
CIS 4521/5521: COMPILERS
Lecture 18



Announcements

• HW5: OAT v. 2.0
– records, function pointers, type checking, array-bounds checks, etc.
– Due: Wednesday, April 9th

– Available soon (by Saturday morning)
– Start Early!
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TYPECHECKING
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Recap
• A typechecking (static analysis) specification can be defined by 

collections of inference rules.
– Each "judgment" form corresponds to a particular kind of analysis
– The rule's premises and conclusion specify the intended checks

• Subtyping introduces a notion of subsumption (inclusion):
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G ⊢ e1 : T → S G ⊢ e2 : T 

G ⊢ e1 e2 : S
APPLICATION

G ⊢ e : T  T <: S

G ⊢ e : S
SUBSUMPTION

subtyping relation



SUBTYPING OTHER TYPES
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Extending Subtyping to Other Types
• What about subtyping for tuples?

– Intuition: whenever a program expects
something of type S1 * S2, it is sound 
to give it a T1 * T2.

– Example:  (Pos * Neg) <: (Int * Int)

• What about functions?

• When  is   T1 → T2   <:  S1 → S2     ?
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T1 <: S1    T2 <: S2

(T1 * T2) <: (S1 * S2)



Subtyping for Function Types
• One way to see it:

• Need to convert an S1 to a T1 and T2 to S2, so the argument type is 
contravariant and the output type is covariant.
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Expected function

Actual functionS1 S2T1 T2

S1 <: T1    T2 <: S2

(T1 → T2) <: (S1 → S2)



Immutable Records
• Record type:  {lab1:T1; lab2:T2; … ; labn:Tn}

– Each labi is a label drawn from a set of identifiers.
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G ⊢ e1 : T1  G ⊢ e2 : T2   …    G ⊢ en : Tn

G ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

G ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

G ⊢ e.labi : Ti

PROJECTION



Immutable Record Subtyping
• Depth subtyping:

– Corresponding fields may be subtypes

• Width subtyping:
– Subtype record may have more fields:
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T1 <: U1 T2 <: U2  …    Tn <: Un

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un} 

DEPTH

m ≤ n

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm} 

WIDTH



Depth & Width Subtyping vs. Layout
• Width subtyping (without depth) is compatible with "inlined" record 

representation as with C structs:

{x:int; y:int; z:int}   <:   {x:int; y:int}         
[Width Subtyping]

– The layout and underlying field indices for 'x' and 'y' are identical.
– The 'z' field is just ignored

• Depth subtyping (without width) is similarly compatible, assuming that 
the space used by A is the same as the space used by B whenever 
A <: B

• But… they don't mix without more work
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x y z x y



Immutable Record Subtyping (cont’d)
• Width subtyping assumes an implementation in which order of fields 

in a record matters:
         {x:int; y:int}   ≠  {y:int; x:int}

• But:   {x:int; y:int; z:int} <: {x:int; y:int}
– Implementation: a record is a struct, subtypes just add fields at the end of 

the struct.

• Alternative: allow permutation of record fields:
       {x:int; y:int} = {y:int; x:int}
– Implementation: compiler sorts the fields before code generation.
– Need to know all of the fields to generate the code

• Permutation is not directly compatible with width subtyping:
     {x:int; z:int; y:int} = {x:int; y:int; z:int}  </:  {y:int; z:int}
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If you want both:
• If you want permutability & dropping, you need to either copy (to 

rearrange the fields) or use a dictionary like this:

p =  {x=42; y=55; z=66}:{x:int; y:int; z:int}

q : {y:int; z:int} = p

x y z

42 55 66

y z

dictionary

dictionary



MUTABILITY & SUBTYPING
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NULL
• What is the type of null?
• Consider:

  int[] a = null; // OK?
  int x   = null;   // not OK?
 string s = null; // OK?

  
      G ⊢ null : r

• Null has any reference type
– Null is generic

• What about type safety?
– Requires defined behavior when dereferencing null

e.g.  Java's NullPointerException
– Requires a safety check for every dereference operation

(typically implemented using low-level hardware "trap" mechanisms.)
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NULL



Subtyping and References
• What is the proper subtyping relationship for references and arrays?

• Suppose we have NonZero as a type and the division operation has 
type:   Int → NonZero → Int
– Recall that NonZero <: Int

• Should     (NonZero ref) <: (Int ref)   ?
• Consider this program:

Int bad(NonZero ref r) {
  Int ref a = r;   (* OK because (NonZero ref <: Int ref*)
  a := 0;          (* OK because 0 : Zero <: Int *)
  return (42 / !r) (* OK because !r has type NonZero *)
} 
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Mutable Structures are Invariant
• Covariant reference types are unsound 

– As demonstrated in the previous example

•  Contravariant reference types are also unsound
– i.e. If T1 <: T2 then ref T2 <: ref T1  is also unsound
– Exercise: construct a program that breaks contravariant references.

• Moral: Mutable structures are invariant:  
           T1 ref <: T2 ref    implies   T1 = T2

• Same holds for arrays, OCaml-style mutable records, object fields, etc.
– Note: Java and C# get this wrong.  They allows covariant array subtyping, 

but then compensate by adding a dynamic check on every array update!
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Another Way to See It
• We can think of a reference cell as an immutable record (object) with 

two functions (methods) and some hidden state:
    T ref   ≃   {get: unit → T;   set: T → unit}
– get returns the value hidden in the state.
– set updates the value hidden in the state.

• When is T ref <: S ref?
• Records are like tuples: subtyping extends pointwise over each 

component.
• {get: unit → T; set: T → unit} <: {get: unit → S; set: S → unit}

– get components are subtypes:    unit → T  <:  unit → S
set components are subtypes: T → unit  <:  S → unit

• From get, we must have T <: S (covariant return)
• From set, we must have S <: T (contravariant arg.)

• From T <: S and S <: T we conclude T = S.
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STRUCTURAL VS. NOMINAL 
TYPES
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Structural vs. Nominal Typing
• Is type equality / subsumption defined by the structure of the data or the 

name of the data?
• Example 1:  type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

• Type abbreviations are treated “structurally”
Newtypes are treated “by name”
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(* OCaml: *)
type cents = int    (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer  (* Integer and Cents arr 
                                isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y                (* Ill typed! *)



Nominal Subtyping in Java
• In Java, Classes and Interfaces must be named and their relationships 

explicitly declared:

• Similarly for inheritance: programmers must declare the subclass 
relation via the “extends” keyword.
– Typechecker still checks that the classes are structurally compatible 
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(* Java: *)
interface Foo {
  int foo();
}

class C {  /* Does not implement the Foo interface */
  int foo() {return 2;}
}

class D implements Foo {   
  int foo() {return 4521/5521;}
}



OAT'S TYPE SYSTEM
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See oat.pdf in HW5



OAT's Treatment of Types
• Primitive (non-reference) types:

– int, bool

• Definitely non-null reference types:     R
– (named) mutable structs with (right-oriented) width subtyping
– string
– arrays (including length information, per HW4)

• Possibly-null reference types:  R?  
– Subtyping:  R <: R?
– Checked downcast syntax if?:
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int sum(int[]? arr) {
var z = 0;
if?(int[] a = arr) {

for(var i = 0; i<length(a); i = i + 1;) {
z = z + a[i];

}
    }

return z;
}



OAT Features
• Named structure types with mutable fields

– but using structural, width subtyping

• Typed function pointers

• Polymorphic operations: length and == / !=
– need special case handling in the typechecker

• Type-annotated null values:    t null  always has type t?

• Definitely-not-null values means we need an "atomic" array 
initialization syntax
– for example, null is not allowed as a value of type int[], so to 

construct a record containing a field of type int[], we need to initialize 
it 

– subtlety: int[][] cannot be initialized by default,  but int[] can be
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Checking Derivations
• A derivation or proof tree has (instances of) judgments as its nodes and 

edges that connect premises to a conclusion according to an inference 
rule.  

• Leaves of the tree are axioms (i.e. rules with no premises)
– Example: the INT rule is an axiom

• Goal of the  type checker: verify that such a tree exists.
• Example1:  Find a tree for the following program using the inference 

rules in oat.pdf:

Example2: There is no tree for this ill-scoped program:
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var x1 = 0;
var x2 = x1 + x1;
x1 = x1 – x2;
return x1;

var x2 = x1 + x1;
return x2;



OAT "Returns" Analysis
• Typesafe, statement-oriented imperative languages like OAT (or Java)

must ensure that a function (always) returns a value of the appropriate 
type.  
– Does the returned expression's type match the one declared by the 

function?
– Do all paths through the code return appropriately?

• OAT's statement checking judgment 
– takes the expected return type as input: what type should the statement 

return (or void if none)
– produces a boolean flag as output: does the statement definitely return?
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COMPILING WITH TYPES
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Compilation As Translating Judgments
• Consider the source typing judgment for source expressions:

       C ⊢ e : t

• How do we interpret this information in the target language?
                                ⟦C ⊢ e : t⟧ =   ?

• ⟦C⟧ translates contexts

• ⟦t⟧ is a target type
• ⟦e⟧ translates to a (potentially empty) stream of instructions, that, when 

run, computes the result into some operand

• INVARIANT:  if   ⟦C ⊢ e : t ⟧ = ty, operand , stream     
                     then the type (at the target level) of the operand is ty=⟦t⟧
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Example
•  C  ⊢ 4521 + 5 : int               what is  ⟦ C ⊢ 4521 + 5 : int⟧    ?     

⟦ ⊢ 4521 : int ⟧ = (i64, Const 4521, [])       ⟦⊢ 5 : int⟧ = (i64, Const 5, [])
----------------------------------------             ---------------------------------------
⟦C ⊢ 4521 : int⟧ = (i64, Const 4521, [])   ⟦C ⊢ 5 : int⟧ = (i64, Const  5, [])
-----------------------------------------------------------------------------------------------
⟦C ⊢ 4521 + 5 : int⟧ = (i64, %tmp, [%tmp = add i64 (Const 4521) (Const 5)])
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What about the Context?
• What is ⟦C⟧?
• Source level C has bindings like:     x:int, y:bool

– We think of it as a finite map from identifiers to types

• What is the interpretation of C at the target level?

• ⟦C⟧ maps source identifiers, “x” to target types and ⟦x⟧

• What is the interpretation of a variable ⟦x⟧ at the target level?
– How are the variables used in the type system?
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Interpretation of Contexts
• ⟦C⟧ = a map from source identifiers to types and target identifiers

• INVARIANT:
    x:t ∈ C        means that 

   
            (1)     lookup ⟦C⟧ x = (⟦t⟧*, %id_x)          
       (2)     the (target) type of %id_x is ⟦t⟧*     (a pointer to ⟦t⟧)
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Interpretation of Variables
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as addresses 
(which can be assigned)

lhs as expressions 
(which are values)

= (%tmp, T, 
    stream @
    [%tmp = load T* %ptr])
          where
⟦H;G;L ⊢lhs lhs : t ; T⟧ = (⟦t⟧, true, ptr, stream)

where (T, %id_x) = lookup ⟦L⟧ x
and by invariant: T = ⟦t⟧*

= (T, true, %id_x, [])      



Interpretation of Assignment Stmts
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assignment to a lhs

= (⟦H;G;L⟧, 
    ptr_code @
    exp_code @
    [store T %e_op, %ptr])
          

where
⟦H;G;L ⊢lhs lhs : t ; T⟧ = (⟦t⟧, true, ptr, ptr_code)

and
⟦H;G;L ⊢lhs exp : t'⟧ = (⟦t'⟧, %e_op, exp_code)



Other Judgments?
• Statement:

⟦H;G;L; rt ⊢ stmt ⇒ C’⟧  =      ⟦C’⟧ , stream

• Declaration:
⟦H;G;L ⊢ var x = exp ⇒ G;L,x:t ⟧ =   ⟦G;L,x:t⟧, stream

INVARIANT:   stream is of the form:
   stream’ @
   [E %id_x = alloca ⟦t⟧;
       I store ⟦t⟧ opn, ⟦t⟧* %id_x ]

and     ⟦H;G;L ⊢ exp : t ⟧ = (⟦t⟧, opn, stream’)

• Rest follow similarly 
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COMPILING CONTROL
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Translating while
• Consider translating “while(e) s”:

– Test the conditional, if true jump to the body, else jump to the label after 
the body.

⟦C;rt ⊢ while(e) s ⇒ C’⟧   =  ⟦C’⟧,

• Note: writing   opn = ⟦C ⊢ e : bool⟧    is pun
– translating  ⟦C ⊢ e : bool⟧ generates code that puts the result into opn
– In this notation there is implicit collection of the code
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lpre:
 opn = ⟦C ⊢ e : bool⟧ 
 %test = icmp eq i1 opn, 0
 br %test, label %lpost, label %lbody
lbody:
    ⟦C;rt ⊢ s ⇒ C’⟧
    br %lpre
lpost:



Translating if-then-else
• Similar to while except that code is slightly more complicated because  

if-then-else must reach a merge and the else branch is optional.

⟦C;rt ⊢ if (e1) s1 else s2 ⇒ C’⟧ =  ⟦C’⟧
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opn = ⟦C ⊢ e : bool⟧
 %test = icmp eq i1 opn, 0
 br %test, label %else, label %then
then:
    ⟦C;rt ⊢ s1 ⇒ C’⟧
    br %merge
else:
 ⟦C; rt s2 ⇒ C’⟧
    br %merge
merge:



Connecting this to Code
• Instruction streams:

– Must include labels, terminators, and “hoisted” global constants

• Must post-process the stream into a control-flow-graph

• See frontend.ml from HW4
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OPTIMIZING CONTROL
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Standard Evaluation
• Consider compiling the following program fragment:

if (x & !y | !w) 
  z = 3; 
else 
  z = 4; 
return z;
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%tmp1 = icmp Eq ⟦y⟧, 0      ; !y
 %tmp2 = and ⟦x⟧ ⟦tmp1⟧
 %tmp3 = icmp Eq ⟦w⟧, 0
 %tmp4 = or %tmp2, %tmp3
 %tmp5 = icmp Eq %tmp4, 0
 br %tmp4, label %else, label %then

then:
 store ⟦z⟧, 3
 br %merge

else:
 store ⟦z⟧, 4
 br %merge

merge:
 %tmp5 = load ⟦z⟧
 ret %tmp5



Observation
• Usually, we want the translation ⟦e⟧ to produce a value

– ⟦C ⊢ e : t⟧ = (ty, operand, stream)
– e.g.   ⟦C ⊢ e1 + e2 : int⟧    =  (i64, %tmp, [%tmp = add i64 ⟦e1⟧  ⟦e2⟧])

• But when the boolean expression we’re compiling appears in a test, 
the program jumps to one label or another after the comparison but 
otherwise never uses the value.

• In many cases, we can avoid “materializing” the value (i.e., storing it 
in a temporary) and thus produce better code.
– This idea also lets  us implement different functionality too: 

e.g. short-circuiting Boolean expressions

• Make up new "judgement" that is similar to ⟦C ⊢ e : bool⟧ but has a 
different semantics.  Call it ⟦C ⊢ e : bool@⟧
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Idea: Use a different translation for tests
Usual Expression translation:  

     ⟦C ⊢ e : t⟧ = (ty, operand, stream)
Conditional branch translation of booleans, 

without materializing the value: 
     ⟦C ⊢ e : bool@⟧ ltrue lfalse = stream

Notes:
• takes two extra

arguments: a “true”
branch label and a 
“false” branch label.

• Doesn’t “return a value”

• Aside: this is a form of
continuation-passing
translation…
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where
    ⟦C, rt ⊢ s1 ⇒ C’⟧  = ⟦C’⟧, insns1         
    ⟦C, rt ⊢ s2 ⇒ C’’⟧ = ⟦C’’⟧, insns2
    ⟦C ⊢ e : bool@ ⟧ then else = insns3    

⟦C, rt ⊢ if (e) then s1 else s2 ⇒ C’⟧ =   ⟦C’⟧, 

insns3
then:
    ⟦s1⟧
    br %merge
else:
 ⟦s2⟧
    br %merge
merge:



Short Circuit Compilation: Expressions
• ⟦C ⊢ e : bool@⟧ ltrue lfalse = insns
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⟦C ⊢ false : bool@⟧ ltrue lfalse =   [br %lfalse]

⟦C ⊢ true : bool@⟧ ltrue lfalse = [br %ltrue]

⟦C ⊢ !e : bool@⟧ ltrue lfalse = insns

⟦C ⊢ e : bool@⟧ lfalse ltrue = insns

FALSE

TRUE

NOT



Short Circuit Evaluation
Idea:  build the logic into the translation
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insns1
right:
    insn2

where right is a fresh label

⟦C ⊢ e1|e2 : bool@⟧ ltrue lfalse = 

⟦C ⊢ e1 : bool@⟧  ltrue right = insns1   ⟦C ⊢ e2 : bool@⟧ ltrue lfalse = insns2       

insns1
right:
    insn2

⟦C ⊢ e1 : bool@⟧  right lfalse = insns1   ⟦C ⊢ e2 : bool@⟧ ltrue lfalse = insns2       

⟦C ⊢ e1&e2 : bool@⟧ ltrue lfalse = 



Short-Circuit Evaluation
• Consider compiling the following program fragment:

if (x & !y | !w) 
  z = 3; 
else 
  z = 4; 
return z;
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%tmp1 = icmp Eq ⟦x⟧, 0      
 br %tmp1, label %right2, label %right1

right1:
 %tmp2 = icmp Eq ⟦y⟧, 0
 br %tmp2, label %then, label %right2 

right2:
 %tmp3 = icmp Eq ⟦w⟧, 0
 br %tmp3, label %then, label %else

then:
 store ⟦z⟧, 3
 br %merge

else:
 store ⟦z⟧, 4
 br %merge

merge:
 %tmp5 = load ⟦z⟧
 ret %tmp5


