
CIS 4521/5521: COMPILERS
Lecture 20

Announcements

• HW5: OAT v. 2.0
– records, function pointers, type checking, array-bounds checks, etc.
– Due: Wednesday, April 9th

– Test cases due: Tuesday, April 8th

Zdancewic CIS 4521/5521: Compilers 2

COMPILING CLASSES AND
OBJECTS

Zdancewic CIS 4521/5521: Compilers 3

Code Generation for Objects
• Classes:

– Generate data structure types
• For objects that are instances of the class and for the class tables

– Generate the class tables for dynamic dispatch

• Methods:
– Method body code is similar to functions/closures
– Method calls require dispatch

• Fields:
– Issues are the same as for records
– Generating access code

• Constructors:
– Object initialization

• Dynamic Types:
– Checked downcasts
– “instanceof” and similar type dispatch

CIS 4521/5521: Compilers 4

Multiple Implementations
• The same interface can be implemented by multiple classes:

CIS 4521/5521: Compilers 5

interface IntSet {
 public IntSet insert(int i);
 public boolean has(int i);
 public int size();
}

class IntSet1 implements IntSet {
 private List<Integer> rep;
 public IntSet1() {
 rep = new LinkedList<Integer>();}

 public IntSet1 insert(int i) {
 rep.add(new Integer(i));
 return this;}

 public boolean has(int i) {
 return rep.contains(new Integer(i));}

 public int size() {return rep.size();}
}

class IntSet2 implements IntSet {
 private Tree rep;
 private int size;
 public IntSet2() {
 rep = new Leaf(); size = 0;}

 public IntSet2 insert(int i) {
 Tree nrep = rep.insert(i);
 if (nrep != rep) {
 rep = nrep; size += 1;
 }
 return this;}

 public boolean has(int i) {
 return rep.find(i);}

 public int size() {return size;}
}

The Dispatch Problem
• Consider a client program that uses the IntSet interface:

IntSet set = …;
int x = set.size();

• Which code to call?
– IntSet1.size ?
– IntSet2.size ?

• Client code doesn’t know the answer.
– So objects must “know” which code to call.
– Invocation of a method must indirect through the object.

CIS 4521/5521: Compilers 6

Compiling Objects
• Objects contain a pointer to a

dispatch vector (also called a
virtual table or vtable) with
pointers to method code.

• Code receiving set:IntSet
only knows that set has an
initial dispatch vector pointer
and the layout of that vector.

CIS 4521/5521: Compilers 7

rep:List

IntSet1.insert

IntSet1.has

IntSet1.size

rep:Tree

size:int

IntSet2.insert

IntSet2.has

IntSet2.size

IntSet1
Dispatch Vector

IntSet2
Dispatch Vector

set

IntSet

?

?.insert

?.has

?.size

Dispatch Vector

Method Dispatch (Single Inheritance)
• Idea: every method has its own small integer index.
• Index is used to look up the method in the dispatch vector.

CIS 4521/5521: Compilers 8

interface A {
 void foo();
}

interface B extends A {
 void bar(int x);
 void baz();
}

class C implements B {
 void foo() {…}
 void bar(int x) {…}
 void baz() {…}
 void quux() {…}
}

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
C <: B <: A

Dispatch Vector Layouts
• Each interface and class gives rise to a dispatch vector layout.
• Note that inherited methods have identical indices in the subclass.
• Methods added by subclasses only add new rows: width subtyping

CIS 4521/5521: Compilers 9

A

A fields

parent

0: foo

Dispatch Vectors

B

B fields

parent

0: foo

1: bar

2: baz

C

C fields

parent

0: foo

1: bar

2: baz

3: quux

Representing Classes in the LLVM
• During typechecking, create a class hierarchy

– Maps each class to its interface:
• Superclass
• Constructor type
• Fields
• Method types (plus whether they inherit & which class they inherit from)

• Compile the class hierarchy to produce:
– An LLVM IR struct type for each object instance
– An LLVM IR struct type for each vtable (a.k.a. class table)
– Global definitions that implement the class tables

Zdancewic CIS 4521/5521: Compilers 10

Example OO Code (Java)

Zdancewic CIS 4521/5521: Compilers 11

class A {
 int x;
 A (int x) { super(); this.x = x; } // constructor
 void print() { System.out.print(x); } // method1
 int blah(A a) { return 0; } // method2

}

class B extends A {
 int y; int z; // Added fields
 B (int x, int y, int z){ // constructor
 super(x);
 this.y = y;
 this.z = z;
 }
 void print() { return; } // overrides A
}

class C extends B {
 int w;
 C (int x, int y, int z, int w){ // constructor
 super(x,y,z);
 this.w = w;
 }
 void foo(int a, int b) {this.w = this.x + this.y;}
 void print() { … } // overrides B
}

Type Translation of a Class
• Each class gives rise to two implementation types at the LLVM IR level:

• Object Instance Type
– pointer to the dispatch vector
– fields of the class

• Dispatch Vector Type
– pointer to the superclass dispatch vector
– pointers to methods of the class

• The inheritance hierarchy is used to statically construct the global
class tables
– which are structs that have Dispatch Vector Types

Zdancewic CIS 4521/5521: Compilers 12

Example OO Hierarchy in LLVM

Zdancewic CIS 4521/5521: Compilers 13

%Object = type { %_class_Object* }
%_class_Object = type { }

%A = type { %_class_A*, i64 }
%_class_A = type { %_class_Object*, void (%A*)*, i64 (%A*, %A*)* }

%B = type { %_class_B*, i64, i64, i64 }
%_class_B = type { %_class_A*, void (%B*)*, i64 (%A*, %A*)* }

%C = type { %_class_C*, i64, i64, i64, i64 }
%_class_C = type { %_class_B*, void (%C*)*, i64 (%A*, %A*)*, void (%C*, i64, i64)* }

@_vtbl_Object = global %_class_Object { }

@_vtbl_A = global %_class_A { %_class_Object* @_vtbl_Object,
void (%A*)* @print_A,
i64 (%A*, %A*)* @blah_A }

@_vtbl_B = global %_class_B { %_class_A* @_vtbl_A,
void (%B*)* @print_B,
i64 (%A*, %A*)* @blah_A }

@_vtbl_C = global %_class_C { %_class_B* @_vtbl_B,
void (%C*)* @print_C,
i64 (%A*, %A*)* @blah_A,
void (%C*, i64, i64)* @foo_C }

Object instance types

Class table types

Class tables
(structs containing
function pointers)

Method Arguments
• Methods bodies are compiled just like top-level procedures…
• … except that they have an implicit extra argument:

this (or self)
– Historically (Smalltalk), these were called the “receiver object”
– Method calls were thought of a sending “messages” to “receivers”

• Note 1: the type of “this” is the class containing the method.
• Note 2: references to fields inside <body> are compiled like

this.field

CIS 4521/5521: Compilers 14

class IntSet1 implements IntSet {
 …
 IntSet1 insert(int i) { <body> }
}

IntSet1 insert(IntSet1 this, int i) { <body> }

A method in a class...

… is compiled like this (top-level) procedure:

LLVM Method Invocation Compilation
• Consider method invocation:

 ⟦H;G;L ⊢ e.m(e1,…,en):t⟧
• First, compile ⟦H;G;L ⊢ e : C⟧

to get a (pointer to) an object value of class type C
– Call this value %obj_ptr

• Use getelementptr to extract the vtable pointer from %obj_ptr
• load the vtable pointer
• Use getelementptr to extract the address of the function pointer

from the vtable
– using the information about C in H

• load the function pointer
• Call through the function pointer, passing ‘%obj_ptr’ for this:

 call (cmp_typ t) m(obj_ptr, ⟦e1⟧, …, ⟦en⟧)

• In general, function calls may require bitcast to account for
subtyping: arguments may be a subtype of the expected “formal” type

CIS 4521/5521: Compilers 15

X86 Code For Dynamic Dispatch
• Suppose b : B
• What code for b.bar(3)?

– bar has index 1
– Offset = 8 * (1+1)

movq ⟦b⟧, %rax
movq (%rax), %rbx
movq $16(rbx), %rcx // D.V. + offset
movq %rax, %rdi // “this” pointer
movq 3, %rsi // Method argument
call *%rcx // Indirect call

CIS 4521/5521: Compilers 16

B

B fields

parent

0: foo

1: bar

2: baz
__bar:
 <code>

D.V.
rax rbx

rcx
b

parent

0: foo

1: bar

2: baz

Sharing Dispatch Vectors
• All instances of a class may share the same dispatch vector.

– Assuming that methods are immutable.
• Code pointers stored in the dispatch vector are available at link time –

dispatch vectors can be built once at link time.

• One job of the object constructor is to fill in the object’s pointer to the
appropriate dispatch vector.

• Note: The address of the D.V. is the run-time representation of the
object’s type.

CIS 4521/5521: Compilers 17

B

B fields __bar:
 <code>

D.V.
b1

B fields

b2 B

parent

0: foo

1: bar

2: baz

3: quux

parent

0: foo

1: bar

2: baz

Inheritance: Sharing Code
• Inheritance: Method code “copied down” from the superclass

– If not overridden in the subclass
– overriden methods have different dispatch pointers

• Works with separate compilation – superclass code not needed.

CIS 4521/5521: Compilers 18

B

B fields
__bar:
 <code>

D.V.

b

C

C fields

c

__C_baz:
 <code>

__B_baz:
 <code>

Compiling Static Methods
• Java supports static methods

– Methods that belong to a class, not the instances of the class.
– They have no “this” parameter (no receiver object)

• Compiled exactly like normal top-level procedures
– No slots needed in the dispatch vectors
– No implicit “this” parameter

• They’re not really methods
– They can only access static fields of the class

CIS 4521/5521: Compilers 19

Compiling Constructors
• Java and C++ classes can declare constructors that create new objects.

– Initialization code may have parameters supplied to the constructor
– e.g. new Color(r,g,b);

• Modula-3: object constructors take no parameters
– e.g. new Color;
– Initialization would typically be done in a separate method.

• Constructors are compiled just like methods, except:
– The code pointer to call is determined statically
– The this variable is initialized to a newly allocated block of memory big

enough to hold D.V. pointer + fields according to object layout
– Constructor code initializes the fields

• call the super-class constructor first (to recursively initialize those fields)
• What methods (if any) are allowed? What is the type of this during those

calls?
– The D.V. pointer is initialized last

• When? After running the initialization code.

CIS 4521/5521: Compilers 20

Compiling Checked Downcasts
• How do we compile downcast in general? Consider this Java-like generalization of

Oat's checked cast, where t ranges over Java-style reference types:

 if? (t x = exp) { … } else { … }

• Reason by cases:
– t must be either null, ref or ref? (can’t be just int or bool)

• If t is null:
– The static type of exp must be ref? for some ref.
– If exp == null then take the true branch, otherwise take the false branch

• If t is string or t[]:
– The static type of exp must be the corresponding string? Or t[]?
– If exp == null take the false branch, otherwise take the true branch

• If t is C:
– The static type of exp must be D or D? (where C <: D)
– If exp == null take the false branch, otherwise:
– emit code to walk up the class hierarchy starting at D, looking for C
– If found, then take true branch else take false branch

• If t is C?:
– The static type of exp must be D? (where C <: D)
– If exp == null take the true branch, otherwise:
– Emit code to walk up the class hierarchy starting at D, looking for C
– If found, then take true branch else take false branch

Zdancewic CIS 4521/5521: Compilers 21

“Walking up the Class Hierarchy”
• A non-null object pointer refers to an LLVM struct with a type like:

• The first entry of the struct is a pointer to the vtable for Class B
– This pointer is the dynamic type of the object.
– It will have the value @vtbl_B

• The first entry of the class table for B is a pointer to its superclass:

• Therefore, to find out whether an unknown type X is a subtype of C:
– Assume C is not Object (ruled out by “silliness” checks for downcast)

Zdancewic CIS 4521/5521: Compilers 22

%B = type { %_class_B*, i64, i64, i64 }

@_vtbl_B = global %_class_B { %_class_A* @_vtbl_A,
void (%B*)* @print_B,
i64 (%A*, %A*)* @blah_A }

LOOP:
 If X == @_vtbl_Object then NO, X is not a subtype of C
 If X == @_vtbl_C then YES, X is a subtype of C
 else X == @_vtbl_D, so set X to @_vtbl_E where E is D’s parent and goto LOOP

MULTIPLE INHERITANCE

Zdancewic CIS 4521/5521: Compilers 23

Method Dispatch (Single Inheritance)
• Idea: every method has its own small integer index.
• Index is used to look up the method in the dispatch vector.

CIS 4521/5521: Compilers 24

interface A {
 void foo();
}

interface B extends A {
 void bar(int x);
 void baz();
}

class C implements B {
 void foo() {…}
 void bar(int x) {…}
 void baz() {…}
 void quux() {…}
}

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
C <: B <: A

Multiple Inheritance
• C++: a class may declare more than one superclass.
• Semantic problem: ambiguity

class A { int m(); }
class B { int m(); }
class C extends A,B {…} // which m?

– Same problem can happen with fields.
– In C++, fields and methods can be duplicated when such ambiguity arises

(though explicit sharing can be declared too)

• Java: a class may implement more than one interface.
– No semantic ambiguity: if two interfaces contain the same method

declaration, then the class will implement a single method
interface A { int m(); }
interface B { int m(); }
class C implements A,B {int m() {…}} // only one m

CIS 4521/5521: Compilers 25

Dispatch Vector Layout Strategy Breaks
interface Shape { D.V.Index
 void setCorner(int w, Point p); 0
}

interface Color {
 float get(int rgb); 0
 void set(int rgb, float value); 1
}

class Blob implements Shape, Color {
 void setCorner(int w, Point p) {…} 0?
 float get(int rgb) {…} 0?
 void set(int rgb, float value) {…} 1?
}

CIS 4521/5521: Compilers 26

General Approaches
• Can’t directly identify methods by position anymore.

• Option 1: Use a level of indirection:
– Map method identifiers to code pointers (e.g. index by method name)
– Use a hash table
– May need to do search up the class hierarchy

• Option 2: Give up separate compilation
– Use “sparse” dispatch vectors, or binary decision trees
– Must know then entire class hierarchy

• Option 3: Allow multiple D.V. tables (C++)
– Choose which D.V. to use based on static type
– Casting from/to a class may require run-time operations

• Note: many variations on these themes
– Different Java compilers pick different approaches to options1 and 2…

CIS 4521/5521: Compilers 27

Option 2 variant 1: Sparse D.V. Tables
• Give up on separate compilation…
• Now we have access to the whole class hierarchy.

• So: ensure that no two methods in the same class are allocated the
same D.V. offset.
– Allow holes in the D.V. just like the hash table solution
– Unlike hash table, there is never a conflict!

• Compiler needs to construct the method indices
– Graph coloring techniques can be used to construct the D.V. layouts in a

reasonably efficient way (to minimize size)
– Finding an optimal solution is NP complete!

CIS 4521/5521: Compilers 28

Example Object Layout
• Advantage: Identical dispatch and performance to single-inheritance

case
• Disadvantage: Must know entire class hierarchy

CIS 4521/5521: Compilers 29

Blob

Blob fields

parent

setCorner

set

get

Class Info
s

Minimize #
Of entries

Option 2 variant 2: Binary Search Trees
• Idea: Use conditional branches not indirect jumps
• Each object has a class index (unique per class) as first word

– Instead of D.V. pointer (no need for one!)
• Method invocation uses range tests to select among n possible classes in lg n time

– Direct branches to code at the leaves.

Shape x;
x.SetCorner(…);

 Mov eax, ⟦x⟧
 Mov ebx, [eax]
 Cmp ebx, 1
 Jle __L1
 Cmp ebx, 2
 Je __CircleSetCorner
 Jmp __EggSetCorner
__L1:
 Cmp ebx, 0
 Je __BlobSetCorner
 Jmp __RectangleSetCorner

CIS 4521/5521: Compilers 30

Color Shape

RGBColor Blob Rectangle Circle Egg
 3 0 1 2 4

// interfaces

// classes

0 1 2 4

Decision tree

Search Tree Tradeoffs
• Binary decision trees work well if the distribution of classes that may

appear at a call site is skewed.
– Branch prediction hardware eliminates the branch stall of ~10 cycles (on

X86)

• Can use profiling to find the common paths for each call site
individually
– Put the common case at the top of the decision tree (so less search)
– 90%/10% rule of thumb: 90% of the invocations at a call site go to the

same class

• Drawbacks:
– Like sparse D.V.’s you need the whole class hierarchy to know how many

leaves you need in the search tree.
– Indirect jumps can have better performance if there are >2 classes (at

most one mispredict)

CIS 4521/5521: Compilers 31

Option 3: Multiple Dispatch Vectors
• Duplicate the D.V. pointers in the object representation.
• Static type of the object determines which D.V. is used.

CIS 4521/5521: Compilers 32

interface Shape { D.V.Index
 void setCorner(int w, Point p); 0
}

interface Color {
 float get(int rgb); 0
 void set(int rgb, float value); 1
}

class Blob implements Shape, Color {
 void setCorner(int w, Point p) {…}
 float get(int rgb) {…}
 void set(int rgb, float value) {…}
}

Shape
setCorner
D.V.

Color
get

set

D.V.

get

set

setCorner

Color

Blob, Shape

Multiple Dispatch Vectors
• A reference to an object might have multiple “entry points”

– Each entry point corresponds to a dispatch vector
– Which one is used depends on the statically known type of the program.

Blob b = new Blob();
Color y = b; // implicit cast!

• Compile
Color y = b;
As
Movq ⟦b⟧ + 8 , y

CIS 4521/5521: Compilers 33

get

set

setCorner

y

b

Multiple D.V. Summary
• Benefit: Efficient dispatch, same cost as for multiple inheritance
• Drawbacks:

– Cast has a runtime cost
– More complicated programming model… hard to understand/debug?

• What about multiple inheritance and fields?

CIS 4521/5521: Compilers 34

Multiple Inheritance: Fields
• Multiple supertypes (Java): methods conflict (as we saw)
• Multiple inheritance (C++): fields can also conflict
• Location of the object’s fields can no longer be a constant offset from

the start of the object.

class Color {
 float r, g, b; /* offsets: 4,8,12 */
}
class Shape {
 Point LL, UR; /* offsets: 4, 8 */
}
class ColoredShape extends
Color, Shape {
 int z;
}

CIS 4521/5521: Compilers 35

D.V.

r

g

b

Color

D.V.

LL

UR

Shape

ColoredShape ??

C++ approach:

• Add pointers to the
superclass fields
– Need to have multiple

dispatch vectors
anyway (to deal with
methods)

• Extra indirection
needed to access
superclass fields

• Used even if there is a
single superclass
– Uniformity

CIS 4521/5521: Compilers 36

D.V.

r

g

b

Color

D.V.

LL

UR

ColoredShape D.V.

super

super

z

Shape

CLOSURE CONVERSION
REVISITED

Zdancewic CIS 4521/5521: Compilers 37

Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.

Compiling First-class Functions

• To implement first-class functions on a processor, there are two
problems:
– First: we must implement substitution of free variables
– Second: we must separate ‘code’ from ‘data’

• Reify the substitution:
– Move substitution from the meta language to the object language by

making the data structure & lookup operation explicit
– The environment-based interpreter is one step in this direction

• Closure Conversion:
– Eliminates free variables by packaging up the needed environment in the

data structure.

• Hoisting:
– Separates code from data, pulling closed code to the top level.

Zdancewic CIS 4521/5521: Compilers 38

Example of closure creation
• Recall the “add” function:

let add = fun x -> fun y -> x + y

• Consider the inner function: fun y -> x + y

• When run the function application: add 4
the program builds a closure and returns it.
– The closure is a pair of the environment and a code pointer.

• The code pointer takes a pair of parameters: env and y
– The function code is (essentially):

 fun (env, y) -> let x = nth env 0 in x + y

CIS 4521/5521: Compilers 39

ptr Code(env, y, body)

(4) code body

Representing Closures
• As we saw, the simple closure conversion algorithm doesn’t generate

very efficient code.
– It stores all the values for variables in the environment,

even if they aren’t needed by the function body.
– It copies the environment values each time a nested closure is created.
– It uses a linked-list datastructure for tuples.

• There are many options:
– Store only the values for free variables in the body of the closure.
– Share subcomponents of the environment to avoid copying
– Use vectors or arrays rather than linked structures

CIS 4521/5521: Compilers 40

Array-based Closures with N-ary Functions

(fun (x y z) ->
 (fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z
n,m

p

nil x y z

nxt n m

nxt p +

Closure B

env code

Closure A

Closure B

env code

Closure A

app

1,0

Note how free
variables are
“addressed”
relative to the
closure due to
shared env.

“follow 1 nxt
 ptr then look
 up index 0”

“follow 2 nxt
 ptrs then look
 up index 2”

Observe: Closure ≈ Single-method Object

• Free variables
• Environment pointer
• Closure for function:
fun (x,y) ->

x + y + a + b

Fields
“this” parameter
Instance of this class:
class C {
 int a, b;
 int apply(x,y) {
 x + y + a + b
 }
}

CIS 4521/5521: Compilers 43

≈
≈

≈

D.V.

a

b
__apply: <code>

env

__apply

a

b

__apply: <code>
__apply

