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Announcements

• HW5: OAT v. 2.0
– records, function pointers, type checking, array-bounds checks, etc.
– Due: Wednesday, April 9th

– Test cases due: Tuesday, April 8th 
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COMPILING CLASSES AND 
OBJECTS
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Code Generation for Objects
• Classes:

– Generate data structure types 
• For objects that are instances of the class and for the class tables

– Generate the class tables for dynamic dispatch

• Methods:
– Method body code is similar to functions/closures
– Method calls require dispatch

• Fields:
– Issues are the same as for records
– Generating access code

• Constructors:
– Object initialization

• Dynamic Types:
– Checked downcasts
– “instanceof” and similar type dispatch
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Multiple Implementations
• The same interface can be implemented by multiple classes:
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interface IntSet {
    public IntSet insert(int i);
    public boolean has(int i);
    public int size();
}

class IntSet1 implements IntSet {
  private List<Integer> rep; 
  public IntSet1() {
    rep = new LinkedList<Integer>();}

  public IntSet1 insert(int i) {
 rep.add(new Integer(i));
    return this;}

  public boolean has(int i) {
    return rep.contains(new Integer(i));}

  public int size() {return rep.size();}
}

class IntSet2 implements IntSet {
  private Tree rep;
  private int size; 
  public IntSet2() {
    rep = new Leaf(); size = 0;}

  public IntSet2 insert(int i) {
 Tree nrep = rep.insert(i); 
    if (nrep != rep) {
      rep = nrep; size += 1;
    }
 return this;}

  public boolean has(int i) {
 return rep.find(i);}

  public int size() {return size;}
}



The Dispatch Problem
• Consider a client program that uses the IntSet interface:

IntSet set = …;
int x = set.size();

• Which code to call?
– IntSet1.size ?
– IntSet2.size ?

• Client code doesn’t know the answer.
– So objects must “know” which code to call.
– Invocation of a method must indirect through the object.
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Compiling Objects
• Objects contain  a pointer to a 

dispatch vector (also called a 
virtual table or vtable) with 
pointers to method code.

• Code receiving set:IntSet 
only knows that set has an 
initial dispatch vector pointer 
and the layout of that vector.
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Method Dispatch (Single Inheritance)
• Idea: every method has its own small integer index.
• Index is used to look up the method in the dispatch vector.
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interface A {
  void foo();
}

interface B extends A {
  void bar(int x);
  void baz();
}

class C implements B {
  void foo() {…} 
  void bar(int x) {…}
  void baz() {…}
  void quux() {…}
}

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
C <: B <: A



Dispatch Vector Layouts
• Each interface and class gives rise to a dispatch vector layout.
• Note that inherited methods have identical indices in the subclass.  
• Methods added by subclasses only add new rows:  width subtyping

CIS 4521/5521: Compilers 9

A

A fields

parent

0: foo

Dispatch Vectors

B

B fields

parent

0: foo

1: bar

2: baz

C

C fields

parent

0: foo

1: bar

2: baz

3: quux



Representing Classes in the LLVM
• During typechecking, create a class hierarchy

– Maps each class to its interface:
• Superclass
• Constructor type
• Fields
• Method types (plus whether they inherit & which class they inherit from)

• Compile the class hierarchy to produce:
– An LLVM IR struct type for each object instance
– An LLVM IR struct type for each vtable (a.k.a. class table)
– Global definitions that implement the class tables

Zdancewic     CIS 4521/5521: Compilers    10



Example OO Code (Java)

Zdancewic     CIS 4521/5521: Compilers    11

class A {
  int x;
  A (int x) { super(); this.x = x; } // constructor
  void print() { System.out.print(x); }     // method1
  int blah(A a) { return 0; }  // method2

}

class B extends A {
  int y; int z;  // Added fields
  B (int x, int y, int z){  // constructor
    super(x);
    this.y = y;
    this.z = z;
  }
  void print() { return; }  // overrides A             
}

class C extends B {
  int w;
  C (int x, int y, int z, int w){ // constructor
    super(x,y,z);
    this.w = w;
  }
  void foo(int a, int b) {this.w = this.x + this.y;}
  void print() { … }    // overrides B
}



Type Translation of a Class
• Each class gives rise to two implementation types at the LLVM IR level:

• Object Instance Type
– pointer to the dispatch vector
– fields of the class

• Dispatch Vector Type
– pointer to the superclass dispatch vector
– pointers to methods of the class

• The inheritance hierarchy is used to statically construct the global 
class tables
– which are structs that have Dispatch Vector Types
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Example OO Hierarchy in LLVM
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%Object = type { %_class_Object* }
%_class_Object = type {  }

%A = type { %_class_A*, i64 }
%_class_A = type { %_class_Object*, void (%A*)*, i64 (%A*, %A*)* }

%B = type { %_class_B*, i64, i64, i64 }
%_class_B = type { %_class_A*, void (%B*)*, i64 (%A*, %A*)* }

%C = type { %_class_C*, i64, i64, i64, i64 }
%_class_C = type { %_class_B*, void (%C*)*, i64 (%A*, %A*)*, void (%C*, i64, i64)* }

@_vtbl_Object = global %_class_Object {  }

@_vtbl_A = global %_class_A { %_class_Object* @_vtbl_Object, 
void (%A*)* @print_A, 
i64 (%A*, %A*)* @blah_A }

@_vtbl_B = global %_class_B { %_class_A* @_vtbl_A, 
void (%B*)* @print_B, 
i64 (%A*, %A*)* @blah_A }

@_vtbl_C = global %_class_C { %_class_B* @_vtbl_B, 
void (%C*)* @print_C, 
i64 (%A*, %A*)* @blah_A, 
void (%C*, i64, i64)* @foo_C }

Object instance types

Class table types

Class tables
(structs containing
function pointers)



Method Arguments
• Methods bodies are compiled just like top-level procedures…
• … except that they have an implicit extra argument:

this (or self)
– Historically (Smalltalk), these were called the “receiver object”
– Method calls were thought of a sending “messages” to “receivers”

• Note 1: the type of “this” is the class containing the method.
• Note 2: references to fields inside <body> are compiled like 

this.field
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class IntSet1 implements IntSet {
   … 
  IntSet1 insert(int i) { <body> }
}

IntSet1 insert(IntSet1 this, int i) { <body> }

A method in a class...

… is compiled like this (top-level) procedure:



LLVM Method Invocation Compilation
• Consider method invocation:   

                   ⟦H;G;L ⊢ e.m(e1,…,en):t⟧ 
• First, compile ⟦H;G;L ⊢ e : C⟧ 

to get a (pointer to) an object value of class type C
– Call this value %obj_ptr

• Use getelementptr to extract the vtable pointer from %obj_ptr
• load the vtable pointer
• Use getelementptr to extract the address of the function pointer 

from the vtable
– using the information about C in H

• load the function pointer
• Call through the function pointer, passing ‘%obj_ptr’ for this:

        call (cmp_typ t) m(obj_ptr, ⟦e1⟧, …, ⟦en⟧)

• In general, function calls may require bitcast to account for
subtyping: arguments may be a subtype of the expected “formal” type 
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X86 Code For Dynamic Dispatch
• Suppose b : B
• What code for b.bar(3)?

– bar has index 1
– Offset = 8 * (1+1)

movq ⟦b⟧, %rax 
movq (%rax), %rbx      
movq $16(rbx), %rcx  // D.V. + offset
movq %rax, %rdi    // “this” pointer
movq 3, %rsi   // Method argument
call *%rcx    // Indirect call
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B

B fields

parent

0: foo

1: bar

2: baz
__bar:
  <code>

D.V.
rax rbx

rcx
b



parent

0: foo

1: bar

2: baz

Sharing Dispatch Vectors
• All instances of a class may share the same dispatch vector.

– Assuming that methods are immutable.
• Code pointers stored in the dispatch vector are available at link time – 

dispatch vectors can be built once at link time.

• One job of the object constructor is to fill in the object’s pointer to the 
appropriate dispatch vector.

• Note: The address of the D.V. is the run-time representation of the 
object’s type.
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B

B fields __bar:
  <code>

D.V.
b1

B fields

b2 B



parent

0: foo

1: bar

2: baz

3: quux

parent

0: foo

1: bar

2: baz

Inheritance: Sharing Code
• Inheritance: Method code “copied down” from the superclass

– If not overridden in the subclass
– overriden methods have different dispatch pointers

• Works with separate compilation – superclass code not needed.
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B

B fields
__bar:
  <code>
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b

C

C fields

c

__C_baz:
  <code>

__B_baz:
  <code>



Compiling Static Methods
• Java supports static methods

– Methods that belong to a class, not the instances of the class.
– They have no “this” parameter (no receiver object)

• Compiled exactly like normal top-level procedures
– No slots needed in the dispatch vectors
– No implicit “this” parameter

• They’re not really methods
– They can only access static fields of the class
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Compiling Constructors
• Java and C++ classes can declare constructors that create new objects.

– Initialization code may have parameters supplied to the constructor
– e.g.  new Color(r,g,b);

• Modula-3: object constructors take no parameters
– e.g. new Color;
– Initialization would typically be done in a separate method.

• Constructors are compiled just like methods, except:
– The code pointer to call is determined statically
– The this variable is initialized to a newly allocated block of memory big 

enough to hold D.V. pointer + fields according to object layout
– Constructor code initializes the fields

• call the super-class constructor first (to recursively initialize those fields)
• What methods (if any) are allowed? What is the type of this during those 

calls?
– The D.V. pointer is initialized last 

• When? After running the initialization code.
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Compiling Checked Downcasts
• How do we compile downcast in general?  Consider this Java-like generalization of 

Oat's checked cast, where t ranges over Java-style reference types:

                    if? (t x = exp) { … } else { … }

• Reason by cases:
– t must be either null, ref or ref?      (can’t be just int or bool)

• If t is null:
– The static type of exp must be ref?  for some ref.
– If exp == null then take the true branch, otherwise take the false branch

• If t is string or t[]:
– The static type of exp must be the corresponding string? Or t[]?
– If exp == null take the false branch, otherwise take the true branch

• If t is C:
– The static type of exp must be D or D?   (where C <: D)
– If exp == null take the false branch, otherwise:
– emit code to walk up the class hierarchy starting at D, looking for C
– If found, then take true branch else take false branch

• If t is C?:
– The static type of exp must be D?   (where C <: D)
– If exp == null take the true branch, otherwise:
– Emit code to walk up the class hierarchy starting at D, looking for C
– If found, then take true branch else take false branch
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“Walking up the Class Hierarchy”
• A non-null object pointer refers to an LLVM struct with a type like:

• The first entry of the struct is a pointer to the vtable for Class B
– This pointer is the dynamic type of the object.
– It will have the value   @vtbl_B

• The first entry of the class table for B is a pointer to its superclass: 

• Therefore, to find out whether an unknown type X is a subtype of C:
– Assume C is not Object   (ruled out by “silliness” checks for downcast )
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%B = type { %_class_B*, i64, i64, i64 }

@_vtbl_B = global %_class_B { %_class_A* @_vtbl_A, 
void (%B*)* @print_B, 
i64 (%A*, %A*)* @blah_A }

LOOP:
  If  X == @_vtbl_Object then NO,  X is not a subtype of C
  If  X == @_vtbl_C    then YES, X is a subtype of C
  else  X == @_vtbl_D,  so set X to @_vtbl_E   where E is D’s parent and goto LOOP



MULTIPLE INHERITANCE
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Method Dispatch (Single Inheritance)
• Idea: every method has its own small integer index.
• Index is used to look up the method in the dispatch vector.
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interface A {
  void foo();
}

interface B extends A {
  void bar(int x);
  void baz();
}

class C implements B {
  void foo() {…} 
  void bar(int x) {…}
  void baz() {…}
  void quux() {…}
}

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
C <: B <: A



Multiple Inheritance
• C++: a class may declare more than one superclass.
• Semantic problem: ambiguity

class A { int m(); }
class B { int m(); }
class C extends A,B {…}   // which m?

– Same problem can happen with fields.
– In C++, fields and methods can be duplicated when such ambiguity arises 

(though explicit sharing can be declared too)

• Java: a class may implement more than one interface. 
– No semantic ambiguity: if two interfaces contain the same method 

declaration, then the class will implement a single method
interface A { int m(); }
interface B { int m(); }
class C implements A,B {int m() {…}}   // only one m

CIS 4521/5521: Compilers 25



Dispatch Vector Layout Strategy Breaks
interface Shape {        D.V.Index
  void setCorner(int w, Point p);    0
}

interface Color {
  float get(int rgb);        0
  void set(int rgb, float value);    1
}

class Blob implements Shape, Color {
  void setCorner(int w, Point p) {…}   0?
  float get(int rgb) {…}       0?
  void set(int rgb, float value) {…}   1?
}
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General Approaches
• Can’t directly identify methods by position anymore.

• Option 1: Use a level of indirection:
– Map method identifiers to code pointers (e.g. index by method name)
– Use a hash table
– May need to do search up the class hierarchy

• Option 2: Give up separate compilation
– Use “sparse” dispatch vectors, or binary decision trees
– Must know then entire class hierarchy

• Option 3: Allow multiple D.V. tables  (C++)
– Choose which D.V. to use based on static type
– Casting from/to a class may require run-time operations

• Note: many variations on these themes
– Different Java compilers pick different approaches to options1 and 2…
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Option 2 variant 1: Sparse D.V. Tables
• Give up on separate compilation…
• Now we have access to the whole class hierarchy.

• So: ensure that no two methods in the same class are allocated the 
same D.V. offset.
– Allow holes in the D.V. just like the hash table solution
– Unlike hash table, there is never a conflict!

• Compiler needs to construct the method indices
– Graph coloring techniques can be used to construct the D.V. layouts in a 

reasonably efficient way (to minimize size)
– Finding an optimal solution is NP complete!
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Example Object Layout
• Advantage: Identical dispatch and performance to single-inheritance 

case
• Disadvantage: Must know entire class hierarchy
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Option 2 variant 2: Binary Search Trees
• Idea: Use conditional branches not indirect jumps
• Each object has a class index (unique per class) as first word

– Instead of D.V. pointer  (no need for one!)
• Method invocation uses range tests to select among n possible classes in lg n time

– Direct branches to code at the leaves.

Shape x;
x.SetCorner(…);

  Mov eax, ⟦x⟧
  Mov ebx, [eax]
  Cmp ebx, 1
  Jle  __L1
  Cmp ebx, 2
  Je __CircleSetCorner
  Jmp __EggSetCorner
__L1:
  Cmp ebx, 0
  Je __BlobSetCorner
  Jmp __RectangleSetCorner
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Color    Shape 

RGBColor Blob   Rectangle Circle Egg 
      3    0         1      2     4

// interfaces

// classes

0       1       2      4

Decision tree



Search Tree Tradeoffs
• Binary decision trees work well if the distribution of classes that may 

appear at a call site is skewed.
– Branch prediction hardware eliminates the branch stall of ~10 cycles (on 

X86)

• Can use profiling to find the common paths for each call site 
individually
– Put the common case at the top of the decision tree (so less search)
– 90%/10% rule of thumb: 90% of the invocations at a call site go to the 

same class

• Drawbacks:
– Like sparse D.V.’s you need the whole class hierarchy to know how many 

leaves you need in the search tree.
– Indirect jumps can have better performance if there are >2 classes (at 

most one mispredict)
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Option 3: Multiple Dispatch Vectors 
• Duplicate the D.V. pointers in the object representation.
• Static type of the object determines which D.V. is used.
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interface Shape {     D.V.Index
  void setCorner(int w, Point p);   0
}

interface Color {
  float get(int rgb);      0
  void set(int rgb, float value);   1
}

class Blob implements Shape, Color {
  void setCorner(int w, Point p) {…}
  float get(int rgb) {…}     
  void set(int rgb, float value) {…}   
}

Shape
setCorner
D.V.

Color
get

set

D.V.

get

set

setCorner

Color

Blob, Shape



Multiple Dispatch Vectors
• A reference to an object might have multiple “entry points”

– Each entry point corresponds to a dispatch vector
– Which one is used depends on the statically known type of the program. 

Blob b = new Blob();
Color y = b;   // implicit cast!

• Compile 
Color y = b; 
As
Movq ⟦b⟧ + 8 , y 
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get

set

setCorner

y

b



Multiple D.V. Summary
• Benefit: Efficient dispatch, same cost as for multiple inheritance
• Drawbacks: 

– Cast has a runtime cost
– More complicated programming model… hard to understand/debug?

• What about multiple inheritance and fields?
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Multiple Inheritance: Fields
• Multiple supertypes (Java): methods conflict (as we saw)
• Multiple inheritance (C++): fields can also conflict
• Location of the object’s fields can no longer be a constant offset from 

the start of the object.

class Color {
  float r, g, b; /* offsets: 4,8,12 */
}
class Shape {
  Point LL, UR; /* offsets: 4, 8 */
}
class ColoredShape extends 
Color, Shape {
  int z;
}
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D.V.
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g

b

Color

D.V.
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UR

Shape

ColoredShape ??



C++ approach: 

• Add pointers to the 
superclass fields
– Need to have multiple 

dispatch vectors 
anyway (to deal with 
methods)

• Extra indirection 
needed to access 
superclass fields

• Used even if there is a 
single superclass
– Uniformity
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D.V.

r

g

b
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D.V.
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ColoredShape D.V.

super

super

z

Shape



CLOSURE CONVERSION 
REVISITED
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Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.



Compiling First-class Functions

• To implement first-class functions on a processor, there are two 
problems:
– First: we must implement substitution of free variables
– Second: we must separate ‘code’ from ‘data’

• Reify the substitution:
– Move substitution from the meta language to the object language by 

making the data structure & lookup operation explicit
– The environment-based interpreter is one step in this direction

• Closure Conversion: 
– Eliminates free variables by packaging up the needed environment in the 

data structure.

• Hoisting:
– Separates code from data, pulling closed code to the top level.
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Example of closure creation
• Recall the “add” function:

let add = fun x -> fun y -> x + y

• Consider the inner function:  fun y -> x + y

• When run the function application:  add 4
the program builds a closure and returns it.
– The closure is a pair of the environment and a code pointer.

• The code pointer takes a pair of parameters: env and y
– The function code is (essentially):

 fun (env, y) -> let x = nth env 0 in x + y
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ptr Code(env, y, body)

(4) code body



Representing Closures
• As we saw, the simple closure conversion algorithm doesn’t generate  

very efficient code.
– It stores all the values for variables in the environment, 

even if they aren’t needed by the function body.
– It copies the environment values each time a nested closure is created.
– It uses a linked-list datastructure for tuples.

• There are many options:
– Store only the values for free variables in the body of the closure.
– Share subcomponents of the environment to avoid copying
– Use vectors or arrays rather than linked structures
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Array-based Closures with N-ary Functions

(fun (x y z) ->
 (fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z
n,m

p

nil x y z

nxt n m

nxt p +

Closure B

env code

Closure A

Closure B

env code

Closure A

app

1,0

Note how free 
variables are 
“addressed” 
relative to the 
closure due to 
shared env.  

“follow 1 nxt
  ptr then look
  up index 0”

“follow 2 nxt
  ptrs then look
  up index 2”



Observe: Closure ≈ Single-method Object

• Free variables
• Environment pointer
• Closure for function:
fun (x,y) -> 

x + y + a + b

Fields
“this” parameter
Instance of this class:
class C {
  int a, b;
  int apply(x,y) { 
    x + y + a + b
  }
}
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≈
≈

≈

D.V.

a

b
__apply: <code> 

env

__apply

a

b

__apply: <code> 
__apply


