Lecture 22

CIS 4521/5521: COMPILERS

Announcements

« HWS6: Analysis & Optimizations

— Alias analysis, constant propagation, dead code elimination, register
allocation

— Available soon
— Due: Wednesday, April 30t

Zdancewic CIS 4521/5521: Compilers

A high-level tour of a variety of optimizations.

BASIC OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers 3

Inlining

* Replace a call to a function with the body of the function itself with arguments
rewritten to be local variables:

« Example in OAT: inline pow into g

int g(int x) { return x + pow(x); }
int pow(int a) {

var b = 1; var x = 0;

while (x < a) {b =2 * b; x = x + 1} .

return b; note: renaming

} int g(int x) {
int a = Xx;
> int b =1; int x2 = 0;

while (x2 < a) {b =2 * b; x2 = x2 + 1};
tmp = b;

return x + tmp;
}
* May need to rename variables to avoid capture
— See lecture about capture avoiding substitution for lambda calculus
* Best done at the AST or relatively high-level IR.
* When is it profitable?

— Eliminates the stack manipulation, jump, etc.
— Can increase code size.
— Enables further optimizations

CIS 4521/5521: Compilers

Code Specialization

* ldea: create specialized versions of a function that is called from
different places with different arguments.

« Example: specialize function f in:
class A implements I { int m() {.
class B implements I { int m() {.

int f(I x) { x.m();

A a =
B b =

new A();
new B();

f(a);
f(b);

.+ }
.+ }
// don't know which m

// know 1t’s A.m
// know 1t’'s B.m

« T_A would have code specialized to dispatch to A. m

« T_B would have code specialized to dispatch to B. m

* You can also inline methods when the run-time type is known
statically

— Often just one class implements a method.

CIS 4521/5521: Compilers

Common Subexpression Elimination

 fold redundant computations together
— in some sense, it’s the opposite of inlining

« Example:

ali] = a[i1] + 1

compiles to:

MEM[a + 1*8] := MEM[a + 1*8] + 1

Common subexpression elimination removes the redundant add and
multiply:

t =a + 1%¥8; MEM[t] := MEM[t] + 1

» For safety, you must be sure that the shared expression always has the
same value in both places!

CIS 4521/5521: Compilers

Unsafe Common Subexpression Elimination

« Example: consider this OAT function:

unit f(int[] a, int[] b, int[] c) {
var j = ..; var t = ..; var k = ..;
b[j]l = ali] + 1;
c[k]l = a[i];
return;

}

« The optimization that shares the expression a[1] is unsafe... why?

unit f(int[] a, int[] b, int[] c) {
var j = ..; var t = ..; var k = ..;
t = a[i];
b[j]l = t + 1;
clk] = t;
return;

}

CIS 4521/5521: Compilers

LOOP OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers

Loop Optimizations

* Program hot spots often occur in loops.
— Especially inner loops

— Not always: consider operating systems code or compilers vs. a computer
game or word processor

* Most program execution time occurs in loops.

— The 90/10 rule of thumb holds here too.
(90% of the execution time is spent in 10% of the code)

« Loop optimizations are very important, effective, and numerous

— Also, concentrating effort to improve loop body code is usually a win

CIS 4521/5521: Compilers

Loop Invariant Code Motion (revisited)

* Another form of redundancy elimination.

* If the result of a statement or expression does not change during the
loop and it’s pure, it can be hoisted outside the loop body.

« Often useful for array element addressing code
— Invariant code not visible at the source level

for (1 =0; 1 < a.length; i1++) {
/* a not modified in the body */

A
t = a.length;

for (i1 =0; i <‘;;\€;:;if\\\\\\7

/* same body as above */

}

CIS 4521/5521: Compilers 10

Strength Reduction (revisited)

 Strength reduction can work for loops too

 ldea: replace expensive operations (multiplies, divides) by cheap ones
(adds and subtracts)

« For loops, create a dependent induction variable:

« Example:
for (int 1

)

int j = 0;
for (int 1
alj]l = 1;
] =1+ 35
}

CIS 4521/5521: Compilers

O; i<n; i1++) { a[i*3] = 1; } //strideby3

0; i<n; i++) {

// replace multiply by add

11

Loop Unrolling (revisited)

« Branches can be expensive, unroll loops to avoid them.
for (int 1=0; i<n; 1++) { S }

@

for (int 1=0; i<n-3; 1+=4) {S;S;S;S};
for (s i<n; 1++) { S } // left over iterations

« With k unrollings, eliminates (k-1)/k conditional branches
— So for the above program, it eliminates 3 of the branches

« Space-time tradeoft:
— Not a good idea for large S or small n

* Interacts with instruction caching, branch prediction

CIS 4521/5521: Compilers 12

EFFECTIVENESS?

Zdancewic CIS 4521/5521: Compilers

Optimization Effectiveness?

Geometric Mean Of All Test Results pESIh

Result Composite - LLVM Clang Optimization Levels On Intel Rocket Lake

» Geometric Mean, More Is Better Phoronix.com
I | | |

-Ofast -march=native -flto

2112.67

-Ofast -march=native
2090.55

-Ofast
1979.69

Geom. mean over
44 benchmark
programs at
various —O levels.

-03 -march=native -flto
1957.07

-03 -march=nativ
Sl ative 1937.68

-02 -march=native
1928.84

-03
1909.53

Clang 12

-03 -flto
1900.87

oL 1897.61

-02
o 1892.05

| |

-0
9 1541.88 ‘

-01
1536.93

-00

570.95

I
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|

1 1 i i ‘
500 1000 1500 2000 2500

https://www.phoronix.com/review/clang-12-opt

Zdancewic CIS 4521/5521: Compilers LLVM Clang 12 Benchmarks At Varying Optimization Levels, LTO
25 June 2021

14

https://www.phoronix.com/review/clang-12-opt

Optimization Effectiveness?

S 300%
R DT et E
5 200% - -
—
5 150%
5 100% -
(o
2 50% —JIE
>
Z 0% . ‘
T et g T e S o s o it (00%&52@2 S s@“%@éﬁf et
base time
_ 0
%speedup = — . - X 100%
optimized time
Example:
base time = 2s
optimized time = 1s = 100% speedup
Example:
base time = 1.2s
optimized time = 0.87s = 38% speedup

Graph taken from:

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.

Formal Verification of SSA-Based Optimizations for LLVM.

In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

Zdancewic CIS 4521/5521: Compilers 15

Optimization Effectiveness?

S 300%

< 2509 42 LLVM-mem2reg @ LLVM-OI a
@ LLVM-03 ® GCC-03

2} 200%

)

>

o

o

£]

5

= 0% @ D o 5
O 085 ..e® 7 N & oS N C R\ SR \ I\ D (ASC e

%O@Q‘e WP g e o P O g kO 1T \‘“{@c\ AR \RR Aoy @6?; o

* mem2reg: promotes alloca’ed stack slots to temporaries to enable register
allocation

* Analysis:
— mem2reg alone (+ back-end optimizations like register allocation) yields
~78% speedup on average

— -O1 yields ~100% speedup
(so all the rest of the optimizations combined account for ~22%)

— -O3 yields ~120% speedup
* Hypothetical program that takes 10 sec. (base time):
— Mem2reg alone: expect ~5.6 sec
— -O1: expect ~5 sec
— -O3: expect ~4.5 sec

Zdancewic CIS 4521/5521: Compilers 16

CODE ANALYSIS

Zdancewic CIS 4521/5521: Compilers

Motivating Code Analyses

 There are lots of things that might influence the safety/applicability of
an optimization
— What algorithms and data structures can help?

* How do you know what code participates in a loop?

* How do you know an expression is invariant?

« How do you know if an expression has no side effects?
« How do you keep track of where a variable is defined?
* How do you know where a variable is used?

« How do you know if two reference values may be aliases of one
another?

CIS 4521/5521: Compilers 18

Moving Towards Register Allocation

« The OAT compiler currently generates as many temporary variables as
it needs

— These are the %ui1ds you should be very familiar with by now.

« Current compilation strategy:
— Each %uid maps to a stack location.
— This yields programs with many loads/stores to memory.
— Very inefficient.

« Ideally, we'd like to map as many %uid’s as possible into registers.
— Eliminate the use of the alloca instruction?
— Only 16 max registers available on 64-bit X86

— %rsp and %rbp are reserved and some have special semantics, so really
only 10 or 12 available

— This means that a register must hold more than one slot
When is this safe?

CIS 4521/5521: Compilers 19

Scope vs. Liveness

* We can already get some coarse liveness information from variable
scoping.

 Consider the following OAT program: int f(int x) {
var a=0;

f(x>0) A
arb=x*x;
a=D>b+ b;

}

var ¢ = a * X;

return c;

}

« Note that due to OAT’s scoping rules, variables b and ¢ can never be
live at the same time.

— C’s scope is disjoint from b’s scope
* So, we could assign b and c to the same alloca’ed slot and potentially
to the same register at the x86 level.

CIS : Compilers 20

But Scope is too Coarse

« Consider this program:

int f(int x) { . w is |ive
_1nta_x+2,< a and x are live
int b = a * a; q '
int c = b + x:< b and x are live
, ° °
return c; < c is live
}

« The scopes of a,b,c,x all overlap — they’re all in scope at the end of the
block.

* But, a, b, c are never live at the same time.
— So they can share the same stack slot / register

CIS : Compilers 21

Live Variable Analysis

* A variable v is live at a program point if v is defined before the
program point and used after it.

 Liveness is defined in terms of where variables are defined and where
variables are used

* Liveness analysis: Compute the live variables between each statement.

— May be conservative (i.e. it may claim a variable is live when it isn't) so
because that’s a safe approximation

— To be useful, it should be more precise than simple scoping rules.

 Liveness analysis is one example of dataflow analysis

— Other examples: Available Expressions, Reaching Definitions, Constant-
Propagation Analysis, ...

CIS 4521/5521: Compilers 22

Liveness information

« Consider this program:

int f(int x) {
int a = X + 2;
int b = a * a;
int ¢ = b + Xx;
return c;

<7

<€

<€

<€

X Is live
a and x are live

b and x are live

cis live

« The scopes of a,b,c,x all overlap — they’re all in scope at the end of the

block.

* But, a, b, c are never live at the same time.

— So they can share the same stack slot / register

CIS 4521/5521: Compilers

23

Liveness

* Observation: %suid1 and %suid2 can be assigned to the same register
if their values will not be needed at the same time.

— What does it mean for an %uid to be “needed”?
— Ans: its contents will be used as a source operand in a later instruction.
 Such a variable is called “live”

A variable is live if its value might be used by some
future part of the execution path when the program is executed.

Notes:

* the use of the variable might depend on user input or other
data not available until the program is run

 even if not, in general, such a property is undecidable

= liveness is a static approximation of the dynamic behavior

« Observe: two variables can share the same register if they are not live
at the same time.

Cl

Control-flow Graphs Revisited

For the purposes of dataflow analysis, we use the control-flow graph (CFQG)
intermediate form.

Recall that a basic block is a sequence of instructions such that:
— There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
— There is a (possibly empty) sequence of non-control-flow instructions

— The block ends with a single control-flow instruction (jump, conditional branch, return,
etc.)

A control flow graph

— Nodes are blocks

— There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the
entry label of B2

— There are no “dangling” edges — there is a block for every jump target.

Note: the following slides are intentionally a bit ambiguous about the exact nature of the code in the
control flow graphs:

an “imperative” C-like source level

at the x86 assembly level

the LLVM IR level

Each setting applies the same general idea, but the exact details will differ.
* e.g., LLVM IR doesn't have “imperative” update of %uid temporaries.
(The SSA structure of the LLVM IR by design makes some of these analyses simpler!)

Dataflow over CFGs

 For precision, it is helpful to think of the “fall through” between
sequential instructions as an edge of the control-flow graph too.

— Different implementation tradeoffs in practice...

Move
Move ////?

Fall-through edges

Binop ZUTOE in-edges
If l
l | e
Unop l Instr
Jump /// l‘\\\
Unop
Basic block CFG l out-edges
Jump

CIS : Compilers ”Exploded” CFG 26

Liveness is Associated with Edges

}l/ Live: a, b

Instr

/ l N\, Live: b, d,e

 This is useful so that the same register can be used for different
temporaries in the same statement.

 Example: a = b + 1

« Compiles to:

l Live: b
Register Allocate:

Mov a, b a =2 rax, b 2 rax
Add a, 1 Add rax, 1
l Live: a (maybe) l

CIS 4521/5521: Compilers 27

Uses and Definitions

 Every instruction/statement uses some set of variables
— i.e. reads from them
 Every instruction/statement defines some set of variables

— i.e. writes to them

 For a node/statement s define:
— use[s] : set of variables used by s
— def[s] : set of variables defined by s

* General Examples:

S: a=b+ c usels] = {b,c} def[s] = {a}
S: a=a+ 1 use[s] = {a} def[s] = {a}

CIS 4521/5521: Compilers 28

Liveness, Formally

« Avariable v is live on edge e if:
There is

— anode n in the CFG such that use[n] contains v, and

— a directed path from e to n such that for every statement s’ on the path,
def[s’] does not contain v

 The first clause says that v will be used on some path starting from
edge e.

« The second clause says that v won't be redefined on that path before
the use.

* (Questions:
— How to compute this efficiently?
— How to use this information (e.g. for register allocation)?

— How does the choice of IR affect this?
(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition = simplify liveness
analysis)

CIS 4521/5521: Compilers 29

Simple, inefficient algorithm

« “Avariable v is live on an edge e if there is a node n in the CFG using
it and a directed path from e to n pasing through no def of v.”

 Backtracking Algorithm:
— For each variable v...

— Try all paths from each use of v, tracing backwards through the control-
flow graph until either v is defined or a previously visited node has been
reached.

— Mark the variable v live across each edge traversed.

* Inefficient because it explores the same paths many times
(for different uses and different variables)

CIS 4521/5521: Compilers 30

Dataflow Analysis

* Idea: compute liveness information for all variables simultaneously.
— Keep track of sets of information about each node

« Approach: define equations that must be satisfied by any liveness
determination.

— Equations based on “obvious” constraints.

+ Solve the equations by iteratively converging on a solution.
— Start with a “rough” approximation to the answer
— Refine the answer at each iteration

— Keep going until no more refinement is possible: a fixpoint has been
reached

 This is an instance of a general framework for computing program
properties: dataflow analysis

CIS 4521/5521: Compilers 31

Dataflow Value Sets for Liveness

* Nodes are program statements, so:
 use[n] : set of variables used by n

* def[n] : set of variables defined by n

* in[n] : set of variables live on entry to n
 out[n] : set of variables live on exit from n

 Associate in[n] and out[n] with the “collected”
information about incoming/outgoing edges

 For Liveness: what constraints are there
among these sets?

« Clearly:
In[n] 2 use[n]

What other constraints?

CIS 4521/5521: Compilers

/

v

|
' 4
e

n[n]

n

/N

out[n]

Other Dataflow Constraints

* We have: in[n] 2 use[n]
— “A variable must be live on entry to n if it is used by n”

e Also: in[n] 2 out[n] - def[n] \/

— “If a variable is live on exit from n, and n doesn’t

In[n]
define it, it is live on entry to n” v
— Note: here ‘- means “set difference” n
out[n]
« And: out[n] 2 in[n’] if n” € succ|n] b4
— “If a variable is live on entry to a successor /V\

node of n, it must be live on exit from n.”

CIS 4521/5521: Compilers 33

Iterative Dataflow Analysis

 Find a solution to those constraints by starting from a rough guess.
— Start with: in[n] = @ and out[n] = O

* The guesses don't satisfy the constraints:
— In[n] 2 use[n]
— in[n] 2 out[n] - def[n]

— out[n] 2 in[n’] if n” € succ[n]

* ldea: iteratively re-compute in[n] and out[n] where forced to by the
constraints.

— Each iteration will add variables to the sets in[n] and out[n]
(i.e. the live variable sets will increase monotonically)

* We stop when in[n] and out[n] satisfy these equations:
(which are derived from the constraints above)

— in[n] = use[n] U (out[n] - def[n])

— OUt[n] = Un/ESUCC[n]in[n/]

CIS 4521/5521: Compilers 34

Complete Liveness Analysis Algorithm

for all n, in[n] := @, out[n] := @
repeat until no change in ‘in” and ‘out’
for all n

out[n] := U equceiminin’]
in[n] := use[n] U (out[n] - def[n])
end
end

 Finds a fixpoint of the in and out equations.
— The algorithm is guaranteed to terminate... Why?

« Why do we start with ()¢

CIS 4521/5521: Compilers

35

Example Liveness Analysis

lin.

« Example flow graph:

e =1 def: e
e = 1;
while(x>0) {
Z = e * g
y = e * X;
x =x -1 def:
if (x & 1) {
e = z;
} else {
€ =Y;
}
}
return Xx;
def: e

use:y out:

CIS 4521/5521: Compilers out:

Example Liveness Analysis

Each iteration update:
out[n] := U esuccninin’]
in[n] := use[n] U (out[n] - def[n])

 [teration 1:

(showing only updates
that make a change)

CIS 4521/5521: Compilers

0 [
e=1

def: e

use:

out:

def:

use: X

def: e

use:ry out:

Example Liveness An

Each iteration update:
out[n] := U yesuccninln’]
in[n] := use[n] U (out[n] - def[n])

* J|teration 2:

out[1]= x
In[1] = x
out[2] = e,x
In[2] = e,x
out[3] = e,x
In[3] = e,x
out[5] = x
out[6] = X
out[/] =zy
In[7] = x,z,y
out[8] = x
INn[8] = x,z
out[9] = x
IN[9] = x,y

CIS 4521/5521: Compilers

alysis

lin:x

def: e

use:

def:

use: X

Example Liveness Analysis

lin:x

Each iteration update:
out[n] := U, equceminin’]
in[n] := use[n] U (out[n] - def[n])

def: e

e J|teration 3:
out[1]= e,x

def:

use: X

out[6]=x,y,z
In[6]=X,y,z

out[/]=x,y,z
out[8]= e,x
out[9]= e,x

def: e

use:y out: ex

CIS 4521/5521: Compilers

Example Liveness An

Each iteration update:
out[n] := U, equceminin’]
in[n] := use[n] U (out[n] - def[n])

 [teration 4:

out[5]=x,y,z
in[5]=e,x,z

CIS 4521/5521: Compilers

alysis

def:

use: X

def: e

use:y out: ex

Example Liveness An

Each iteration update:
out[n] := U, equceminin’]
in[n] := use[n] U (out[n] - def[n])

e J|teration 5:
out[3]=e,x,z

Done!

CIS 4521/5521: Compilers

alysis

def:

use: X

def: e

use:y out: ex

Improving the Algorithm

« Can we do better?

* Observe: the only way information propagates from one node to
another is using: out[n] := U, ciuccrminin’]

— This is the only rule that involves more than one node

 If a node’s successors haven’t changed, then the node itself won't
change.

* Idea for an improved version of the algorithm:
— Keep track of which node’s successors have changed

CIS 4521/5521: Compilers 42

A Worklist Algorithm

« Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := @, out[n] := @
w = new queue with all nodes
repeat until w is empty
let n = w.pop() // pull a node off the queue
old_in = in[n] // remember old in[n]

out[n] := U, couceminin’]

in[n] := use[n] U (out[n] - def[n])

if (old_in !=in[n]), // if in[n] has changed
for all m in pred[n], w.push(m) // add to worklist

end

CIS 4521/5521: Compilers

43

OTHER DATAFLOW ANALYSES

Zdancewic CIS 4521/5521: Compilers

Generalizing Dataflow Analyses

* The kind of iterative constraint solving used for liveness analysis
applies to other kinds of analyses as well.
— Reaching definitions analysis
— Available expressions analysis
— Alias Analysis
— Constant Propagation
— These analyses follow the same 3-step approach as for liveness.

 To see these as an instance of the same kind of algorithm, the next few
examples to work over a canonical intermediate instruction
representation called quadruples
— Allows easy definition of def[n] and use[n]

— Aslightly “looser” variant of LLVM'’s IR that doesn’t require the “static
single assignment” — i.e. it has mutable local variables

— We will use LLVM-IR-like syntax

CIS 4521/5521: Compilers 45

Def / Use for SSA

 Instructions n: def[n] use[n] description
a=opbc {a} {b,c} arithmetic
a=load b {a} {b} load
store a, b %) {a,b} store
a = alloca't {a} % alloca
a = bitcast b to u {a} {b} bitcast
a=gepblcd, ...] {a} {b,c,d,...} getelementptr
a = f(by,...,b,) {a} {by,...,b,} call w/return
f(b4,...,b,) % {bq,...,b,} void call (no return)
 Terminators
br L %) %) jump
brall L2 %, {a} conditional branch
return a %) {a} return

CIS 4521/5521: Compilers 46

REACHING DEFINITIONS

Zdancewic CIS 4521/5521: Compilers

Reaching Definition Analysis

* Question: what uses in a program does a given variable definition
reach?

 This analysis is used for constant propagation & copy prop.

— If only one definition reaches a particular use, can replace use by the
definition (for constant propagation).

— Copy propagation additionally requires that the copied value still has its
same value — computed using an available expressions analysis (next)

* Input: Quadruple CFG

« Output: in[n] (resp. out[n]) is the set of nodes defining some variable
such that the definition may reach the beginning (resp. end) of node n

CIS 4521/5521: Compilers 49

Example of Reaching Definitions

* Results of computing reaching definitions on this simple CFG:

?b=a+2

out[1]: {1}
in[2]: {1}

b

out[2]: {1,2}
l in[3]: {1,2}
C +

? out[3]: {2,3}
inf4]: {2,3}
Eeturn b *a

CIS 4521/5521: Compilers

Reaching Definitions Step 1

 Define the sets of interest for the analysis
« Let defs[a] be the set of nodes that define the variable a
» Define gen[n] and kill[n] as follows:

* Quadruple forms n: genln] kill[n]
a=bopc {n} defs[a] - {n}
a=load b {n} defs[a] - {n}
store b, a % %
a=fby,...,b,) {n} defs[a] - {n}
f(b4,...,b,) % %
br L % %
brall L2 %) %
return a % %

CIS 4521/5521: Compilers

51

Reaching Definitions Step 2

« Define the constraints that a reaching definitions solution must satisfy.
* out[n] 2 gen|n]
“The definitions that reach the end of a node at least include the
definitions generated by the node”

* in[n] 2 out[n’] ifn"isin pred[n]
“The definitions that reach the beginning of a node include those that
reach the exit of any predecessor”

 out[n] U kill[n] 2 in[n]
“The definitions that come in to a node either reach the end of the
node or are killed by it.”

— Equivalently: out[n] 2 in[n] - kill[n]

CIS 4521/5521: Compilers 52

Reaching Definitions Step 3

« Convert constraints to iterated update equations:

* in[n] := U epreamout[n’]

« out[n] := gen[n] U (in[n] - kill[n])

 Algorithm: initialize in[n] and out[n] to ©
— lterate the update equations until a fixed point is reached

* The algorithm terminates because in[n] and out[n] increase only
monotonically

— At most to a maximum set that includes all variables in the program

« The algorithm is precise because it finds the smallest sets that satisfy
the constraints.

CIS 4521/5521: Compilers 53

AVAILABLE EXPRESSIONS

Zdancewic CIS 4521/5521: Compilers

Available Expressions

* ldea: want to perform common subexpression elimination:
— a=Xx+1 a=x+1

|.o”:x+1 l:> l.o”:a

 This transformation is safe if x+1 means computes the same value at
both places (i.e. x hasn’t been assigned).

— “x+1” is an available expression

« Dataflow values:
— in[n] = set of nodes whose values are available on entry to n

— out[n] = set of nodes whose values are available on exit of n

CIS 4521/5521: Compilers 55

Available Expressions Step 1

e Define the sets of values

* Define gen[n] and kill[n] as follows:

* Quadruple forms n:
a=bopc
a =load b
store b, a

br L
brall L2
a = f(by,...,b,)

f(by,...,by,)

return a

CIS 4521/5521: Compilers

gen(n]

In} - kill[n]
In} - kill[n]
%)

%)

%)

%)

%)

%)

kill[n]
uses|a]
uses|a]
uses| [x]]

(for all x that may equal a)
%) Note the need for “may
%) alias” information...

uses[a]U uses| [x]]

(for all x)
uses| [x]] (for all x)
@ Note that functions are

assumed to be impure...

56

Available Expressions Step 2

« Define the constraints that an available expressions solution must
satisfy.

* out[n] 2 gen|n]
“The expressions made available by n that reach the end of the node”

* in[n] € out[n’] ifn’"isin pred[n]
“The expressions available at the beginning of a node include those
that reach the exit of every predecessor”

« out[n] U kill[n] 2 in[n]
“The expressions available on entry either reach the end of the node or
are killed by it.”
— Equivalently: out[n] 2 in[n] - kill[n]
Note similarities and
differences with

constraints for “reaching
definitions”.

CIS 4521/5521: Compilers 57

Available Expressions Step 3

« Convert constraints to iterated update equations:

¢ in[n] = nn/epred[n]OUt[n,]

« out[n] := gen[n] U (in[n] - kill[n])

 Algorithm: initialize in[n] and out[n] to {set of all nodes}
— lterate the update equations until a fixed point is reached

* The algorithm terminates because in[n] and out[n] decrease only
monotonically

— At most to a minimum of the empty set

« The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CIS 4521/5521: Compilers 58

