
CIS 4521/5521: COMPILERS
Lecture 21

Announcements

• HW5: Oat v. 2.0
– records, function pointers, type checking, array-bounds checks, etc.
– typechecker & safety
– Due: Tomorrow, April 9th

– Test cases due tonight!

• HW6: Optimizations
– Program analysis and register allocation
– Available: end of this week
– Due: Wednesday, April 30th

Zdancewic CIS 4521/5521: Compilers 2

MULTIPLE INHERITANCE

Zdancewic CIS 4521/5521: Compilers 3

General Approaches
• Can’t directly identify methods by position anymore.

• Option 1: Use a level of indirection:
– Map method identifiers to code pointers (e.g. index by method name)
– Use a hash table
– May need to do search up the class hierarchy

• Option 2: Give up separate compilation
– Use “sparse” dispatch vectors, or binary decision trees
– Must know then entire class hierarchy

• Option 3: Allow multiple D.V. tables (C++)
– Choose which D.V. to use based on static type
– Casting from/to a class may require run-time operations

• Note: many variations on these themes
– Different Java compilers pick different approaches to options1 and 2…

CIS 4521/5521: Compilers 4

Option 3: Multiple Dispatch Vectors
• Duplicate the D.V. pointers in the object representation.
• Static type of the object determines which D.V. is used.

CIS 4521/5521: Compilers 5

interface Shape { D.V.Index
 void setCorner(int w, Point p); 0
}

interface Color {
 float get(int rgb); 0
 void set(int rgb, float value); 1
}

class Blob implements Shape, Color {
 void setCorner(int w, Point p) {…}
 float get(int rgb) {…}
 void set(int rgb, float value) {…}
}

Shape
setCorner
D.V.

Color
get

set

D.V.

get

set

setCorner

Color

Blob, Shape

Multiple Dispatch Vectors
• A reference to an object might have multiple “entry points”

– Each entry point corresponds to a dispatch vector
– Which one is used depends on the statically known type of the program.

Blob b = new Blob();
Color y = b; // implicit cast!

• Compile
Color y = b;
As
Movq ⟦b⟧ + 8 , y

CIS 4521/5521: Compilers 6

get

set

setCorner

y

b

Multiple D.V. Summary
• Benefit: Efficient dispatch, same cost as for multiple inheritance
• Drawbacks:

– Cast has a runtime cost
– More complicated programming model… hard to understand/debug?

• What about multiple inheritance and fields?

CIS 4521/5521: Compilers 7

Multiple Inheritance: Fields
• Multiple supertypes (Java): methods conflict (as we saw)
• Multiple inheritance (C++): fields can also conflict
• Location of the object’s fields can no longer be a constant offset from

the start of the object.

class Color {
 float r, g, b; /* offsets: 4,8,12 */
}
class Shape {
 Point LL, UR; /* offsets: 4, 8 */
}
class ColoredShape extends
Color, Shape {
 int z;
}

CIS 4521/5521: Compilers 8

D.V.

r

g

b

Color

D.V.

LL

UR

Shape

ColoredShape ??

C++ approach:

• Add pointers to the
superclass fields
– Need to have multiple

dispatch vectors
anyway (to deal with
methods)

• Extra indirection
needed to access
superclass fields

• Used even if there is a
single superclass
– Uniformity

CIS 4521/5521: Compilers 9

D.V.

r

g

b

Color

D.V.

LL

UR

ColoredShape D.V.

super

super

z

Shape

CLOSURE CONVERSION
REVISITED

Zdancewic CIS 4521/5521: Compilers 10

Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.

Compiling First-class Functions

• To implement first-class functions on a processor, there are two
problems:
– First: we must implement substitution of free variables
– Second: we must separate ‘code’ from ‘data’

• Reify the substitution:
– Move substitution from the meta language to the object language by

making the data structure & lookup operation explicit
– The environment-based interpreter is one step in this direction

• Closure Conversion:
– Eliminates free variables by packaging up the needed environment in the

data structure.

• Hoisting:
– Separates code from data, pulling closed code to the top level.

Zdancewic CIS 4521/5521: Compilers 11

Example of closure creation
• Recall the “add” function:

let add = fun x -> fun y -> x + y

• Consider the inner function: fun y -> x + y

• When run the function application: add 4
the program builds a closure and returns it.
– The closure is a pair of the environment and a code pointer.

• The code pointer takes a pair of parameters: env and y
– The function code is (essentially):

 fun (env, y) -> let x = nth env 0 in x + y

CIS 4521/5521: Compilers 12

ptr Code(env, y, body)

(4) code body

Representing Closures
• As we saw, the simple closure conversion algorithm doesn’t generate

very efficient code.
– It stores all the values for variables in the environment,

even if they aren’t needed by the function body.
– It copies the environment values each time a nested closure is created.
– It uses a linked-list datastructure for tuples.

• There are many options:
– Store only the values for free variables in the body of the closure.
– Share subcomponents of the environment to avoid copying
– Use vectors or arrays rather than linked structures

CIS 4521/5521: Compilers 13

Array-based Closures with N-ary Functions

(fun (x y z) ->
 (fun (n m) -> (fun p -> (fun q -> n + z) x)

fun 2
fun 1

fun 0

fun q

2,21,0

x,y,z
n,m

p

nil x y z

nxt n m

nxt p +

Closure B

env code

Closure A

Closure B

env code

Closure A

app

1,0

Note how free
variables are
“addressed”
relative to the
closure due to
shared env.

“follow 1 nxt
 ptr then look
 up index 0”

“follow 2 nxt
 ptrs then look
 up index 2”

Observe: Closure ≈ Single-method Object

• Free variables
• Environment pointer
• Closure for function:
fun (x,y) ->

x + y + a + b

Fields
“this” parameter
Instance of this class:
class C {
 int a, b;
 int apply(x,y) {
 x + y + a + b
 }
}

CIS 4521/5521: Compilers 16

≈
≈

≈

D.V.

a

b
__apply: <code>

env

__apply

a

b

__apply: <code>
__apply

Optimizations

CIS 4521/55210: Compilers 17

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b,
0
 br i1 %cnd, label %l2,
label %l3
l2:
 store i64* %a, 1
 br label %l3
l3:

OPTIMIZATIONS, GENERALLY

Zdancewic CIS 4521/5521: Compilers 18

Why optimize?

Optimizations
• The code generated by our OAT compiler so far is pretty inefficient.

– Lots of redundant moves.
– Lots of unnecessary arithmetic instructions.

• Consider this OAT program:

• opt-example.c, opt-example.oat

CIS 4521/55210: Compilers 19

int foo(int w) {
 var x = 3 + 5;
 var y = x * w;
 var z = y - 0;
 return z * 4;
}

frontend.ml

_foo:
 pushq %rbp
 movq %rsp, %rbp
 movq %rdi, %rax
 shlq $5, %rax
 popq %rbp
 retq

Unoptimized vs. Optimized Output
.text

 .globl _foo
_foo:
 pushq %rbp
 movq %rsp, %rbp

 subq $136, %rsp
 movq %rdi, %rax
 movq %rax, -8(%rbp)

 pushq $0
 movq %rsp, -16(%rbp)
 pushq $0
 movq %rsp, -24(%rbp)

 pushq $0
 movq %rsp, -32(%rbp)
 pushq $0

 movq %rsp, -40(%rbp)
 movq -8(%rbp), %rcx
 movq -16(%rbp), %rax
 movq %rcx, (%rax)
 movq $3, %rax
 movq $5, %rcx
 addq %rcx, %rax

 movq %rax, -56(%rbp)
 movq -56(%rbp), %rcx
 movq -24(%rbp), %rax
 movq %rcx, (%rax)
 movq -24(%rbp), %rax
 movq (%rax), %rcx
 movq %rcx, -72(%rbp)
 movq -16(%rbp), %rax

 movq (%rax), %rcx
 movq %rcx, -80(%rbp)
 movq -72(%rbp), %rax
 movq -80(%rbp), %rcx
 imulq %rcx, %rax
 movq %rax, -88(%rbp)
 movq -88(%rbp), %rcx

 movq -32(%rbp), %rax
 movq %rcx, (%rax)
 movq -32(%rbp), %rax

 movq (%rax), %rcx
 movq %rcx, -104(%rbp)
 movq -104(%rbp), %rax
 movq $0, %rcx

 subq %rcx, %rax
 movq %rax, -112(%rbp)
 movq -112(%rbp), %rcx

 movq -40(%rbp), %rax
 movq %rcx, (%rax)
 movq -40(%rbp), %rax
 movq (%rax), %rcx

 movq %rcx, -128(%rbp)
 movq -128(%rbp), %rax
 movq $4, %rcx

 imulq %rcx, %rax
 movq %rax, -136(%rbp)
 movq -136(%rbp), %rax
 movq %rbp, %rsp

 popq %rbp
 retq

Optimized code:

• Code above generated by
clang –O3

• Function foo may be inlined by
the compiler, so it can be
implemented by just one
instruction!

CIS 4521/55210: Compilers 20

???backend.ml

Why do we need optimizations?
• To help programmers…

– They write modular, clean, high-level programs
– Compiler generates efficient, high-performance assembly

• Programmers don’t write optimal code
• High-level languages make avoiding redundant

computation inconvenient or impossible
– e.g. A[i][j] = A[i][j] + 1

• Architectural independence
– Optimal code depends on features not expressed to the programmer
– Modern architectures assume optimization

• Different kinds of optimizations:
– Time: improve execution speed
– Space: reduce amount of memory needed
– Power: lower power consumption (e.g. to extend battery life)

CIS 4521/55210: Compilers 21

In Oat/ Java it's not possible for the programmer
to manually express the sharing of the two
computations of A[i][j] because
there is no concept of "interior pointer".

Some caveats
• Optimization are code transformations:

– They can be applied at any stage of the compiler
– They must be sound – they shouldn’t change the meaning of the program.

• In general, optimizations require some program analysis:
– To determine if the transformation really is safe
– To determine whether the transformation is cost effective

• This course: most common and valuable performance optimizations
– See Muchnick (optional text) for ~10 chapters about optimization

CIS 4521/55210: Compilers 22

(static) program analysis: the process of (soundly) approximating
the dynamic behavior of a program at compile time, usually by
representing some facts about the state of the computation at
each program point.

When to apply optimization
• Inlining
• Function specialization
• Constant folding
• Constant propagation
• Value numbering
• Dead code elimination
• Loop-invariant code motion
• Common sub-expression elimination
• Strength Reduction
• Constant folding & propagation
• Branch prediction / optimization
• Register allocation
• Loop unrolling
• Instruction Selection
• Cache optimization

CIS 4521/5521: Compilers 23

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

Where to Optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade space for time
• Example: Loop unrolling

– Idea: rewrite a loop like:
for(int i=0; i<100; i=i+1) {
 s = s + a[i];
}

– Into a loop like:
for(int i=0; i<99; i=i+2){
 s = s + a[i];
 s = s + a[i+1];
}

• Tradeoffs:
– Increasing code space slows down whole program a tiny bit

(extra instructions to manage) but speeds up the loop a lot
– For frequently executed code with long loops: generally a win
– Interacts with instruction cache and branch prediction hardware

• Complex optimizations may never pay off!

CIS 4521/55210: Compilers 24

Writing Fast Programs In Practice
• Pick the right algorithms and data structures.

– These have a much bigger impact on performance that compiler
optimizations.

– Reduce # of operations
– Reduce memory accesses
– Minimize indirection – it breaks working-set coherence

• Then turn on compiler optimizations
• Profile to determine program hot spots
• Evaluate whether the algorithm/data structure design works
• …if so: “tweak” the source code until the optimizer does “the right

thing” to the machine code

CIS 4521/55210: Compilers 25

Soundness
• Whether an optimization is sound (i.e., correct) depends on the

programming language semantics.
– Languages that provide weaker guarantees to the programmer permit

more optimizations but have more ambiguity in their behavior.
– e.g., In C, writing to unallocated memory is undefined behavior, so the

compiler can do anything if a program writes to an array out of bounds.
– e.g., In Java, tail-call optimization (which turns recursive function calls

into loops) is not valid because of “stack inspection”.

• Example: loop-invariant code motion
– Idea: hoist invariant code out of a loop

• Is this more efficient?
• Is this safe?

CIS 4521/5521: Compilers 26

while (b) {
 z = y/x;
 … // y, x not updated
}

z = y/x;
while (b) {
 … // y, x not updated
}

Comparing Behaviors*
• Consider two programs P1 and P2 possibly in different languages.

– e.g. P1 is an Oat program, P2 is its compilation to LL

• The semantics of the languages associate to each program a set of
observable behaviors:

B(P) and B(P’)

• Note: |B(P)| = 1 if P is deterministic, > 1 otherwise

*Note: this series of slides is adapted from some by Xavier Leroy from a summer school about compiler
verification.

What is Observable?
• For C-like languages:

 observable behavior ::=
 | terminates(st) (i.e. observe the final state)
 | diverges
 | goeswrong

• For pure functional languages:

 observable behavior ::=
 | terminates(v) (i.e. observe the final value)
 | diverges
 | goeswrong

What about I/O?
• Add a trace of input-output events performed:

 t ::= [] | e :: t (finite traces)
 coind. T ::= [] | e :: T (finite and infinite traces)

 observable behavior ::=
 | terminates(t, st) (end in state st after trace t)
 | diverges(T) (loop, producing trace T)
 | goeswrong(t)

Examples
• P1:

print(1); / st ⇒ terminates(out(1)::[],st)

• P2:
print(1); print(2); / st
 ⇒ terminates(out(1)::out(2)::[],st)

• P3:
WHILE true DO print(1) END / st
 ⇒ diverges(out(1)::out(1)::…)

• So B(P1) ≠ B(P2) ≠ B(P3)

Bisimulation
• Two programs P1 and P2 are bisimilar whenever:

 B(P1) = B(P2)

• The two programs are completely indistinguishable.

• But… this is often too strong in practice.

Compilation Reduces Nondeterminism
• Some languages (like C) have underspecified behaviors:

– Example: order of evaluation of expressions f() + g()

• Concurrent programs often permit nondeterminism
– Classic optimizations can reduce this nondeterminism
– Example:

 a := x + 1; b := x + 1 || x := x+1

 vs.

 a := x + 1; b := a || x := x+1

• LLVM explicitly allows nondeterminism:
– undef values (not part of LLVM lite)
– see the discussion later

Backward Simulation / Refinement
• Program P2 can exhibit fewer behaviors than P1:

 B(P1) ⊇ B(P2)

• All the behaviors of P2 are permitted by P1, though some of them may
have been eliminated.

• Also called refinement.

What about goeswrong?
• Compilers often translate away bad behaviors.

 x := 1/y ; x := 42 vs. x := 42
 (divide by 0 error) (always terminates)

• Justifications:
– Compiled program does not “go wrong” because the program type checks

or is otherwise formally verified
– Or just “garbage in/garbage out”

Safe Backwards Simulation
• Only require the compiled program’s behaviors to agree if the source

program could not go wrong:

 goeswrong(t) ∉ B(P1) ⇒ B(P1) ⊇ B(P2)

This definition of "safe backwards simulation" is typically
what we mean by "correctness" of a program transformation.

BASIC OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers 36

A high-level tour of a variety of optimizations.

Constant Folding
• Idea: If operands are known at compile type, perform the operation

statically.

 int x = (2 + 3) * y è int x = 5 * y

 b & false è false

• Performed at every stage of optimization…
• Why?

– Constant expressions can be created by translation or earlier
optimizations

 Example: A[2] might be compiled to:

 MEM[MEM[A] + 2 * 4] è MEM[MEM[A] + 8]

CIS 4521/5521: Compilers 37

Constant Folding Conditionals

if (true) S è S
if (false) S è ;
if (true) S else S’ è S
if (false) S else S’ è S’
while (false) S è ;

if (2 > 3) S è
if (false) S è ;

CIS 4521/5521: Compilers 38

Algebraic Simplification
• More general form of constant folding

– Take advantage of mathematically sound simplification rules

• Mathematical identities:
– a * 1 è a a * 0 è 0
– a + 0 è a a – 0 è a
– b | false è b b & true è b

• Reassociation & commutativity:
– (a + 1) + 2 è a + (1 + 2) è a + 3
– (2 + a) + 4 è (a + 2) + 4 è a + (2 + 4) è a + 6

• Strength reduction: (replace expensive op with cheaper op)
– a * 4 è a << 2
– a * 7 è (a << 3) – a
– a / 32767 è (a >> 15) + (a >> 30)

• Note 1: must be careful with floating point (due to rounding) and integer
arithmetic (due to overflow/underflow)

• Note 2: iteration of these optimizations is useful… how much?
• Note 3: must be sure that rewrites terminate:

– commutativity apply like: (x + y) è (y + x) è (x + y) è (y + x) è …

CIS 4521/5521: Compilers 39

Constant Propagation
• If a variable is known to be a constant, replace the use of the variable

by the constant
• Value of the variable must be propagated forward from the point of

assignment
– This is a substitution operation

Example:

• To be most effective, constant propagation should be interleaved with
constant folding

CIS 4521/5521: Compilers 40

int x = 5;
int y = 10;
int z = a[y];

int x = 5;
int y = x * 2;
int z = a[y];

int x = 5;
int y = 5 * 2;
int z = a[y];

int x = 5;
int y = 10;
int z = a[10];

Copy Propagation
• If one variable is assigned to another, replace uses of the assigned

variable with the copied variable.
• Need to know where copies of the variable propagate.

• Interacts with the scoping rules of the language.

• Example:
x = y; x = y;
if (x > 1) { è if (y > 1) {
 x = x * f(x – 1); x = y * f(y – 1);
} }

• Can make the first assignment to x dead code (that can be eliminated).

CIS 4521/5521: Compilers 41

Dead Code Elimination
• If a side-effect free statement can never be observed, it is safe to

eliminate the statement.

x = y * y // x is dead!
… // x never used è …
x = z * z x = z * z

• A variable is dead if it is never used after it is defined.
– Computing such definition and use information is an important

component of program analysis

• Dead variables can be created by other optimizations…

CIS 4521/5521: Compilers 42

int x = 5;
int y = 10;
int z = a[10];

int x = 5;
int y = x * 2;
int z = a[y];

Unreachable/Dead Code
• Basic blocks not reachable by any trace leading from the starting basic

block are unreachable and can be deleted.
– Performed at the IR or assembly level
– Improves cache, TLB performance

• Dead code: similar to unreachable blocks.
– A value might be computed but never subsequently used.

• Code for computing the value can be dropped
• But only if it’s pure, i.e., it has no externally visible side effects

– Externally visible effects: raising an exception, modifying a global
variable, going into an infinite loop, printing to standard output, sending a
network packet, launching a rocket

– Note: Pure functional languages (e.g., Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

CIS 4521/5521: Compilers 43

Inlining
• Replace a call to a function with the body of the function itself with arguments

rewritten to be local variables:
• Example in OAT: inline pow into g

• May need to rename variables to avoid capture
– See lecture about capture avoiding substitution for lambda calculus

• Best done at the AST or relatively high-level IR.
• When is it profitable?

– Eliminates the stack manipulation, jump, etc.
– Can increase code size.
– Enables further optimizations

CIS 4521/5521: Compilers 44

int g(int x) { return x + pow(x); }
int pow(int a) {
 var b = 1; var x = 0;
 while (x < a) {b = 2 * b; x = x + 1}
 return b;
} int g(int x) {

 int a = x;
 int b = 1; int x2 = 0;
 while (x2 < a) {b = 2 * b; x2 = x2 + 1};
 tmp = b;
 return x + tmp;
}

è

note: renaming

Code Specialization
• Idea: create specialized versions of a function that is called from

different places with different arguments.
• Example: specialize function f in:

class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m

• f_A would have code specialized to dispatch to A.m
• f_B would have code specialized to dispatch to B.m
• You can also inline methods when the run-time type is known

statically
– Often just one class implements a method.

CIS 4521/5521: Compilers 45

Common Subexpression Elimination
• fold redundant computations together

– in some sense, it’s the opposite of inlining
• Example:

a[i] = a[i] + 1

compiles to:

MEM[a + i*8] := MEM[a + i*8] + 1

Common subexpression elimination removes the redundant add and
multiply:

t = a + i*8; MEM[t] := MEM[t] + 1

• For safety, you must be sure that the shared expression always has the
same value in both places!

CIS 4521/5521: Compilers 46

Unsafe Common Subexpression Elimination
• Example: consider this OAT function:
unit f(int[] a, int[] b, int[] c) {
 var j = …; var i = …; var k = …;
 b[j] = a[i] + 1;
 c[k] = a[i];
 return;
}
• The optimization that shares the expression a[i] is unsafe… why?

unit f(int[] a, int[] b, int[] c) {
 var j = …; var i = …; var k = …;
 t = a[i];
 b[j] = t + 1;
 c[k] = t;
 return;
}

CIS 4521/5521: Compilers 47

LOOP OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers 48

Loop Optimizations
• Program hot spots often occur in loops.

– Especially inner loops
– Not always: consider operating systems code or compilers vs. a computer

game or word processor

• Most program execution time occurs in loops.
– The 90/10 rule of thumb holds here too.

(90% of the execution time is spent in 10% of the code)

• Loop optimizations are very important, effective, and numerous
– Also, concentrating effort to improve loop body code is usually a win

CIS 4521/5521: Compilers 49

Loop Invariant Code Motion (revisited)
• Another form of redundancy elimination.
• If the result of a statement or expression does not change during the

loop and it’s pure, it can be hoisted outside the loop body.

• Often useful for array element addressing code
– Invariant code not visible at the source level

for (i = 0; i < a.length; i++) {
 /* a not modified in the body */
}

t = a.length;
for (i =0; i < t; i++) {
 /* same body as above */
}

CIS 4521/5521: Compilers 50

Hoisted loop-
invariant

expression

Strength Reduction (revisited)
• Strength reduction can work for loops too
• Idea: replace expensive operations (multiplies, divides) by cheap ones

(adds and subtracts)
• For loops, create a dependent induction variable:

• Example:

for (int i = 0; i<n; i++) { a[i*3] = 1; } // stride by 3

int j = 0;
for (int i = 0; i<n; i++) {
 a[j] = 1;
 j = j + 3; // replace multiply by add
}

CIS 4521/5521: Compilers 51

Loop Unrolling (revisited)
• Branches can be expensive, unroll loops to avoid them.
for (int i=0; i<n; i++) { S }

for (int i=0; i<n-3; i+=4) {S;S;S;S};
for (; i<n; i++) { S } // left over iterations

• With k unrollings, eliminates (k-1)/k conditional branches
– So for the above program, it eliminates ¾ of the branches

• Space-time tradeoff:
– Not a good idea for large S or small n

• Interacts with instruction caching, branch prediction

CIS 4521/5521: Compilers 52

EFFECTIVENESS?

Zdancewic CIS 4521/5521: Compilers 53

Optimization Effectiveness?

Zdancewic CIS 4521/5521: Compilers 54
https://www.phoronix.com/review/clang-12-opt
LLVM Clang 12 Benchmarks At Varying Optimization Levels, LTO
25 June 2021

Geom. mean over
44 benchmark
programs at
various –O levels.

Clang 12

https://www.phoronix.com/review/clang-12-opt

Optimization Effectiveness?

Zdancewic CIS 4521/5521: Compilers 55

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Graph taken from:
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
Formal Verification of SSA-Based Optimizations for LLVM.
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

%speedup =
base time

optimized time
- 1 x 100%

Example:
 base time = 1.2s
 optimized time = 0.87s ⇒ 38% speedup

Example:
 base time = 2s
 optimized time = 1s ⇒ 100% speedup

Optimization Effectiveness?

• mem2reg: promotes alloca’ed stack slots to temporaries to enable register
allocation

• Analysis:
– mem2reg alone (+ back-end optimizations like register allocation) yields

~78% speedup on average
– -O1 yields ~100% speedup

 (so all the rest of the optimizations combined account for ~22%)
– -O3 yields ~120% speedup

• Hypothetical program that takes 10 sec. (base time):
– Mem2reg alone: expect ~5.6 sec
– -O1: expect ~5 sec
– -O3: expect ~4.5 sec

Zdancewic CIS 4521/5521: Compilers 56

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

