
CIS 4521/5521: COMPILERS
Lecture 18

Announcements

• HW5: OAT v. 2.0
– records, function pointers, type checking, array-bounds checks, etc.
– Due: Wednesday, April 9th

– Available soon (by Saturday morning)
– Start Early!

Zdancewic CIS 4521/5521: Compilers 2

TYPECHECKING

Zdancewic CIS 4521/5521: Compilers 3

Recap
• A typechecking (static analysis) specification can be defined by

collections of inference rules.
– Each "judgment" form corresponds to a particular kind of analysis
– The rule's premises and conclusion specify the intended checks

• Subtyping introduces a notion of subsumption (inclusion):

Zdancewic CIS 4521/5521: Compilers 4

G ⊢ e1 : T → S G ⊢ e2 : T

G ⊢ e1 e2 : S
APPLICATION

G ⊢ e : T T <: S

G ⊢ e : S
SUBSUMPTION

subtyping relation

SUBTYPING OTHER TYPES

Zdancewic CIS 4521/5521: Compilers 5

Extending Subtyping to Other Types
• What about subtyping for tuples?

– Intuition: whenever a program expects
something of type S1 * S2, it is sound
to give it a T1 * T2.

– Example: (Pos * Neg) <: (Int * Int)

• What about functions?

• When is T1 → T2 <: S1 → S2 ?

CIS 4521/5521: Compilers 6

T1 <: S1 T2 <: S2

(T1 * T2) <: (S1 * S2)

Subtyping for Function Types
• One way to see it:

• Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

CIS 4521/5521: Compilers 7

Expected function

Actual functionS1 S2T1 T2

S1 <: T1 T2 <: S2

(T1 → T2) <: (S1 → S2)

Immutable Records
• Record type: {lab1:T1; lab2:T2; … ; labn:Tn}

– Each labi is a label drawn from a set of identifiers.

CIS 4521/5521: Compilers 8

G ⊢ e1 : T1 G ⊢ e2 : T2 … G ⊢ en : Tn

G ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

G ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

G ⊢ e.labi : Ti

PROJECTION

Immutable Record Subtyping
• Depth subtyping:

– Corresponding fields may be subtypes

• Width subtyping:
– Subtype record may have more fields:

CIS 4521/5521: Compilers 9

T1 <: U1 T2 <: U2 … Tn <: Un

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}

DEPTH

m ≤ n

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}

WIDTH

Depth & Width Subtyping vs. Layout
• Width subtyping (without depth) is compatible with "inlined" record

representation as with C structs:

{x:int; y:int; z:int} <: {x:int; y:int}
[Width Subtyping]

– The layout and underlying field indices for 'x' and 'y' are identical.
– The 'z' field is just ignored

• Depth subtyping (without width) is similarly compatible, assuming that
the space used by A is the same as the space used by B whenever
A <: B

• But… they don't mix without more work

Zdancewic CIS 4521/5521: Compilers 10

x y z x y

Immutable Record Subtyping (cont’d)
• Width subtyping assumes an implementation in which order of fields

in a record matters:
 {x:int; y:int} ≠ {y:int; x:int}

• But: {x:int; y:int; z:int} <: {x:int; y:int}
– Implementation: a record is a struct, subtypes just add fields at the end of

the struct.

• Alternative: allow permutation of record fields:
 {x:int; y:int} = {y:int; x:int}
– Implementation: compiler sorts the fields before code generation.
– Need to know all of the fields to generate the code

• Permutation is not directly compatible with width subtyping:
 {x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

CIS 4521/5521: Compilers 11

If you want both:
• If you want permutability & dropping, you need to either copy (to

rearrange the fields) or use a dictionary like this:

p = {x=42; y=55; z=66}:{x:int; y:int; z:int}

q : {y:int; z:int} = p

x y z

42 55 66

y z

dictionary

dictionary

MUTABILITY & SUBTYPING

Zdancewic CIS 4521/5521: Compilers 13

NULL
• What is the type of null?
• Consider:

 int[] a = null; // OK?
 int x = null; // not OK?
 string s = null; // OK?

 G ⊢ null : r

• Null has any reference type
– Null is generic

• What about type safety?
– Requires defined behavior when dereferencing null

e.g. Java's NullPointerException
– Requires a safety check for every dereference operation

(typically implemented using low-level hardware "trap" mechanisms.)

Zdancewic CIS 4521/5521: Compilers 14

NULL

Subtyping and References
• What is the proper subtyping relationship for references and arrays?

• Suppose we have NonZero as a type and the division operation has
type: Int → NonZero → Int
– Recall that NonZero <: Int

• Should (NonZero ref) <: (Int ref) ?
• Consider this program:

Int bad(NonZero ref r) {
 Int ref a = r; (* OK because (NonZero ref <: Int ref*)
 a := 0; (* OK because 0 : Zero <: Int *)
 return (42 / !r) (* OK because !r has type NonZero *)
}

CIS 4521/5521: Compilers 15

Mutable Structures are Invariant
• Covariant reference types are unsound

– As demonstrated in the previous example

• Contravariant reference types are also unsound
– i.e. If T1 <: T2 then ref T2 <: ref T1 is also unsound
– Exercise: construct a program that breaks contravariant references.

• Moral: Mutable structures are invariant:
 T1 ref <: T2 ref implies T1 = T2

• Same holds for arrays, OCaml-style mutable records, object fields, etc.
– Note: Java and C# get this wrong. They allows covariant array subtyping,

but then compensate by adding a dynamic check on every array update!

CIS 4521/5521: Compilers 16

Another Way to See It
• We can think of a reference cell as an immutable record (object) with

two functions (methods) and some hidden state:
 T ref ≃ {get: unit → T; set: T → unit}
– get returns the value hidden in the state.
– set updates the value hidden in the state.

• When is T ref <: S ref?
• Records are like tuples: subtyping extends pointwise over each

component.
• {get: unit → T; set: T → unit} <: {get: unit → S; set: S → unit}

– get components are subtypes: unit → T <: unit → S
set components are subtypes: T → unit <: S → unit

• From get, we must have T <: S (covariant return)
• From set, we must have S <: T (contravariant arg.)

• From T <: S and S <: T we conclude T = S.

CIS 4521/5521: Compilers 17

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 4521/5521: Compilers 18

Structural vs. Nominal Typing
• Is type equality / subsumption defined by the structure of the data or the

name of the data?
• Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

• Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 4521/5521: Compilers 19

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents arr
 isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)

Nominal Subtyping in Java
• In Java, Classes and Interfaces must be named and their relationships

explicitly declared:

• Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
– Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 4521/5521: Compilers 20

(* Java: *)
interface Foo {
 int foo();
}

class C { /* Does not implement the Foo interface */
 int foo() {return 2;}
}

class D implements Foo {
 int foo() {return 4521/5521;}
}

OAT'S TYPE SYSTEM

Zdancewic CIS 4521/5521: Compilers 21

See oat.pdf in HW5

OAT's Treatment of Types
• Primitive (non-reference) types:

– int, bool

• Definitely non-null reference types: R
– (named) mutable structs with (right-oriented) width subtyping
– string
– arrays (including length information, per HW4)

• Possibly-null reference types: R?
– Subtyping: R <: R?
– Checked downcast syntax if?:

Zdancewic CIS 4521/5521: Compilers 22

int sum(int[]? arr) {
var z = 0;
if?(int[] a = arr) {

for(var i = 0; i<length(a); i = i + 1;) {
z = z + a[i];

}
 }

return z;
}

OAT Features
• Named structure types with mutable fields

– but using structural, width subtyping

• Typed function pointers

• Polymorphic operations: length and == / !=
– need special case handling in the typechecker

• Type-annotated null values: t null always has type t?

• Definitely-not-null values means we need an "atomic" array
initialization syntax
– for example, null is not allowed as a value of type int[], so to

construct a record containing a field of type int[], we need to initialize
it

– subtlety: int[][] cannot be initialized by default, but int[] can be

Zdancewic CIS 4521/5521: Compilers 23

Checking Derivations
• A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

• Leaves of the tree are axioms (i.e. rules with no premises)
– Example: the INT rule is an axiom

• Goal of the type checker: verify that such a tree exists.
• Example1: Find a tree for the following program using the inference

rules in oat.pdf:

Example2: There is no tree for this ill-scoped program:

CIS 4521/5521: Compilers 24

var x1 = 0;
var x2 = x1 + x1;
x1 = x1 – x2;
return x1;

var x2 = x1 + x1;
return x2;

OAT "Returns" Analysis
• Typesafe, statement-oriented imperative languages like OAT (or Java)

must ensure that a function (always) returns a value of the appropriate
type.
– Does the returned expression's type match the one declared by the

function?
– Do all paths through the code return appropriately?

• OAT's statement checking judgment
– takes the expected return type as input: what type should the statement

return (or void if none)
– produces a boolean flag as output: does the statement definitely return?

Zdancewic CIS 4521/5521: Compilers 28

COMPILING WITH TYPES

Zdancewic CIS 4521/5521: Compilers 29

Compilation As Translating Judgments
• Consider the source typing judgment for source expressions:

 C ⊢ e : t

• How do we interpret this information in the target language?
 ⟦C ⊢ e : t⟧ = ?

• ⟦C⟧ translates contexts

• ⟦t⟧ is a target type
• ⟦e⟧ translates to a (potentially empty) stream of instructions, that, when

run, computes the result into some operand

• INVARIANT: if ⟦C ⊢ e : t ⟧ = ty, operand , stream
 then the type (at the target level) of the operand is ty=⟦t⟧

Zdancewic CIS 4521/5521: Compilers 30

Example
• C ⊢ 4521 + 5 : int what is ⟦ C ⊢ 4521 + 5 : int⟧ ?

⟦ ⊢ 4521 : int ⟧ = (i64, Const 4521, []) ⟦⊢ 5 : int⟧ = (i64, Const 5, [])
-- ---------------------------------------
⟦C ⊢ 4521 : int⟧ = (i64, Const 4521, []) ⟦C ⊢ 5 : int⟧ = (i64, Const 5, [])

⟦C ⊢ 4521 + 5 : int⟧ = (i64, %tmp, [%tmp = add i64 (Const 4521) (Const 5)])

Zdancewic CIS 4521/5521: Compilers 31

What about the Context?
• What is ⟦C⟧?
• Source level C has bindings like: x:int, y:bool

– We think of it as a finite map from identifiers to types

• What is the interpretation of C at the target level?

• ⟦C⟧ maps source identifiers, “x” to target types and ⟦x⟧

• What is the interpretation of a variable ⟦x⟧ at the target level?
– How are the variables used in the type system?

Zdancewic CIS 4521/5521: Compilers 32

Interpretation of Contexts
• ⟦C⟧ = a map from source identifiers to types and target identifiers

• INVARIANT:
 x:t ∈ C means that

 (1) lookup ⟦C⟧ x = (⟦t⟧*, %id_x)
 (2) the (target) type of %id_x is ⟦t⟧* (a pointer to ⟦t⟧)

Zdancewic CIS 4521/5521: Compilers 33

Interpretation of Variables

Zdancewic CIS 4521/5521: Compilers 34

as addresses
(which can be assigned)

lhs as expressions
(which are values)

= (%tmp, T,
 stream @
 [%tmp = load T* %ptr])
 where
⟦H;G;L ⊢lhs lhs : t ; T⟧ = (⟦t⟧, true, ptr, stream)

where (T, %id_x) = lookup ⟦L⟧ x
and by invariant: T = ⟦t⟧*

= (T, true, %id_x, [])

Interpretation of Assignment Stmts

Zdancewic CIS 4521/5521: Compilers 35

assignment to a lhs

= (⟦H;G;L⟧,
 ptr_code @
 exp_code @
 [store T %e_op, %ptr])

where
⟦H;G;L ⊢lhs lhs : t ; T⟧ = (⟦t⟧, true, ptr, ptr_code)

and
⟦H;G;L ⊢lhs exp : t'⟧ = (⟦t'⟧, %e_op, exp_code)

Other Judgments?
• Statement:

⟦H;G;L; rt ⊢ stmt ⇒ C’⟧ = ⟦C’⟧ , stream

• Declaration:
⟦H;G;L ⊢ var x = exp ⇒ G;L,x:t ⟧ = ⟦G;L,x:t⟧, stream

INVARIANT: stream is of the form:
 stream’ @
 [E %id_x = alloca ⟦t⟧;
 I store ⟦t⟧ opn, ⟦t⟧* %id_x]

and ⟦H;G;L ⊢ exp : t ⟧ = (⟦t⟧, opn, stream’)

• Rest follow similarly

Zdancewic CIS 4521/5521: Compilers 36

COMPILING CONTROL

Zdancewic CIS 4521/5521: Compilers 37

Translating while
• Consider translating “while(e) s”:

– Test the conditional, if true jump to the body, else jump to the label after
the body.

⟦C;rt ⊢ while(e) s ⇒ C’⟧ = ⟦C’⟧,

• Note: writing opn = ⟦C ⊢ e : bool⟧ is pun
– translating ⟦C ⊢ e : bool⟧ generates code that puts the result into opn
– In this notation there is implicit collection of the code

CIS 4521/5521: Compilers 38

lpre:
 opn = ⟦C ⊢ e : bool⟧
 %test = icmp eq i1 opn, 0
 br %test, label %lpost, label %lbody
lbody:
 ⟦C;rt ⊢ s ⇒ C’⟧
 br %lpre
lpost:

Translating if-then-else
• Similar to while except that code is slightly more complicated because

if-then-else must reach a merge and the else branch is optional.

⟦C;rt ⊢ if (e1) s1 else s2 ⇒ C’⟧ = ⟦C’⟧

CIS 4521/5521: Compilers 39

opn = ⟦C ⊢ e : bool⟧
 %test = icmp eq i1 opn, 0
 br %test, label %else, label %then
then:
 ⟦C;rt ⊢ s1 ⇒ C’⟧
 br %merge
else:
 ⟦C; rt s2 ⇒ C’⟧
 br %merge
merge:

Connecting this to Code
• Instruction streams:

– Must include labels, terminators, and “hoisted” global constants

• Must post-process the stream into a control-flow-graph

• See frontend.ml from HW4

Zdancewic CIS 4521/5521: Compilers 40

OPTIMIZING CONTROL

Zdancewic CIS 4521/5521: Compilers 41

Standard Evaluation
• Consider compiling the following program fragment:

if (x & !y | !w)
 z = 3;
else
 z = 4;
return z;

CIS 4521/5521: Compilers 42

%tmp1 = icmp Eq ⟦y⟧, 0 ; !y
 %tmp2 = and ⟦x⟧ ⟦tmp1⟧
 %tmp3 = icmp Eq ⟦w⟧, 0
 %tmp4 = or %tmp2, %tmp3
 %tmp5 = icmp Eq %tmp4, 0
 br %tmp4, label %else, label %then

then:
 store ⟦z⟧, 3
 br %merge

else:
 store ⟦z⟧, 4
 br %merge

merge:
 %tmp5 = load ⟦z⟧
 ret %tmp5

Observation
• Usually, we want the translation ⟦e⟧ to produce a value

– ⟦C ⊢ e : t⟧ = (ty, operand, stream)
– e.g. ⟦C ⊢ e1 + e2 : int⟧ = (i64, %tmp, [%tmp = add i64 ⟦e1⟧ ⟦e2⟧])

• But when the boolean expression we’re compiling appears in a test,
the program jumps to one label or another after the comparison but
otherwise never uses the value.

• In many cases, we can avoid “materializing” the value (i.e., storing it
in a temporary) and thus produce better code.
– This idea also lets us implement different functionality too:

e.g. short-circuiting Boolean expressions

• Make up new "judgement" that is similar to ⟦C ⊢ e : bool⟧ but has a
different semantics. Call it ⟦C ⊢ e : bool@⟧

CIS 4521/5521: Compilers 43

Idea: Use a different translation for tests
Usual Expression translation:

 ⟦C ⊢ e : t⟧ = (ty, operand, stream)
Conditional branch translation of booleans,

without materializing the value:
 ⟦C ⊢ e : bool@⟧ ltrue lfalse = stream

Notes:
• takes two extra

arguments: a “true”
branch label and a
“false” branch label.

• Doesn’t “return a value”

• Aside: this is a form of
continuation-passing
translation…

CIS 4521/5521: Compilers 44

where
 ⟦C, rt ⊢ s1 ⇒ C’⟧ = ⟦C’⟧, insns1
 ⟦C, rt ⊢ s2 ⇒ C’’⟧ = ⟦C’’⟧, insns2
 ⟦C ⊢ e : bool@ ⟧ then else = insns3

⟦C, rt ⊢ if (e) then s1 else s2 ⇒ C’⟧ = ⟦C’⟧,

insns3
then:
 ⟦s1⟧
 br %merge
else:
 ⟦s2⟧
 br %merge
merge:

Short Circuit Compilation: Expressions
• ⟦C ⊢ e : bool@⟧ ltrue lfalse = insns

Zdancewic CIS 4521/5521: Compilers 45

⟦C ⊢ false : bool@⟧ ltrue lfalse = [br %lfalse]

⟦C ⊢ true : bool@⟧ ltrue lfalse = [br %ltrue]

⟦C ⊢ !e : bool@⟧ ltrue lfalse = insns

⟦C ⊢ e : bool@⟧ lfalse ltrue = insns

FALSE

TRUE

NOT

Short Circuit Evaluation
Idea: build the logic into the translation

Zdancewic CIS 4521/5521: Compilers 46

insns1
right:
 insn2

where right is a fresh label

⟦C ⊢ e1|e2 : bool@⟧ ltrue lfalse =

⟦C ⊢ e1 : bool@⟧ ltrue right = insns1 ⟦C ⊢ e2 : bool@⟧ ltrue lfalse = insns2

insns1
right:
 insn2

⟦C ⊢ e1 : bool@⟧ right lfalse = insns1 ⟦C ⊢ e2 : bool@⟧ ltrue lfalse = insns2

⟦C ⊢ e1&e2 : bool@⟧ ltrue lfalse =

Short-Circuit Evaluation
• Consider compiling the following program fragment:

if (x & !y | !w)
 z = 3;
else
 z = 4;
return z;

CIS 4521/5521: Compilers 47

%tmp1 = icmp Eq ⟦x⟧, 0
 br %tmp1, label %right2, label %right1

right1:
 %tmp2 = icmp Eq ⟦y⟧, 0
 br %tmp2, label %then, label %right2

right2:
 %tmp3 = icmp Eq ⟦w⟧, 0
 br %tmp3, label %then, label %else

then:
 store ⟦z⟧, 3
 br %merge

else:
 store ⟦z⟧, 4
 br %merge

merge:
 %tmp5 = load ⟦z⟧
 ret %tmp5

