
CIS 4521/5521: COMPILERS
Lecture 22

Announcements

• HW6: Analysis & Optimizations
– Alias analysis, constant propagation, dead code elimination, register

allocation
– Available soon
– Due: Wednesday, April 30th

Zdancewic CIS 4521/5521: Compilers 2

BASIC OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers 3

A high-level tour of a variety of optimizations.

Inlining
• Replace a call to a function with the body of the function itself with arguments

rewritten to be local variables:
• Example in OAT: inline pow into g

• May need to rename variables to avoid capture
– See lecture about capture avoiding substitution for lambda calculus

• Best done at the AST or relatively high-level IR.
• When is it profitable?

– Eliminates the stack manipulation, jump, etc.
– Can increase code size.
– Enables further optimizations

CIS 4521/5521: Compilers 4

int g(int x) { return x + pow(x); }
int pow(int a) {
 var b = 1; var x = 0;
 while (x < a) {b = 2 * b; x = x + 1}
 return b;
} int g(int x) {

 int a = x;
 int b = 1; int x2 = 0;
 while (x2 < a) {b = 2 * b; x2 = x2 + 1};
 tmp = b;
 return x + tmp;
}

è

note: renaming

Code Specialization
• Idea: create specialized versions of a function that is called from

different places with different arguments.
• Example: specialize function f in:

class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m

• f_A would have code specialized to dispatch to A.m
• f_B would have code specialized to dispatch to B.m
• You can also inline methods when the run-time type is known

statically
– Often just one class implements a method.

CIS 4521/5521: Compilers 5

Common Subexpression Elimination
• fold redundant computations together

– in some sense, it’s the opposite of inlining
• Example:

a[i] = a[i] + 1

compiles to:

MEM[a + i*8] := MEM[a + i*8] + 1

Common subexpression elimination removes the redundant add and
multiply:

t = a + i*8; MEM[t] := MEM[t] + 1

• For safety, you must be sure that the shared expression always has the
same value in both places!

CIS 4521/5521: Compilers 6

Unsafe Common Subexpression Elimination
• Example: consider this OAT function:
unit f(int[] a, int[] b, int[] c) {
 var j = …; var i = …; var k = …;
 b[j] = a[i] + 1;
 c[k] = a[i];
 return;
}
• The optimization that shares the expression a[i] is unsafe… why?

unit f(int[] a, int[] b, int[] c) {
 var j = …; var i = …; var k = …;
 t = a[i];
 b[j] = t + 1;
 c[k] = t;
 return;
}

CIS 4521/5521: Compilers 7

LOOP OPTIMIZATIONS

Zdancewic CIS 4521/5521: Compilers 8

Loop Optimizations
• Program hot spots often occur in loops.

– Especially inner loops
– Not always: consider operating systems code or compilers vs. a computer

game or word processor

• Most program execution time occurs in loops.
– The 90/10 rule of thumb holds here too.

(90% of the execution time is spent in 10% of the code)

• Loop optimizations are very important, effective, and numerous
– Also, concentrating effort to improve loop body code is usually a win

CIS 4521/5521: Compilers 9

Loop Invariant Code Motion (revisited)
• Another form of redundancy elimination.
• If the result of a statement or expression does not change during the

loop and it’s pure, it can be hoisted outside the loop body.

• Often useful for array element addressing code
– Invariant code not visible at the source level

for (i = 0; i < a.length; i++) {
 /* a not modified in the body */
}

t = a.length;
for (i =0; i < t; i++) {
 /* same body as above */
}

CIS 4521/5521: Compilers 10

Hoisted loop-
invariant

expression

Strength Reduction (revisited)
• Strength reduction can work for loops too
• Idea: replace expensive operations (multiplies, divides) by cheap ones

(adds and subtracts)
• For loops, create a dependent induction variable:

• Example:

for (int i = 0; i<n; i++) { a[i*3] = 1; } // stride by 3

int j = 0;
for (int i = 0; i<n; i++) {
 a[j] = 1;
 j = j + 3; // replace multiply by add
}

CIS 4521/5521: Compilers 11

Loop Unrolling (revisited)
• Branches can be expensive, unroll loops to avoid them.
for (int i=0; i<n; i++) { S }

for (int i=0; i<n-3; i+=4) {S;S;S;S};
for (; i<n; i++) { S } // left over iterations

• With k unrollings, eliminates (k-1)/k conditional branches
– So for the above program, it eliminates ¾ of the branches

• Space-time tradeoff:
– Not a good idea for large S or small n

• Interacts with instruction caching, branch prediction

CIS 4521/5521: Compilers 12

EFFECTIVENESS?

Zdancewic CIS 4521/5521: Compilers 13

Optimization Effectiveness?

Zdancewic CIS 4521/5521: Compilers 14
https://www.phoronix.com/review/clang-12-opt
LLVM Clang 12 Benchmarks At Varying Optimization Levels, LTO
25 June 2021

Geom. mean over
44 benchmark
programs at
various –O levels.

Clang 12

https://www.phoronix.com/review/clang-12-opt

Optimization Effectiveness?

Zdancewic CIS 4521/5521: Compilers 15

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Graph taken from:
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
Formal Verification of SSA-Based Optimizations for LLVM.
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

%speedup =
base time

optimized time
- 1 x 100%

Example:
 base time = 1.2s
 optimized time = 0.87s ⇒ 38% speedup

Example:
 base time = 2s
 optimized time = 1s ⇒ 100% speedup

Optimization Effectiveness?

• mem2reg: promotes alloca’ed stack slots to temporaries to enable register
allocation

• Analysis:
– mem2reg alone (+ back-end optimizations like register allocation) yields

~78% speedup on average
– -O1 yields ~100% speedup

 (so all the rest of the optimizations combined account for ~22%)
– -O3 yields ~120% speedup

• Hypothetical program that takes 10 sec. (base time):
– Mem2reg alone: expect ~5.6 sec
– -O1: expect ~5 sec
– -O3: expect ~4.5 sec

Zdancewic CIS 4521/5521: Compilers 16

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

CODE ANALYSIS

Zdancewic CIS 4521/5521: Compilers 17

Motivating Code Analyses
• There are lots of things that might influence the safety/applicability of

an optimization
– What algorithms and data structures can help?

• How do you know what code participates in a loop?
• How do you know an expression is invariant?

• How do you know if an expression has no side effects?
• How do you keep track of where a variable is defined?
• How do you know where a variable is used?
• How do you know if two reference values may be aliases of one

another?

CIS 4521/5521: Compilers 18

Moving Towards Register Allocation
• The OAT compiler currently generates as many temporary variables as

it needs
– These are the %uids you should be very familiar with by now.

• Current compilation strategy:
– Each %uid maps to a stack location.
– This yields programs with many loads/stores to memory.
– Very inefficient.

• Ideally, we’d like to map as many %uid’s as possible into registers.
– Eliminate the use of the alloca instruction?
– Only 16 max registers available on 64-bit X86
– %rsp and %rbp are reserved and some have special semantics, so really

only 10 or 12 available
– This means that a register must hold more than one slot

• When is this safe?

CIS 4521/5521: Compilers 19

Scope vs. Liveness
• We can already get some coarse liveness information from variable

scoping.
• Consider the following OAT program:

• Note that due to OAT’s scoping rules, variables b and c can never be
live at the same time.
– c’s scope is disjoint from b’s scope

• So, we could assign b and c to the same alloca’ed slot and potentially
to the same register at the x86 level.

CIS : Compilers 20

int f(int x) {
 var a = 0;
 if (x > 0) {
 var b = x * x;
 a = b + b;
 }
 var c = a * x;
 return c;
}

But Scope is too Coarse
• Consider this program:

• The scopes of a,b,c,x all overlap – they’re all in scope at the end of the
block.

• But, a, b, c are never live at the same time.
– So they can share the same stack slot / register

CIS : Compilers 21

x is live
a and x are live
b and x are live
c is live

int f(int x) {
 int a = x + 2;
 int b = a * a;
 int c = b + x;
 return c;
}

Live Variable Analysis
• A variable v is live at a program point if v is defined before the

program point and used after it.
• Liveness is defined in terms of where variables are defined and where

variables are used

• Liveness analysis: Compute the live variables between each statement.
– May be conservative (i.e. it may claim a variable is live when it isn’t) so

because that’s a safe approximation
– To be useful, it should be more precise than simple scoping rules.

• Liveness analysis is one example of dataflow analysis
– Other examples: Available Expressions, Reaching Definitions, Constant-

Propagation Analysis, …

CIS 4521/5521: Compilers 22

Liveness information
• Consider this program:
int f(int x) {
 int a = x + 2;
 int b = a * a;
 int c = b + x;
 return c;
}

• The scopes of a,b,c,x all overlap – they’re all in scope at the end of the
block.

• But, a, b, c are never live at the same time.
– So they can share the same stack slot / register

CIS 4521/5521: Compilers 23

x is live

a and x are live
b and x are live

c is live

Liveness
• Observation: %uid1 and %uid2 can be assigned to the same register

if their values will not be needed at the same time.
– What does it mean for an %uid to be “needed”?
– Ans: its contents will be used as a source operand in a later instruction.

• Such a variable is called “live”

• Observe: two variables can share the same register if they are not live
at the same time.

CIS 4521/5521: Compilers 24

A variable is live if its value might be used by some
future part of the execution path when the program is executed.

Notes:
• the use of the variable might depend on user input or other

data not available until the program is run
• even if not, in general, such a property is undecidable
⇒ liveness is a static approximation of the dynamic behavior

Control-flow Graphs Revisited
• For the purposes of dataflow analysis, we use the control-flow graph (CFG)

intermediate form.
• Recall that a basic block is a sequence of instructions such that:

– There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
– There is a (possibly empty) sequence of non-control-flow instructions
– The block ends with a single control-flow instruction (jump, conditional branch, return,

etc.)

• A control flow graph
– Nodes are blocks
– There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the

entry label of B2
– There are no “dangling” edges – there is a block for every jump target.

CIS 4521/5521: Compilers 25

Note: the following slides are intentionally a bit ambiguous about the exact nature of the code in the
control flow graphs:
 an “imperative” C-like source level
 at the x86 assembly level
 the LLVM IR level

Each setting applies the same general idea, but the exact details will differ.
• e.g., LLVM IR doesn’t have “imperative” update of %uid temporaries.

(The SSA structure of the LLVM IR by design makes some of these analyses simpler!)

Dataflow over CFGs
• For precision, it is helpful to think of the “fall through” between

sequential instructions as an edge of the control-flow graph too.
– Different implementation tradeoffs in practice…

CIS : Compilers 26

Move

Binop

If

Unop

Jump

Move

Binop

If

Unop

Jump

Basic block CFG

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

Liveness is Associated with Edges

• This is useful so that the same register can be used for different
temporaries in the same statement.

• Example: a = b + 1

• Compiles to:

CIS 4521/5521: Compilers 27

Instr

Live: a, b

Live: b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov rax, rax

Add rax, 1

Register Allocate:
a à rax, b à rax

Uses and Definitions
• Every instruction/statement uses some set of variables

– i.e. reads from them

• Every instruction/statement defines some set of variables
– i.e. writes to them

• For a node/statement s define:
– use[s] : set of variables used by s
– def[s] : set of variables defined by s

• General Examples:
s: a = b + c use[s] = {b,c} def[s] = {a}
s: a = a + 1 use[s] = {a} def[s] = {a}

CIS 4521/5521: Compilers 28

Liveness, Formally
• A variable v is live on edge e if:

There is
– a node n in the CFG such that use[n] contains v, and
– a directed path from e to n such that for every statement s’ on the path,

def[s’] does not contain v

• The first clause says that v will be used on some path starting from
edge e.

• The second clause says that v won’t be redefined on that path before
the use.

• Questions:
– How to compute this efficiently?
– How to use this information (e.g. for register allocation)?
– How does the choice of IR affect this?

(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition ⇒ simplify liveness
analysis)

CIS 4521/5521: Compilers 29

Simple, inefficient algorithm
• “A variable v is live on an edge e if there is a node n in the CFG using

it and a directed path from e to n pasing through no def of v.”

• Backtracking Algorithm:
– For each variable v…
– Try all paths from each use of v, tracing backwards through the control-

flow graph until either v is defined or a previously visited node has been
reached.

– Mark the variable v live across each edge traversed.

• Inefficient because it explores the same paths many times
(for different uses and different variables)

CIS 4521/5521: Compilers 30

Dataflow Analysis
• Idea: compute liveness information for all variables simultaneously.

– Keep track of sets of information about each node

• Approach: define equations that must be satisfied by any liveness
determination.
– Equations based on “obvious” constraints.

• Solve the equations by iteratively converging on a solution.
– Start with a “rough” approximation to the answer
– Refine the answer at each iteration
– Keep going until no more refinement is possible: a fixpoint has been

reached

• This is an instance of a general framework for computing program
properties: dataflow analysis

CIS 4521/5521: Compilers 31

Dataflow Value Sets for Liveness
• Nodes are program statements, so:
• use[n] : set of variables used by n
• def[n] : set of variables defined by n
• in[n] : set of variables live on entry to n

• out[n] : set of variables live on exit from n

• Associate in[n] and out[n] with the “collected”
information about incoming/outgoing edges

• For Liveness: what constraints are there
among these sets?

• Clearly:
 in[n] ⊇ use[n]

• What other constraints?

CIS 4521/5521: Compilers 32

n

n

in[n]

out[n]

Other Dataflow Constraints
• We have: in[n] ⊇ use[n]

– “A variable must be live on entry to n if it is used by n”

• Also: in[n] ⊇ out[n] - def[n]
– “If a variable is live on exit from n, and n doesn’t

define it, it is live on entry to n”
– Note: here ‘-’ means “set difference”

• And: out[n] ⊇ in[n’] if n’ ∈ succ[n]
– “If a variable is live on entry to a successor

node of n, it must be live on exit from n.”

CIS 4521/5521: Compilers 33

n

in[n]

out[n]

Iterative Dataflow Analysis
• Find a solution to those constraints by starting from a rough guess.

– Start with: in[n] = Ø and out[n] = Ø

• The guesses don’t satisfy the constraints:
– in[n] ⊇ use[n]
– in[n] ⊇ out[n] - def[n]
– out[n] ⊇ in[n’] if n’ ∈ succ[n]

• Idea: iteratively re-compute in[n] and out[n] where forced to by the
constraints.
– Each iteration will add variables to the sets in[n] and out[n]

(i.e. the live variable sets will increase monotonically)

• We stop when in[n] and out[n] satisfy these equations:
 (which are derived from the constraints above)
– in[n] = use[n] ∪ (out[n] - def[n])

– out[n] = ∪n’∈succ[n]in[n’]

CIS 4521/5521: Compilers 34

Complete Liveness Analysis Algorithm
for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’
 for all n

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 end
end

• Finds a fixpoint of the in and out equations.
– The algorithm is guaranteed to terminate… Why?

• Why do we start with Ø?

CIS 4521/5521: Compilers 35

Example Liveness Analysis
• Example flow graph:

CIS 4521/5521: Compilers

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

e = 1;
while(x>0) {
 z = e * e;
 y = e * x;
 x = x – 1;
 if (x & 1) {
 e = z;
 } else {
 e = y;
 }
}
return x;

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in:

in:

in:

in:

in:

in:

in:in:

in:

out:

out:

out:

out:

out:

out: out:

out:

Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 1:
in[2] = x
in[3] = e
in[4] = x
in[5] = e,x
in[6] = x
in[7] = x
in[8] = z
in[9] = y

(showing only updates
that make a change)

CIS 4521/5521: Compilers

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in:

in: x

in: x

in: e,x

in: x

in: x

in: yin: z

in: e

out:

out:

out:

out:

out:

out: out:

out:

Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 2:
out[1]= x
in[1] = x
out[2] = e,x
in[2] = e,x
out[3] = e,x
in[3] = e,x
out[5] = x
out[6] = x
out[7] = z,y
in[7] = x,z,y
out[8] = x
in[8] = x,z
out[9] = x
in[9] = x,y

CIS 4521/5521: Compilers

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x

in: x,y,z

in: x,yin: x,z

in: e,x

out: x

out: e,x

out: e,x

out: x

out: x

out: x out: x

out: y,z

Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 3:
out[1]= e,x
out[6]= x,y,z
in[6]= x,y,z
out[7]= x,y,z

out[8]= e,x
out[9]= e,x

CIS 4521/5521: Compilers

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x

out: x,y,z

out: e,x out: e,x

out: x,y,z

Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 4:
out[5]= x,y,z
in[5]= e,x,z

CIS 4521/5521: Compilers

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 5:
out[3]= e,x,z

Done!

CIS 4521/5521: Compilers

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x,z

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Improving the Algorithm
• Can we do better?

• Observe: the only way information propagates from one node to

another is using: out[n] := ∪n’∈succ[n]in[n’]
– This is the only rule that involves more than one node

• If a node’s successors haven’t changed, then the node itself won’t
change.

• Idea for an improved version of the algorithm:
– Keep track of which node’s successors have changed

CIS 4521/5521: Compilers 42

A Worklist Algorithm
• Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes

repeat until w is empty
 let n = w.pop() // pull a node off the queue
 old_in = in[n] // remember old in[n]

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 if (old_in != in[n]), // if in[n] has changed
 for all m in pred[n], w.push(m) // add to worklist

end

CIS 4521/5521: Compilers 43

OTHER DATAFLOW ANALYSES

Zdancewic CIS 4521/5521: Compilers 44

Generalizing Dataflow Analyses
• The kind of iterative constraint solving used for liveness analysis

applies to other kinds of analyses as well.
– Reaching definitions analysis
– Available expressions analysis
– Alias Analysis
– Constant Propagation
– These analyses follow the same 3-step approach as for liveness.

• To see these as an instance of the same kind of algorithm, the next few
examples to work over a canonical intermediate instruction
representation called quadruples
– Allows easy definition of def[n] and use[n]
– A slightly “looser” variant of LLVM’s IR that doesn’t require the “static

single assignment” – i.e. it has mutable local variables
– We will use LLVM-IR-like syntax

CIS 4521/5521: Compilers 45

Def / Use for SSA
• Instructions n: def[n] use[n] description

a = op b c {a} {b,c} arithmetic
a = load b {a} {b} load
store a, b Ø {a,b} store
a = alloca t {a} Ø alloca
a = bitcast b to u {a} {b} bitcast
a = gep b [c,d, …] {a} {b,c,d,…} getelementptr
a = f(b1,…,bn) {a} {b1,…,bn} call w/return
f(b1,…,bn) Ø {b1,…,bn} void call (no return)

• Terminators
br L Ø Ø jump
br a L1 L2 Ø {a} conditional branch
return a Ø {a} return

CIS 4521/5521: Compilers 46

REACHING DEFINITIONS

Zdancewic CIS 4521/5521: Compilers 48

Reaching Definition Analysis
• Question: what uses in a program does a given variable definition

reach?

• This analysis is used for constant propagation & copy prop.
– If only one definition reaches a particular use, can replace use by the

definition (for constant propagation).
– Copy propagation additionally requires that the copied value still has its

same value – computed using an available expressions analysis (next)

• Input: Quadruple CFG
• Output: in[n] (resp. out[n]) is the set of nodes defining some variable

such that the definition may reach the beginning (resp. end) of node n

CIS 4521/5521: Compilers 49

Example of Reaching Definitions
• Results of computing reaching definitions on this simple CFG:

CIS 4521/5521: Compilers 50

b = a + 2

c = b * b

b = c + 1

1

2

3

return b * a
4

out[1]: {1}
in[2]: {1}

out[2]: {1,2}
in[3]: {1,2}

out[3]: {2,3}
in[4]: {2,3}

Reaching Definitions Step 1
• Define the sets of interest for the analysis
• Let defs[a] be the set of nodes that define the variable a
• Define gen[n] and kill[n] as follows:
• Quadruple forms n: gen[n] kill[n]

a = b op c {n} defs[a] - {n}
a = load b {n} defs[a] - {n}
store b, a Ø Ø
a = f(b1,…,bn) {n} defs[a] - {n}
f(b1,…,bn) Ø Ø
br L Ø Ø
br a L1 L2 Ø Ø
return a Ø Ø

CIS 4521/5521: Compilers 51

Reaching Definitions Step 2
• Define the constraints that a reaching definitions solution must satisfy.
• out[n] ⊇ gen[n]

“The definitions that reach the end of a node at least include the
definitions generated by the node”

• in[n] ⊇ out[n’] if n’ is in pred[n]
“The definitions that reach the beginning of a node include those that
reach the exit of any predecessor”

• out[n] ∪ kill[n] ⊇ in[n]
“The definitions that come in to a node either reach the end of the
node or are killed by it.”
– Equivalently: out[n] ⊇ in[n] - kill[n]

CIS 4521/5521: Compilers 52

Reaching Definitions Step 3
• Convert constraints to iterated update equations:

• in[n] := ∪n’∈pred[n]out[n’]

• out[n] := gen[n] ∪ (in[n] - kill[n])

• Algorithm: initialize in[n] and out[n] to Ø
– Iterate the update equations until a fixed point is reached

• The algorithm terminates because in[n] and out[n] increase only
monotonically
– At most to a maximum set that includes all variables in the program

• The algorithm is precise because it finds the smallest sets that satisfy
the constraints.

CIS 4521/5521: Compilers 53

AVAILABLE EXPRESSIONS

Zdancewic CIS 4521/5521: Compilers 54

Available Expressions
• Idea: want to perform common subexpression elimination:

– a = x + 1 a = x + 1
… …
b = x + 1 b = a

• This transformation is safe if x+1 means computes the same value at
both places (i.e. x hasn’t been assigned).
– “x+1” is an available expression

• Dataflow values:
– in[n] = set of nodes whose values are available on entry to n
– out[n] = set of nodes whose values are available on exit of n

CIS 4521/5521: Compilers 55

Available Expressions Step 1
• Define the sets of values
• Define gen[n] and kill[n] as follows:
• Quadruple forms n: gen[n] kill[n]

a = b op c {n} - kill[n] uses[a]
a = load b {n} - kill[n] uses[a]
store b, a Ø uses[[x]]
 (for all x that may equal a)
br L Ø Ø
br a L1 L2 Ø Ø
a = f(b1,…,bn) Ø uses[a]∪ uses[[x]]
 (for all x)
f(b1,…,bn) Ø uses[[x]] (for all x)
return a Ø Ø

CIS 4521/5521: Compilers 56

Note the need for “may
alias” information…

Note that functions are
assumed to be impure…

Available Expressions Step 2
• Define the constraints that an available expressions solution must

satisfy.
• out[n] ⊇ gen[n]

“The expressions made available by n that reach the end of the node”

• in[n] ⊆ out[n’] if n’ is in pred[n]
“The expressions available at the beginning of a node include those
that reach the exit of every predecessor”

• out[n] ∪ kill[n] ⊇ in[n]
“The expressions available on entry either reach the end of the node or
are killed by it.”
– Equivalently: out[n] ⊇ in[n] - kill[n]

CIS 4521/5521: Compilers 57

Note similarities and
differences with
constraints for “reaching
definitions”.

Available Expressions Step 3
• Convert constraints to iterated update equations:

• in[n] := ∩n’∈pred[n]out[n’]

• out[n] := gen[n] ∪ (in[n] - kill[n])

• Algorithm: initialize in[n] and out[n] to {set of all nodes}
– Iterate the update equations until a fixed point is reached

• The algorithm terminates because in[n] and out[n] decrease only
monotonically
– At most to a minimum of the empty set

• The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CIS 4521/5521: Compilers 58

