

TYPES, MORE GENERALLY

Zdancewic CIS 4521/5521: Compilers 18

Beyond describing “structure”… describing “properties”
Types as sets
Subsumption

What are types, anyway?
• A type is just a predicate on the set of values in a system.

– For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

– Equivalently, we can think of a type as just a subset of all values.

• For efficiency and tractability, the predicates are usually taken to be
very simple.
– Types are an abstraction mechanism

• We can easily add new types that distinguish different subsets of
values:

type tp =
 | IntT (* type of integers *)
 | PosT | NegT | ZeroT (* refinements of ints *)
 | BoolT (* type of booleans *)
 | TrueT | FalseT (* subsets of booleans *)
 | AnyT (* any value *)

CIS 4521/5521: Compilers 19

Modifying the typing rules
• We need to refine the typing rules too…
• Some easy cases:

– Just split up the integers into their more refined cases:

• Same for booleans:

CIS 4521/5521: Compilers 20

i > 0

G ⊢ i : Pos

P-INT

i < 0

G ⊢ i : Neg

N-INT ZERO

G ⊢ 0 : Zero

TRUE

G ⊢ true : True

FALSE

G ⊢ false : False

What about “if”?
• Two cases are easy:

• What happens when we don’t know statically which branch will be
taken?

• Consider the typechecking problem:

 x:bool ⊢ if (x) 3 else -1 : ?

• The true branch has type Pos and the false branch has type Neg.
– What should be the result type of the whole if?

CIS 4521/5521: Compilers 21

G ⊢ e1 : True G ⊢ e2 : T

G ⊢ if (e1) e2 else e3 : T

G ⊢ e1 : False E ⊢ e3 : T

G ⊢ if (e1) e2 else e3 : T

IF-T IF-F

Subtyping and Upper Bounds
• If we think of types as sets of values, we have a natural inclusion

relation: Pos ⊆ Int
• This subset relation gives rise to a subtype relation: Pos <: Int

• Such inclusions give rise to a subtyping hierarchy:

• Given any two types T1 and T2, we can calculate their least upper
bound (LUB) according to the hierarchy.
– Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
– Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on
types.

CIS 4521/5521: Compilers 22

Any

Int

Neg Zero Pos

Bool

True False

<:

<: <:

:>

:> :>:>

“If” Typing Rule Revisited
• For statically unknown conditionals, we want the return value to be

the LUB of the types of the branches:

• Note that LUB(T1, T2) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T1 or
type T2.

• In math notation, LUB(T1, T2) is sometimes written T1 ⋁ T2

• LUB is also called the join operation.

CIS 4521/5521: Compilers 23

G ⊢ e1 : bool E ⊢ e2 : T1 G ⊢ e3 : T2

G ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Subtyping Hierarchy
• A subtyping hierarchy:

• The subtyping relation is a partial order:
– Reflexive: T <: T for any type T
– Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3

– Antisymmetric: It T1 <: T2 and T2 <: T1 then T1 = T2

CIS 4521/5521: Compilers 24

Any

Int

Neg Zero Pos

Bool

True False

<:

<: <:

:>

:> :>:>

Soundness of Subtyping Relations
• We don’t have to treat every subset of the integers as a type.

– e.g., we left out the type NonNeg

• A subtyping relation T1 <: T2 is sound if it approximates the underlying
semantic subset relation.

• Formally: write ⟦T⟧ for the subset of (closed) values of type T
– i.e. ⟦T⟧ = {v | ⊢ v : T}
– e.g. ⟦Zero⟧ = {0}, ⟦Pos⟧ = {1, 2, 3, …}

• If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound.
– e.g. Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...}
– e.g. Int <: Pos is not sound, since it is not the case that

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…}

CIS 4521/5521: Compilers 25

Soundness of LUBs
• Whenever you have a sound subtyping relation, it follows that:

 ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧
– Note that the LUB is an over approximation of the “semantic union”
– Example: ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇
 {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧

• Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

• It just so happens that LUBs on subtypes of Int are sound for +

CIS 4521/5521: Compilers 26

G ⊢ e1 : T1 G ⊢ e2 : T2 T1 <: Int T2 <: Int

G ⊢ e1 + e2 : T1 ⋁ T2

ADD

Subsumption Rule
• When we add subtyping judgments of the form T <: S we can

uniformly integrate it into the type system generically:

• Subsumption allows any value of type T to be treated as an S
whenever T <: S.

• Adding this rule makes the search for typing derivations more difficult
– this rule can be applied anywhere, since T <: T.
– But careful engineering of the typing system can incorporate the

subsumption rule into a deterministic algorithm. (See, e.g., the OAT type
system)

CIS 4521/5521: Compilers 27

G ⊢ e : T T <: S

G ⊢ e : S

SUBSUMPTION

Downcasting
• What happens if we have an Int but need something of type Pos?

– At compile time, we don’t know whether the Int is greater than zero.
– At run time, we do.

• Add a “checked downcast”

• At runtime, ifPos checks whether e1 is > 0. If so, branches to e2 and
otherwise branches to e3.

• Inside the expression e2, x is the name for e1’s value, which is known
to be strictly positive because of the dynamic check.

• Note that such rules force the programmer to add the appropriate
checks
– We could give integer division the type: Int → NonZero → Int

CIS 4521/5521: Compilers 28

G ⊢ e1 : Int G, x : Pos ⊢ e2 : T2 G ⊢ e3 : T3

G ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3

SUBTYPING OTHER TYPES

Zdancewic CIS 4521/5521: Compilers 29

Extending Subtyping to Other Types
• What about subtyping for tuples?

– Intuition: whenever a program expects
something of type S1 * S2, it is sound
to give it a T1 * T2.

– Example: (Pos * Neg) <: (Int * Int)

• What about functions?

• When is T1 → T2 <: S1 → S2 ?

CIS 4521/5521: Compilers 30

T1 <: S1 T2 <: S2

(T1 * T2) <: (S1 * S2)

Subtyping for Function Types
• One way to see it:

• Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

CIS 4521/5521: Compilers 31

Expected function

Actual functionS1 S2T1 T2

S1 <: T1 T2 <: S2

(T1 → T2) <: (S1 → S2)

Immutable Records
• Record type: {lab1:T1; lab2:T2; … ; labn:Tn}

– Each labi is a label drawn from a set of identifiers.

CIS 4521/5521: Compilers 32

G ⊢ e1 : T1 G ⊢ e2 : T2 … G ⊢ en : Tn

G ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

G ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

G ⊢ e.labi : Ti

PROJECTION

Immutable Record Subtyping
• Depth subtyping:

– Corresponding fields may be subtypes

• Width subtyping:
– Subtype record may have more fields:

CIS 4521/5521: Compilers 33

T1 <: U1 T2 <: U2 … Tn <: Un

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}

DEPTH

m ≤ n

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}

WIDTH

Depth & Width Subtyping vs. Layout
• Width subtyping (without depth) is compatible with "inlined" record

representation as with C structs:

{x:int; y:int; z:int} <: {x:int; y:int}
[Width Subtyping]

– The layout and underlying field indices for 'x' and 'y' are identical.
– The 'z' field is just ignored

• Depth subtyping (without width) is similarly compatible, assuming that
the space used by A is the same as the space used by B whenever
A <: B

• But… they don't mix without more work

Zdancewic CIS 4521/5521: Compilers 34

x y z x y

Immutable Record Subtyping (cont’d)
• Width subtyping assumes an implementation in which order of fields

in a record matters:
 {x:int; y:int} ≠ {y:int; x:int}

• But: {x:int; y:int; z:int} <: {x:int; y:int}
– Implementation: a record is a struct, subtypes just add fields at the end of

the struct.

• Alternative: allow permutation of record fields:
 {x:int; y:int} = {y:int; x:int}
– Implementation: compiler sorts the fields before code generation.
– Need to know all of the fields to generate the code

• Permutation is not directly compatible with width subtyping:
 {x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

CIS 4521/5521: Compilers 35

If you want both:
• If you want permutability & dropping, you need to either copy (to

rearrange the fields) or use a dictionary like this:

p = {x=42; y=55; z=66}:{x:int; y:int; z:int}

q : {y:int; z:int} = p

x y z

42 55 66

y z

dictionary

dictionary

MUTABILITY & SUBTYPING

Zdancewic CIS 4521/5521: Compilers 37

NULL
• What is the type of null?
• Consider:

 int[] a = null; // OK?
 int x = null; // not OK?
 string s = null; // OK?

 G ⊢ null : r

• Null has any reference type
– Null is generic

• What about type safety?
– Requires defined behavior when dereferencing null

e.g. Java's NullPointerException
– Requires a safety check for every dereference operation

(typically implemented using low-level hardware "trap" mechanisms.)

Zdancewic CIS 4521/5521: Compilers 38

NULL

Subtyping and References
• What is the proper subtyping relationship for references and arrays?

• Suppose we have NonZero as a type and the division operation has
type: Int → NonZero → Int
– Recall that NonZero <: Int

• Should (NonZero ref) <: (Int ref) ?
• Consider this program:

Int bad(NonZero ref r) {
 Int ref a = r; (* OK because (NonZero ref <: Int ref*)
 a := 0; (* OK because 0 : Zero <: Int *)
 return (42 / !r) (* OK because !r has type NonZero *)
}

CIS 4521/5521: Compilers 39

Mutable Structures are Invariant
• Covariant reference types are unsound

– As demonstrated in the previous example

• Contravariant reference types are also unsound
– i.e. If T1 <: T2 then ref T2 <: ref T1 is also unsound
– Exercise: construct a program that breaks contravariant references.

• Moral: Mutable structures are invariant:
 T1 ref <: T2 ref implies T1 = T2

• Same holds for arrays, OCaml-style mutable records, object fields, etc.
– Note: Java and C# get this wrong. They allows covariant array subtyping,

but then compensate by adding a dynamic check on every array update!

CIS 4521/5521: Compilers 40

Another Way to See It
• We can think of a reference cell as an immutable record (object) with

two functions (methods) and some hidden state:
 T ref ≃ {get: unit → T; set: T → unit}
– get returns the value hidden in the state.
– set updates the value hidden in the state.

• When is T ref <: S ref?
• Records are like tuples: subtyping extends pointwise over each

component.
• {get: unit → T; set: T → unit} <: {get: unit → S; set: S → unit}

– get components are subtypes: unit → T <: unit → S
set components are subtypes: T → unit <: S → unit

• From get, we must have T <: S (covariant return)
• From set, we must have S <: T (contravariant arg.)

• From T <: S and S <: T we conclude T = S.

CIS 4521/5521: Compilers 41

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 4521/5521: Compilers 42

Structural vs. Nominal Typing
• Is type equality / subsumption defined by the structure of the data or the

name of the data?
• Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

• Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 4521/5521: Compilers 43

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents arr
 isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)

Nominal Subtyping in Java
• In Java, Classes and Interfaces must be named and their relationships

explicitly declared:

• Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
– Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 4521/5521: Compilers 44

(* Java: *)
interface Foo {
 int foo();
}

class C { /* Does not implement the Foo interface */
 int foo() {return 2;}
}

class D implements Foo {
 int foo() {return 4521/5521;}
}

