Lecture 21

CIS 4521/5521: COMPILERS

Announcements

e HWS5: Oatv. 2.0

— records, function pointers, type checking, array-bounds checks, etc.
— typechecker & safety

— Due: Tomorrow, April 9t

— Test cases due tonight!

 HW®6: Optimizations
— Program analysis and register allocation

— Available: end of this week
— Due: Wednesday, April 30t

Zdancewic CIS 4521/5521: Compilers

MULTIPLE INHERITANCE

Zdancewic CIS 4521/5521: Compilers

General Approaches

« Can't directly identify methods by position anymore.

* Option 1: Use a level of indirection:
— Map method identifiers to code pointers (e.g. index by method name)
— Use a hash table
— May need to do search up the class hierarchy

« Option 2: Give up separate compilation
— Use “sparse” dispatch vectors, or binary decision trees
— Must know then entire class hierarchy

« Option 3: Allow multiple D.V. tables (C++)
— Choose which D.V. to use based on static type
— Casting from/to a class may require run-time operations

Note: many variations on these themes
— Different Java compilers pick different approaches to options1 and 2...

CIS 4521/5521: Compilers

Option 3: Multiple Dispatch Vectors

* Duplicate the D.V. pointers in the object representation.
» Static type of the object determines which D.V. is used.

Shape D.V.
interface Shape { D.V.Index ——l setCorner
void setCorner(int w, Point p); 0
}
interface Co?or { Color DV
float get(int rgb);
void set(int rgb, float value); 1 ——> get
} set

class Blob implements Shape, Color {

void setCorner(int w, Point p) {..} /{ setCorner

float get(int rgb) {..}
void set(int rgb, float value) {..} Blob, Shapes— &«

}

Color ei5 o3| get

set

CIS 4521/5521: Compilers

Multiple Dispatch Vectors

« A reference to an object might have multiple “entry points”
— Each entry point corresponds to a dispatch vector
— Which one is used depends on the statically known type of the program.

Blob b = new Blob();
Color y = b; //implicit cast!

. Compile ‘//%setCorner
Color y = b; be—3>
AS y e——F> o> get

Movq [b] + 8 , vy

set

CIS 4521/5521: Compilers

Multiple D.V. Summary

 Benefit: Efficient dispatch, same cost as for multiple inheritance

« Drawbacks:
— Cast has a runtime cost
— More complicated programming model... hard to understand/debug?

« What about multiple inheritance and fields?

CIS 4521/5521: Compilers

Multiple Inheritance: Fields

« Multiple supertypes (Java): methods conflict (as we saw)

« Multiple inheritance (C++): fields can also conflict

 Location of the object’s fields can no longer be a constant offset from

the start of the object.

class Color {
float r, g, b; /*offsets: 4,8,12 */
}

class Shape {
Point LL, UR; /*offsets: 4, 8 */

}

class ColoredShape extends
Color, Shape {
int z;

}

CIS 4521/5521: Compilers

Color

D.V. o>

r

g

b

Shape

D.V. oo >

LL

UR

ColoredShape ??

C++ approach:

 Add pointers to the
superclass fields

— Need to have multiple
dispatch vectors
anyway (to deal with
methods)

* Extra indirection
needed to access
superclass fields

» Used even if there is a
single superclass

— Uniformity

CIS 4521/5521: Compilers

Color

Shape

D.V. «—
r

g

b

D.V.

o—

LL

UR

ColoredSha

D.V.

[——

—» super

3

_» super

z

Compiling lambda calculus to straight-line code.

Representing evaluation environments at runtime.

CLOSURE CONVERSION
REVISITED

Zdancewic CIS 4521/5521: Compilers 10

Compiling First-class Functions

To implement first-class functions on a processor, there are two
problems:

— First: we must implement substitution of free variables
— Second: we must separate ‘code’ from ‘data’

Reify the substitution:

— Move substitution from the meta language to the object language by
making the data structure & lookup operation explicit

— The environment-based interpreter is one step in this direction
Closure Conversion:

— Eliminates free variables by packaging up the needed environment in the
data structure.

Hoisting:
— Separates code from data, pulling closed code to the top level.

Zdancewic CIS 4521/5521: Compilers 11

Example of closure creation

 Recall the “add” function:
let add = fun x -=> fun 'y -> X + vy

« Consider the inner function: fun y -> X + vy

* When run the function application: add 4
the program builds a closure and returns it.

— The closure is a pair of the environment and a code pointer.

Code(env, y, body)-

ptr

\

« The code pointer takes a pair of parameters: env and y

— The function code is (essentially):
fun (env, y) -> let x = nth env 0 itn X + vy

~
N

CIS 4521/5521: Compilers 12

Representing Closures

« As we saw, the simple closure conversion algorithm doesn’t generate
very efficient code.

— It stores all the values for variables in the environment,
even if they aren’t needed by the function body.

— It copies the environment values each time a nested closure is created.
— It uses a linked-list datastructure for tuples.

« There are many options:

— Store only the values for free variables in the body of the closure.
— Share subcomponents of the environment to avoid copying
— Use vectors or arrays rather than linked structures

CIS 4521/5521: Compilers 13

Array-based Closures with N-ary Functions

(fun (x y z) ->

(fun (n m) -> 6fun p -> 6fun q ->n + z) X)

J

XY, Z

Closvure A
n,m

Closure A

nil X Z

\\‘——- nxt n m
env | code ‘

Closure B L P

env | code

P

Closure B

Note how free
variables are
“addressed”
relative to the
closure due to
shared env.

“follow 1 nxt
ptr then look
up index 0”

“follow 2 nxt
ptrs then look
up index 2”

Observe: Closure ~ Single-method Object

Fields
“this” parameter

 Free variables

U

U

* Environment pointer

U

 Closure for function: Instance of this class:

fun (x,y) -> class C {
X +y+a+b int a, b;

int apply(x,y) {
\ X +y+a+b
Toenv et a }
__apply . b }

\
D.V. o+~+— > __apply/.
__apply: <code> a /
b

__apply: <code>

CIS 4521/5521: Compilers 16

Optimizations

Source Code

(Character stream)
if (b==0) { a

Token stream:

1; }

if| (| b

Abstract Syntax Tree:

Intermediate code:
11:

%scnd = icmp eq 164 %b,
None 0
br 11 %cnd, label %12,

Assembly Code
11:

cmpg %eax, $0
jeq 12
jmp 13

12:

label %13

12:
store 164* %a, 1
br label %13

13:

HiH

17

Why optimize?

OPTIMIZATIONS, GENERALLY

Zdancewic CIS 4521/5521: Compilers

Optimizations

* The code generated by our OAT compiler so far is pretty inefficient.
— Lots of redundant moves.
— Lots of unnecessary arithmetic instructions.

« Consider this OAT program:

define 164 @foo(164 % wl) {
% w2 = alloca 164

X5 = alloca 164

_y10 = alloca 164

714 = alloca 164

store 164 % _wl, 164* %_w2
_bop4 = add 164 3, 5
store 164 %_bop4, 164* %_x5

int foo(int w) {
var Xx = 3 + 5
var y = x *x w
var z =y -0

W
return Z * 4; tore 164 %_bop9, 164* %_y
5_y12 = load 164, 164* %_y
}' %_bopl3 = sub 164 %_y12, 0
store 164 %_bopl3, 164* %_z14
%_216 = load 164, 164* %_
%_bopl7 = mul 164 %_z16, 4
ret 164 %_bopl7

o o° of

of

oo e ‘wvo

X
_x7 = load 164, 164* %_x5
_w8 = load 164, 164* %_w2
_bop9 = mul 164 %_x7, %

° U o o o°

}

« opt-example.c, opt-example.oat

CIS 4521/55210: Compilers

Unoptimized vs.

define 164 @foo(164 % _wl) {
w2 = alloca 164

x5 = alloca 164

_y10 = alloca 164

214 = alloca 164

store 164 %_wl, 164* %_w2
%_bop4 = add 164 3, 5

of @ of of

store 164 %_bop4, i164* %

X
%_Xx7 = load 164, 164* %_x5
%_w8 = load 164, 164* %_w2
%_bop9 = mul 164 %_x7, %_w8
store 164 %_bop9, 164* %_yl0
_y12 = load 164, 164* %_y10

of of

_bopl3 = sub 164 %_yi12, 0

store 164 %_bopl3, 164* %_z14

%_216 = load 164, 164* %_z14
%_bopl7 = mul 164 %_z16, 4
ret 164 %_bopl7

CIS 4521/55210: Compilers

_foo:

.text
.globl

pushq
movq
subq
movq
movq
pushq
movq
pushq
movq
pushq
movq
pushq
movq
movq
movq
movq
movq
movq
addq
movq
movq
movq
movq
movq
movq
movq
movq
movq
movq
movq
movq
imulq
movq
movq
movq
movq
movq
movq
movq
movq
movq
subq
movq
movq
movq
movq
movq
movq
movq
movq
movq
imulq
movq
movq
movq
popq
retq

_foo

%rbp

%rsp, %rbp

$136, %rsp

%rdi, %rax

%srax, -8(%rbp)
$0

%rsp, -16(%rbp)
$0

%rsp, -24(%rbp)
$0

%rsp, -32(%rbp)
$0

%srsp, -40(%rbp)
-8(%rbp), %rcx
-16(%rbp), %rax
%rcx, (%rax)

$3, %rax

$5, %rcx

%rex, %Srax

%srax, -56(%rbp)
-56(%rbp), %rcx
-24(%rbp), %rax
%rcx, (%rax)
-24(%rbp), %rax
(%rax), %rcx
%srcx, -72(%rbp)
-16(%rbp), %rax
(%rax), %rcx
%srcx, -80(%rbp)
-72(%rbp), %rax
-80(%rbp), %rcx
%rex, %Srax

%srax, -88(%rbp)
-88(%rbp), %rcx
-32(%rbp), %rax
%rcx, (%rax)
-32(%rbp), %rax
(%rax), %rcx
%srcx, -104(%rbp)
-104(%rbp), %rax
$0, %Srcx

Brex, %Srax

%srax, -112(%rbp)
-112(%rbp), S%rcx
-40(%rbp), %rax
%rcx, (%rax)
-40(%rbp), %rax
(%rax), S%rcx
%srcx, -128(%rbp)
-128(%rbp), %rax
$4, %Srcx

Brex, %Srax

%srax, -136(%rbp)
-136(%rbp), S%rax
%rbp, %rsp

%rbp

Optimized Output

Optimized code:

_foo:
pushg %
movq %
movq %
shlq $
popq %
retq

« Code above generated by
clang -03

* Function foo may be inlined by
the compiler, so it can be
implemented by just one
Instruction!

20

Why do we need optimizations?

* To help programmers...
— They write modular, clean, high-level programs
— Compiler generates efficient, high-performance assembly

* Programmers don’t write optimal code

* High-level languages make avoiding redundant
computation inconvenient or impossible

— e.g. A['L][] = A['L][] + 1 In Oat/ Java it's not possible for the programmer
& p prog
to manually express the sharing of the two
computations of Alil[j] because

e Architectural independence there is no concept of "interior pointer".
— Optimal code depends on features not expressed to the programmer
— Modern architectures assume optimization

 Different kinds of optimizations:
— Time: improve execution speed
— Space: reduce amount of memory needed
— Power: lower power consumption (e.g. to extend battery life)

CIS 4521/55210: Compilers 21

Some caveats

« Optimization are code transformations:
— They can be applied at any stage of the compiler
— They must be sound — they shouldn’t change the meaning of the program.

* In general, optimizations require some program analysis:
— To determine if the transformation really is safe
— To determine whether the transformation is cost effective

(static) program analysis: the process of (soundly) approximating
the dynamic behavior of a program at compile time, usually by
representing some facts about the state of the computation at
each program point.

* This course: most common and valuable performance optimizations
— See Muchnick (optional text) for ~10 chapters about optimization

CIS 4521/55210: Compilers 22

High level

Mid level

Low level

When to apply optimization

1

1

A

==

CIS 4521/5521: Compilers

AST

IR

N Canonical IR

Abstract assembly

Assembly

Inlining

Function specialization
Constant folding

Constant propagation

Value numbering

Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength Reduction

Constant folding & propagation
Branch prediction / optimization
Register allocation

Loop unrolling

Instruction Selection

Cache optimization

23

Where to Optimize?

Usual goal: improve time performance

Problem: many optimizations trade space for time

Example: Loop unrolling
— Idea: rewrite a loop like:
for(int 1=0; 1<100; i=1+1) {
s =s + al[il;

}

— Into a loop like:
for(int 1=0; 1<99; i=1+2){

s =s + al[il;
s = s + a[i+1];
}
* Tradeoffs:

— Increasing code space slows down whole program a tiny bit
(extra instructions to manage) but speeds up the loop a lot

— For frequently executed code with long loops: generally a win
— Interacts with instruction cache and branch prediction hardware

Complex optimizations may never pay off!

CIS 4521/55210: Compilers

24

Writing Fast Programs In Practice

* Pick the right algorithms and data structures.

These have a much bigger impact on performance that compiler
optimizations.

Reduce # of operations
Reduce memory accesses
Minimize indirection — it breaks working-set coherence

« Then turn on compiler optimizations

* Profile to determine program hot spots

 Evaluate whether the algorithm/data structure design works

« ...if so: “tweak” the source code until the optimizer does “the right
thing” to the machine code

CIS 4521/55210: Compilers

25

Soundness

* Whether an optimization is sound (i.e., correct) depends on the
programming language semantics.

— Languages that provide weaker guarantees to the programmer permit
more optimizations but have more ambiguity in their behavior.

— e.g., In C, writing to unallocated memory is undefined behavior, so the
compiler can do anything if a program writes to an array out of bounds.

— e.g., InJava, tail-call optimization (which turns recursive function calls
into loops) is not valid because of “stack inspection”.

» Example: loop-invariant code motion
— Idea: hoist invariant code out of a loop

while (b) { Z = y/X;
7z = y/x; while (b) {
. // Yy, X not updated . // Yy, X not updated
} }

e |s this more efficient?
e s this safe?

CIS 4521/5521: Compilers 26

Comparing Behaviors*

 Consider two programs P1 and P2 possibly in different languages.
— e.g. P1is an Oat program, P2 is its compilation to LL

« The semantics of the languages associate to each program a set of
observable behaviors:

»(P) and 5(P)

* Note: [B(P)| =1 if P is deterministic, > 1 otherwise

*Note: this series of slides is adapted from some by Xavier Leroy from a summer school about compiler
verification.

What is Observable?

* For C-like languages:

observable behavior ::=

terminates(st) (i.e. observe the final state)
diverges

goeswrong

 For pure functional languages:

observable behavior ::=

terminates(v) (i.e. observe the final value)
diverges

goeswrong

What about 1/0?

* Add a trace of input-output events performed:

t =1 | et (finite traces)
coind. T =u=1 | exT (finite and infinite traces)

observable behavior ::=

terminates(t, st) (end in state st after trace t)
diverges(T) (loop, producing trace T)
goeswrong(t)

Examples

P1:
print(1); /st = terminates(out(1)::[],st)
P2:
print(1); print(2); /st
= terminates(out(1)::out(2)::[],st)
P3:
WHILE true DO print(1) END /st
= diverges(out(1)::out(1)::...)

So B(P1) # B(P2) # B(P3)

Bisimulation

* Two programs P1 and P2 are bisimilar whenever:
B(P1) = B(P2)

* The two programs are completely indistinguishable.

« But... this is often too strong in practice.

Compilation Reduces Nondeterminism

« Some languages (like C) have underspecified behaviors:
— Example: order of evaluation of expressions f() + g()

« Concurrent programs often permit nondeterminism
— Classic optimizations can reduce this nondeterminism

— Example:
a :=xXx+1; b :=x+1 | | X = X+1
VS.
a:=x+1; b :=a | | X = X+1

* LLVM explicitly allows nondeterminism:
— undef values (not part of LLVM lite)
— see the discussion later

Backward Simulation / Refinement

Program P2 can exhibit fewer behaviors than P1:

B(P1) 2 B(P2)

All the behaviors of P2 are permitted by P1, though some of them may
have been eliminated.

Also called refinement.

What about goeswrong?

« Compilers often translate away bad behaviors.

X = 1/y 3 x = 42 VS. X 1= 42
(divide by 0 error) (always terminates)

e Justifications:

— Compiled program does not “go wrong” because the program type checks
or is otherwise formally verified

— Or just “garbage in/garbage out”

Safe Backwards Simulation

* Only require the compiled program’s behaviors to agree if the source
program could not go wrong:

goeswrong(t) & B(P1) = BP1) 2 HB(P2)

This definition of "safe backwards simulation" is typically
what we mean by "correctness" of a program transformation.

A high-level tour of a variety of optimizations.

BASIC OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers 36

Constant Folding

* lIdea: If operands are known at compile type, perform the operation
statically.

int x =(2+3) *y = 1ntx=5%*y
b & false > false

* Performed at every stage of optimization...
* Why?
— Constant expressions can be created by translation or earlier
optimizations

Example: A[2] might be compiled to:

MEM[MEM[A] + 2 * 4] = MEM[MEM[A] + 8]

CIS 4521/5521: Compilers

37

Constant Folding Conditionals

1f (true) S = S
if (false) S > ;
1f (true) S else S’ = S
1f (false) S else S’ = S’
while (false) S > ;

if (2 > 3) S
1f (false) S

vV

CIS 4521/5521: Compilers

38

Algebraic Simplification

More general form of constant folding
— Take advantage of mathematically sound simplification rules

Mathematical identities:

— a*x1=>a a*x0=>0
— a+ 0 =2 a a-0=>a
— b | false 2 b b & true 2 b

Reassociation & commutativity:
—(a+1)+2=2>a+(1+2)=>a+3
— (2+a)+4> (a+2)+42>a+(2+4)>a+6

Strength reduction: (replace expensive op with cheaper op)

— a* 4 > a << 2
— a *x 7 -> (a << 3) - a
— a / 32767 > (a >> 15) + (a >> 30)

Note 1: must be careful with floating point (due to rounding) and integer
arithmetic (due to overflow/underflow)

Note 2: iteration of these optimizations is useful... how much?

Note 3: must be sure that rewrites terminate:
— commutativity apply like: (X + y) =2 (y + X) 2 (X +y) 2 (y + X) 2> .

CIS 4521/5521: Compilers 39

Constant Propagation

» If a variable is known to be a constant, replace the use of the variable
by the constant
* Value of the variable must be propagated forward from the point of
assignment
— This is a substitution operation

Example:
int x = 5; int x = 5; int x = 5; int x = 5;
int y = x * 2; int y =5 % 2; int y = 10; int y = 10;
int z = alyl; int z = alyl; int z = alyl; int z = a[10];

« To be most effective, constant gropagation should be interleaved with

constant folding

CIS 4521/5521: Compilers 40

Copy Propagation

 If one variable is assigned to another, replace uses of the assigned
variable with the copied variable.

« Need to know where copies of the variable propagate.
* Interacts with the scoping rules of the language.

X =Y, X5
if (x > 1) { > if (y > 1) {

X =X * f(x - 1); X =y * f(y - 1);
} }

« Can make the first assignment to x dead code (that can be eliminated).

CIS 4521/5521: Compilers

41

Dead Code Elimination

« If a side-effect free statement can never be observed, it is safe to
eliminate the statement.

X =y *y // x 1s dead!
// X never used =>

A variable is dead if it is never used after it is defined.

— Computing such definition and use information is an important
component of program analysis

* Dead variables can be created by other optimizations...

int x = 5; nt - x—=5;
int y = x * 2; ' =45
int z = aly]; int z = a[10];

CIS 4521/5521: Compilers 42

Unreachable/Dead Code

 Basic blocks not reachable by any trace leading from the starting basic
block are unreachable and can be deleted.

— Performed at the IR or assembly level
— Improves cache, TLB performance

* Dead code: similar to unreachable blocks.
— A value might be computed but never subsequently used.
* Code for computing the value can be dropped

« Butonly if it's pure, i.e., it has no externally visible side effects

— Externally visible effects: raising an exception, modifying a global
variable, going into an infinite loop, printing to standard output, sending a
network packet, launching a rocket

— Note: Pure functional languages (e.g., Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

CIS 4521/5521: Compilers 43

Inlining

* Replace a call to a function with the body of the function itself with arguments
rewritten to be local variables:

« Example in OAT: inline pow into g

int g(int x) { return x + pow(x); }
int pow(int a) {

var b = 1; var x = 0;

while (x < a) {b =2 * b; x = x + 1} .

return b; note: renaming

} int g(int x) {
int a = Xx;
> int b =1; int x2 = 0;

while (x2 < a) {b =2 * b; x2 = x2 + 1};
tmp = b;

return x + tmp;
}
* May need to rename variables to avoid capture
— See lecture about capture avoiding substitution for lambda calculus
* Best done at the AST or relatively high-level IR.
* When is it profitable?

— Eliminates the stack manipulation, jump, etc.
— Can increase code size.
— Enables further optimizations

CIS 4521/5521: Compilers 44

Code Specialization

* ldea: create specialized versions of a function that is called from
different places with different arguments.

« Example: specialize function f in:
class A implements I { int m() {.
class B implements I { int m() {.

int f(I x) { x.m();

A a =
B b =

new A();
new B();

f(a);
f(b);

.+ }
.+ }
// don't know which m

// know 1t’s A.m
// know 1t’'s B.m

« T_A would have code specialized to dispatch to A. m

« T_B would have code specialized to dispatch to B. m

* You can also inline methods when the run-time type is known
statically

— Often just one class implements a method.

CIS 4521/5521: Compilers

45

Common Subexpression Elimination

 fold redundant computations together
— in some sense, it’s the opposite of inlining

« Example:

ali] = a[i1] + 1

compiles to:

MEM[a + 1*8] := MEM[a + 1*8] + 1

Common subexpression elimination removes the redundant add and
multiply:

t =a + 1%¥8; MEM[t] := MEM[t] + 1

» For safety, you must be sure that the shared expression always has the
same value in both places!

CIS 4521/5521: Compilers

46

Unsafe Common Subexpression Elimination

Example: consider this OAT function:

unit f(int[] a, int[] b, int[] c) {

}

var j = ..; var 1 = ..; var k = ..;
b[j]l = a[il] + 1;

clk] = a[i];

return;

The optimization that shares the expression a[1] is unsafe... why?

unit f(int[] a, int[] b, int[] c) {

}

var j = ..; var t = ..; var k = ..;
t = a[i];

b[j]l = t + 1;

clk] = t;

return;

CIS 4521/5521: Compilers 47

LOOP OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers

Loop Optimizations

* Program hot spots often occur in loops.
— Especially inner loops

— Not always: consider operating systems code or compilers vs. a computer
game or word processor

* Most program execution time occurs in loops.

— The 90/10 rule of thumb holds here too.
(90% of the execution time is spent in 10% of the code)

« Loop optimizations are very important, effective, and numerous

— Also, concentrating effort to improve loop body code is usually a win

CIS 4521/5521: Compilers 49

Loop Invariant Code Motion (revisited)

* Another form of redundancy elimination.

* If the result of a statement or expression does not change during the
loop and it’s pure, it can be hoisted outside the loop body.

« Often useful for array element addressing code
— Invariant code not visible at the source level

for (1 =0; 1 < a.length; i1++) {
/* a not modified in the body */

A
t = a.length;

for (i1 =0; i <‘;;\€;:;if\\\\\\7

/* same body as above */

}

CIS 4521/5521: Compilers 50

Strength Reduction (revisited)

 Strength reduction can work for loops too

 ldea: replace expensive operations (multiplies, divides) by cheap ones
(adds and subtracts)

« For loops, create a dependent induction variable:

« Example:
for (int 1

)

int j = 0;
for (int 1
alj]l = 1;
] =1+ 35
}

CIS 4521/5521: Compilers

O; i<n; i1++) { a[i*3] = 1; } //strideby3

0; i<n; i++) {

// replace multiply by add

51

Loop Unrolling (revisited)

« Branches can be expensive, unroll loops to avoid them.
for (int 1=0; i<n; 1++) { S }

@

for (int 1=0; i<n-3; 1+=4) {S;S;S;S};
for (s i<n; 1++) { S } // left over iterations

« With k unrollings, eliminates (k-1)/k conditional branches
— So for the above program, it eliminates 3 of the branches

« Space-time tradeoft:
— Not a good idea for large S or small n

* Interacts with instruction caching, branch prediction

CIS 4521/5521: Compilers 52

EFFECTIVENESS?

Zdancewic CIS 4521/5521: Compilers

Optimization Effectiveness?

Geometric Mean Of All Test Results pESIh

Result Composite - LLVM Clang Optimization Levels On Intel Rocket Lake

» Geometric Mean, More Is Better Phoronix.com
I | | |

-Ofast -march=native -flto

2112.67

-Ofast -march=native
2090.55

-Ofast
1979.69

Geom. mean over
44 benchmark
programs at
various —O levels.

-03 -march=native -flto
1957.07

-03 -march=nativ
Sl ative 1937.68

-02 -march=native
1928.84

-03
1909.53

Clang 12

-03 -flto
1900.87

oL 1897.61

-02
o 1892.05

| |

-0
9 1541.88 ‘

-01
1536.93

-00

570.95

I
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|

1 1 i i ‘
500 1000 1500 2000 2500

https://www.phoronix.com/review/clang-12-opt

Zdancewic CIS 4521/5521: Compilers LLVM Clang 12 Benchmarks At Varying Optimization Levels, LTO
25 June 2021

54

https://www.phoronix.com/review/clang-12-opt

Optimization Effectiveness?

S 300%
R DT et E
5 200% - -
—
5 150%
5 100% -
(o
2 50% —JIE
>
Z 0% . ‘
T et g T e S o s o it (00%&52@2 S s@“%@éﬁf et
base time
_ 0
%speedup = — . - X 100%
optimized time
Example:
base time = 2s
optimized time = 1s = 100% speedup
Example:
base time = 1.2s
optimized time = 0.87s = 38% speedup

Graph taken from:

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.

Formal Verification of SSA-Based Optimizations for LLVM.

In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

Zdancewic CIS 4521/5521: Compilers 55

Optimization Effectiveness?

S 300%

< 2509 42 LLVM-mem2reg @ LLVM-OI a
@ LLVM-03 ® GCC-03

2} 200%

)

>

o

o

£]

5

= 0% @ D o 5
O 085 ..e® 7 N & oS N C R\ SR \ I\ D (ASC e

%O@Q‘e WP g e o P O g kO 1T \‘“{@c\ AR \RR Aoy @6?; o

* mem2reg: promotes alloca’ed stack slots to temporaries to enable register
allocation

* Analysis:
— mem2reg alone (+ back-end optimizations like register allocation) yields
~78% speedup on average

— -O1 yields ~100% speedup
(so all the rest of the optimizations combined account for ~22%)

— -O3 yields ~120% speedup
* Hypothetical program that takes 10 sec. (base time):
— Mem2reg alone: expect ~5.6 sec
— -O1: expect ~5 sec
— -O3: expect ~4.5 sec

Zdancewic CIS 4521/5521: Compilers 56

