Lecture 23
CIS 4521/5521: COMPILERS

Announcements

- HW6: Analysis & Optimizations
 - Alias analysis, constant propagation, dead code elimination, register allocation
 - Due: Wednesday, April 30th at 10:00pm
 - Posted test case due Tuesday, April 29th at 10:00pm
- Final Exam:
 - According to registrar: Thursday, May 8th noon 2:00pm
 - Coverage: emphasizes material since the midterm
 - Cheat sheet: one, hand-written, double-sided, letter-sized page of notes

CODE ANALYSIS

Zdancewic CIS 4521/5521: Compilers

Dataflow over CFGs

- For precision, it is helpful to think of the "fall through" between sequential instructions as an edge of the control-flow graph too.
 - Different implementation tradeoffs in practice...

CIS 4521/55210: Compilers

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 4521/5521: Compilers

A Worklist Algorithm

• Use a FIFO queue of nodes that might need to be updated.

```
for all n, in[n] := \emptyset, out[n] := \emptyset
w = new queue with all nodes
repeat until w is empty
   let n = w.pop()
                                          // pull a node off the queue
     old_in = in[n]
                                          // remember old in[n]
    out[n] := U_{n' \in succ[n]}in[n']
     in[n] := use[n] \cup (out[n] - def[n])
     if (old_in != in[n]),
                                          // if in[n] has changed
       for all m in pred[n], w.push(m) // add to worklist
end
```

Liveness:

Facts: {set of uids live at a program point }
let gen[n] = use[n] and kill[n] = def[n]

- $\text{ out}[n] := U_{n' \in succ[n]} in[n'] \qquad (backward)$
- $in[n] := gen[n] \cup (out[n] kill[n])$

Reaching Definitions:

Facts: {set of defns. that reach a program point} let gen[n] = {n} and kill[n] = def[n] $\{n\}$

- $in[n] := U_{n' \in pred[n]}out[n']$ (f
- $out[n] := gen[n] \cup (in[n] kill[n])$

Available Expressions:

Facts: {set of rhs exps. that reach a program point} e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

- in[n] := $\bigcap_{n' \in pred[n]} out[n']$

(forward)

- $out[n] := gen[n] \cup (in[n] - kill[n])$

Liveness:

Facts: {set of uids live at a program point } let gen[n] = use[n] and kill[n] = def[n]

- $\text{ out}[n] := U_{n' \in \text{succ}[n]} \text{in}[n'] \qquad (\text{backward})$
- $in[n] := gen[n] \cup (out[n] kill[n])$

Reaching Definitions:

Facts: {set of defns. that reach a program point} let gen[n] = {n} and kill[n] = def[n] \{n}

- $in[n] := U_{n' \in pred[n]}out[n']$

(forward)

- $out[n] := gen[n] \cup (in[n] - kill[n])$

Available Expressions:

Facts: {set of rhs exps. that reach a program point} e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

- in[n] := $\bigcap_{n' \in pred[n]} out[n']$

(forward)

- $out[n] := gen[n] \cup (in[n] - kill[n])$

Each analysis solves constraints over some *domain* of facts.

Liveness:

Facts: {set of uids live at a program point }
let gen[n] = use[n] and kill[n] = def[n]

- $\text{ out}[n] := U_{n' \in \text{succ}[n]} \text{in}[n'] \qquad (\text{backward})$
- $in[n] := gen[n] \cup (out[n] kill[n])$

Reaching Definitions:

Facts: {set of defns. that reach a program point} let $gen[n] = \{n\}$ and $kill[n] = def[n] \setminus \{n\}$

- $in[n] := U_{n' \in pred[n]}out[n']$

(forward)

- $out[n] := gen[n] \cup (in[n] - kill[n])$

Available Expressions:

Facts: {set of rhs exps. that reach a program point} e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

- in[n] := $\bigcap_{n' \in pred[n]} out[n']$

(forward)

- $out[n] := gen[n] \cup (in[n] - kill[n])$

The "flow function" (i.e. effect of an instruction on the facts) can often be defined by gen and kill.

Liveness:

Facts: {set of uids live at a program point }
let gen[n] = use[n] and kill[n] = def[n]

- out[n] := $\bigcup_{n' \in succ[n]} in[n']$ (backward)
- $in[n] := gen[n] \cup (out[n] kill[n])$

Reaching Definitions:

Facts: {set of defns. that reach a program point} let gen[n] = {n} and kill[n] = def[n] n

- in[n] := $\bigcup_{n' \in pred[n]} out[n']$

(forward)

- $out[n] := gen[n] \cup (in[n] - kill[n])$

Available Expressions:

Facts: {set of rhs exps. that reach a program point} e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

- in[n] := $\bigcap_{n' \in pred[n]} out[n']$

(forward)

- $out[n] := gen[n] \cup (in[n] - kill[n])$

Each domain of facts comes equipped with a way of aggregating information.

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

- 1. A domain of dataflow values \mathcal{L}
 - e.g. \mathcal{L} = the powerset of all variables
 - Think of $\ell \in \mathcal{L}$ as a property, then " $x \in \ell$ " means "x has the property"
- 2. For each node n, a flow function $F_n : \mathcal{L} \to \mathcal{L}$
 - So far we've seen $F_n(\ell) = gen[n] \cup (\ell kill[n])$
 - So: $out[n] = F_n(in[n])$
 - "If ℓ is a property that holds before the node n, then $F_n(\ell)$ holds after n"
- 3. A combining operator Π
 - "If we know *either* ℓ_1 *or* ℓ_2 holds on entry to node n, we know at most $\ell_1 \prod \ell_2$ "

- $in[n] := \prod_{n' \in pred[n]} out[n']$

Generic Iterative (Forward) Analysis

```
for all n, in[n] := T, out[n] := T
repeat until no change
for all n
```

```
in[n] := \prod_{n' \in pred[n]} out[n']out[n] := F_n(in[n])end
```

end

- Here, T ∈ L ("top") represents having the "maximum" amount of information.
 - Having "more" information enables more optimizations
 - "Maximum" amount could be inconsistent with the constraints.
 - Iteration refines the answer, eliminating inconsistencies

Structure of \mathcal{L}

- The domain has structure that reflects the "amount" of information contained in each dataflow value.
- Some dataflow values are more informative than others:
 - Write $\ell_1 \subseteq \ell_2$ whenever ℓ_2 provides at least as much information as ℓ_1 .
 - The dataflow value ℓ_2 is "better" for enabling optimizations.

Example 1: for liveness analysis, *smaller* sets of variables are more informative.

- Having smaller sets of variables live across an edge means that there are fewer conflicts for register allocation assignments.
- So: $\ell_1 \subseteq \ell_2$ if and only if $\ell_1 \supseteq \ell_2$ and we have $\top = \emptyset$

Example 2: for available expressions analysis, larger sets of nodes are more informative.

- Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for common subexpression elimination.
- So: $\ell_1 \subseteq \ell_2$ if and only if $\ell_1 \subseteq \ell_2$ and we have $T = \{\text{set of all nodes}\}$

L as a Partial Order

- \mathcal{L} is a *partial order* defined by the ordering relation \sqsubseteq .
- A partial order is an ordered set.
- Some of the elements might be *incomparable*.
 - That is, there might be $\ell_1, \ell_2 \in \mathcal{L}$ such that neither $\ell_1 \sqsubseteq \ell_2$ nor $\ell_2 \sqsubseteq \ell_1$
- Properties of a partial order:
 - Reflexivity: $\ell \sqsubseteq \ell$
 - *Transitivity*: $\ell_1 \subseteq \ell_2$ and $\ell_2 \subseteq \ell_3$ implies $\ell_1 \subseteq \ell_2$
 - Anti-symmetry: $\ell_1 \subseteq \ell_2$ and $\ell_2 \subseteq \ell_1$ implies $\ell_1 = \ell_2$
- Examples:
 - Integers ordered by \leq
 - Types ordered by <:
 - Sets ordered by \subseteq or \supseteq

Subsets of {a,b,c} ordered by ⊆

Partial order presented as a Hasse diagram.

order \sqsubseteq is \subseteq meet \prod is \cap join \bigsqcup is \cup

Meets and Joins

- The combining operator **□** is called the "meet" operation.
- It constructs the greatest lower bound:
 - $\ell_1 \prod \ell_2 \sqsubseteq \ell_1$ and $\ell_1 \prod \ell_2 \sqsubseteq \ell_2$ "the meet is a lower bound"
 - If $\ell \subseteq \ell_1$ and $\ell \subseteq \ell_2$ then $\ell \subseteq \ell_1 \prod \ell_2$ "there is no greater lower bound"

Note: duality means that we can always "flip" a meet semi-lattice upside down to get a join semi-lattice (and vice-versa).

- Dually, the \sqcup operator is called the "join" operation.
- It constructs the *least upper bound*:
 - $\begin{array}{cccc} & \ell_1 \sqsubseteq & \ell_1 \amalg & \ell_2 & \text{ and } & \ell_2 \sqsubseteq & \ell_1 \amalg & \ell_2 \\ & \text{"the join is an upper bound"} \end{array}$
 - If $\ell_1 \sqsubseteq \ell$ and $\ell_2 \sqsubseteq \ell$ then $\ell_1 \sqcup \ell_2 \sqsubseteq \ell$ "there is no smaller upper bound"
- A partial order that has all meets and joins is called a *lattice*.
 - If it has just meets, it's called a *meet semi-lattice*.
 - If it has just joins, it's a *join semi-lattice*.

Another Way to Describe the Algorithm

- Algorithm repeatedly computes (for each node n):
- $out[n] := F_n(in[n])$
- Equivalently: $out[n] := F_n(\bigcap_{n' \in pred[n]} out[n'])$
 - By definition of in[n]
- We can write this as a simultaneous update of the vector of out[n] values:
 - let $x_n = out[n]$
 - Let $\mathbf{X} = (x_1, x_2, \dots, x_n)$ it's a vector of points in \mathcal{L}
 - $\mathbf{F}(\mathbf{X}) = (F_1(\prod_{j \in pred[1]} out[j]), F_2(\prod_{j \in pred[2]} out[j]), \dots, F_n(\prod_{j \in pred[n]} out[j]))$
- Any solution to the constraints is a *fixpoint* X of F
 i.e. F(X) = X

Iteration Computes Fixpoints

- Let $\mathbf{X}_0 = (\top, \top, ..., \top)$
- Each loop through the algorithm apply F to the old vector:
 X₁ = F(X₀)
 X₂ = F(X₁)
- $\bullet \quad \boldsymbol{\mathsf{F}}^{k+1}(\boldsymbol{\mathsf{X}}) = \boldsymbol{\mathsf{F}}(\boldsymbol{\mathsf{F}}^k(\boldsymbol{\mathsf{X}}))$

. . .

- A fixpoint is reached when $\mathbf{F}^{k}(\mathbf{X}) = \mathbf{F}^{k+1}(\mathbf{X})$
 - That's when the algorithm stops.
- Wanted: a maximal fixpoint
 - Because that one is more informative/useful for performing optimizations

Monotonicity & Termination

- Each flow function F_n maps lattice elements to lattice elements; to be sensible is should be *monotonic*:
- $F: \mathcal{L} \to \mathcal{L}$ is monotonic iff: $\ell_1 \sqsubseteq \ell_2$ implies that $F(\ell_1) \sqsubseteq F(\ell_2)$
 - Intuitively: "If you have more information entering a node, then you have more information leaving the node."
- Monotonicity lifts point-wise to the function: $\mathbf{F} : \mathcal{L}^n \to \mathcal{L}^n$

- vector $(x_1, x_2, ..., x_n) \sqsubseteq (y_1, y_2, ..., y_n)$ iff $x_i \sqsubseteq y_i$ for each i

- Note that **F** is consistent: $\mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
 - So each iteration moves at least one step down the lattice (for some component of the vector)

 $- \ldots \sqsubseteq \mathbf{F}(\mathbf{F}(\mathbf{X}_0)) \sqsubseteq \mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$

 Therefore, # steps needed to reach a fixpoint is at most the height H of *L* times the number of nodes: O(Hn)

Building Lattices?

- Information about individual nodes or variables can be lifted *pointwise:*
 - If \mathcal{L} is a lattice, then so is $\{f : X \to \mathcal{L}\}$ where $f \sqsubseteq g$ if and only if $f(x) \sqsubseteq g(x)$ for all $x \in X$.

• Like *types*, the dataflow lattices are *static approximations* to the dynamic behavior:

Points in the lattice are sometimes called dataflow "facts"

"Classic" Constant Propagation

- Constant propagation can be formulated as a dataflow analysis.
- Idea: propagate and fold integer constants in one pass:

$$x = 1;$$
 $x = 1;$
 $y = 5 + x;$ $y = 6;$
 $z = y * y;$ $z = 36;$

- Information about a single variable:
 - Variable is never defined.
 - Variable has a single, constant value.
 - Variable is assigned multiple values.

Domains for Constant Propagation

• We can make a constant propagation lattice \mathcal{L} for *one variable* like this:

- To accommodate multiple variables, we take the product lattice, with one element per variable.
 - Assuming there are three variables, x, y, and z, the elements of the product lattice are of the form (ℓ_x, ℓ_y, ℓ_z) .
 - Alternatively, think of the product domain as a context that maps variable names to their "abstract interpretations"
- What are "meet" and "join" in this product lattice?
- What is the height of the product lattice?

Flow Functions

- Consider the node $x = y \circ p z$ •

- $F(\ell_{x}, \ell_{y}, \ell_{z}) = ?$

- F(l_x, T, l_z) = (T, T, l_z) "If either input might have multiple values
 F(l_x, l_y, T) = (T, l_y, T) the result of the operation might too."
- F(ℓ_x, ⊥, ℓ_z) = (⊥, ⊥, ℓ_z)
 F(ℓ_x, ℓ_y, ⊥) = (⊥, ℓ_y, ⊥)
 "If either input is undefined the result of the operation is too."
- $F(\ell_x, i, j) = (i \text{ op } j, i, j)$ "If the inputs are known constants, calculate the output statically."
- Flow functions for the other nodes are easy... ۲
- Monotonic? •
- Distributes over meets? •

QUALITY OF DATAFLOW ANALYSIS SOLUTIONS

Best Possible Solution

- Suppose we have a control-flow graph.
- If there is a path p₁ starting from the root node (entry point of the function) traversing the nodes

 $n_0, n_1, n_2, \dots n_k$

- The best possible information along the path p_1 is: $\ell_{p1} = F_{nk}(...F_{n2}(F_{n1}(F_{n0}(T)))...)$
- Best solution at the output is some $\ell \sqsubseteq \ell_p$ for *all* paths p.
- Meet-over-paths (MOP) solution:

 $\Box_{p\in paths_{to[n]}}\ell_{p}$

What about quality of iterative solution?

- Does the iterative solution: $out[n] = F_n(\prod_{n' \in pred[n]} out[n'])$ compute the MOP solution?
- MOP Solution: $|_{p \in paths_{to[n]}} \ell_p$
- Answer: Yes, *if* the flow functions *distribute* over
 - Distributive means: $\prod_i F_n(\ell_i) = F_n(\prod_i \ell_i)$
 - Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in the control flow graph might mean there are *infinitely* many paths...)
- Not all analyses give MOP solution
 - They are more conservative.

Reaching Definitions is MOP

- $F_n[x] = gen[n] \cup (x kill[n])$
- Does F_n distribute over meet $\square = \cup$?
- $F_n[x \sqcap y]$
 - $= gen[n] \cup ((x \cup y) kill[n])$
 - $= gen[n] \cup ((x kill[n]) \cup (y kill[n]))$
 - = $(gen[n] \cup (x kill[n])) \cup (gen[n] \cup (y kill[n]))$
 - $= F_n[x] \cup F_n[y]$
 - $= F_n[x] \prod F_n[y]$
- Therefore: Reaching Definitions with iterative analysis always terminates with the MOP (i.e. best) solution.

Constprop Iterative Solution

MOP Solution *≠* **Iterative Solution**

Why not compute MOP Solution?

- If MOP is better than the iterative analysis, why not compute it instead?
 - ANS: exponentially many paths (even in graph without loops)
- O(n) nodes
- O(n) edges
- O(2ⁿ) paths*
 - At each branch there is a choice of 2 directions

* Incidentally, a similar idea can be used to force ML / Haskell type inference to need to construct a type that is exponentially big in the size of the program!

Dataflow Analysis: Summary

- Many dataflow analyses fit into a common framework.
- Key idea: *Iterative solution* of a system of equations over a *lattice* of constraints.
 - Iteration terminates if flow functions are monotonic.
 - Solution is equivalent to meet-over-paths answer if the flow functions distribute over meet (□).
- Dataflow analyses as presented work for an "imperative" intermediate representation.
 - The values of temporary variables are updated ("mutated") during evaluation.
 - Such mutation complicates calculations
 - SSA = "Single Static Assignment" eliminates this problem, by introducing more temporaries – each one assigned to only once.
 - Next up: Converting to SSA, finding loops and dominators in CFGs

See HW6: Dataflow Analysis

IMPLEMENTATION

Zdancewic CIS 341: Compilers

REGISTER ALLOCATION

Zdancewic CIS 341: Compilers

Register Allocation Problem

- Given: an IR program that uses an unbounded number of temporaries
 e.g. the uids of our LLVM programs
- Find: a mapping from temporaries to machine registers such that
 - program semantics is preserved (i.e. the behavior is the same)
 - register usage is maximized
 - moves between registers are minimized
 - calling conventions / architecture requirements are obeyed

- Stack Spilling
 - If there are k registers available and m > k temporaries are live at the same time, then not all of them will fit into registers.
 - So: "spill" the excess temporaries to the stack.

Linear-Scan Register Allocation

Simple, greedy register-allocation strategy:

- 1. Compute liveness information: live(x)
 - recall: live(x) is the set of uids that are live on entry to x's definition
- 2. Let **pal** be the set of usable registers
 - usually reserve a couple for spill code [our implementation uses rax,rcx]
- 3. Maintain "layout" **uid_loc** that maps uids to locations
 - locations include registers and stack slots n, starting at n=0
- 4. Scan through the program. For each instruction that defines a uid x
 - used = {r | reg r = uid_loc(y) s.t. $y \in live(x)$ }
 - available = pal used
 - If available is empty: // no registers available, spill uid_loc(x) := slot n ; n = n + 1
 - Otherwise, pick r in available: // choose an available register uid_loc(x) := reg r

For HW6

- HW 6 implements two naive register allocation strategies:
 - none: spill all registers
 - greedy: uses linear scan
- Also offers choice of liveness
 - trivial: assume all variables are live everywhere
 - dataflow: use the dataflow algorithms
- Your job: do "better" than these.
- Quality Metric:
 - first, minimize memory accesses
 - then prioritize for shorter code
- Linear scan is OK
 - but... how can we do better?

GRAPH COLORING

Zdancewic CIS 341: Compilers

Register Allocation

Basic process:

- 1. Compute liveness information for each temporary.
- 2. Create an *interference graph*:
 - Nodes are temporary variables.
 - There is an edge between node n and m if n is live at the same time as m
- 3. Try to color the graph
 - Each color corresponds to a register
- 4. In case step 3. fails, "spill" a register to the stack and repeat the whole process.
- 5. Rewrite the program to use registers

Interference Graphs

- Nodes of the graph are **%uids** •
- Edges connect variables that *interfere* with each other ۲
 - Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph across which they are both live).
- Register assignment is a graph coloring. •
 - A graph coloring assigns each node in the graph a color (register)
 - Any two nodes connected by an edge must have different colors.
- Example: ۲

```
// live = {%a}
%b1 = add i32 %a, 2
                                             %а
                                                    %ans
                                                                     %a
// live = {%a,%b1}
%c = mult i32 %b1, %b1
// live = {%a,%c}
                                             %b2
                                       °₀b1
                                                   %C
                                                               %b1
                                                                     %h2
                                                                           %C
%b2 = add i32 %c, 1
// live = {%a,%b2}
                                      Interference Graph
                                                               2-Coloring of the graph
%ans = mult i32 %b2, %a
                                                               red = r8
// live = {%ans}
                                                               vellow = r9
return %ans;
 CIS 341: Compilers
```

%ans

Register Allocation Questions

- Can we efficiently find a k-coloring of the graph whenever possible?
 - Answer: in general the problem is NP-complete (it requires search)
 - But, we can do an efficient approximation using heuristics.
- How do we assign registers to colors?
 - If we do this in a smart way, we can eliminate redundant MOV instructions.
- What do we do when there aren't enough colors/registers?
 - We have to use stack space, but how do we do this effectively?

Coloring a Graph: Kempe's Algorithm

Kempe [1879] provides this algorithm for K-coloring a graph. It's a recursive algorithm that works in three steps:

- 1. Find a node with degree < K and cut it out of the graph.
 - Remove the nodes and edges.
 - This is called *simplifying* the graph
- 2. Recursively K-color the remaining subgraph
- 3. When remaining graph is colored, there must be at least one free color available for the deleted node (since its degree was < K). Pick such a color.

Example: 3-color this Graph

Recursing Down the Simplified Graphs

Example: 3-color this Graph

Assigning Colors on the way back up.

Failure of the Algorithm

- If the graph cannot be colored, it will simplify to a graph where every node has at least K neighbors.
 - This can happen even when the graph is K-colorable!
 - This is a symptom of NP-hardness (it requires search)
- Example: When trying to 3-color this graph:

Spilling

- Idea: If we can't K-color the graph, we need to store one temporary variable on the stack.
- Which variable to spill?
 - Pick one that isn't used very frequently
 - Pick one that isn't used in a (deeply nested) loop
 - Pick one that has high interference (since removing it will make the graph easier to color)
- In practice: some weighted combination of these criteria
- When coloring:
 - Mark the node as spilled
 - Remove it from the graph
 - Keep recursively coloring

Spilling, Pictorially

- Select a node to spill
- Mark it and remove it from the graph
- Continue coloring

Optimistic Coloring

- Sometimes it is possible to color a node marked for spilling.
 If we get "lucky" with the choices of colors made earlier.
- Example: When 2-coloring this graph:

- Even though the node was marked for spilling, we can color it.
- So: on the way down, mark for spilling, but don't actually spill...

Accessing Spilled Registers

- If optimistic coloring fails, we need to generate code to move the spilled temporary to & from memory.
- Option 1: Reserve registers specifically for moving to/from memory.
 - Con: Need at least two registers (one for each source operand of an instruction), so decreases total # of available registers by 2.
 - Pro: Only need to color the graph once.
 - Not good on 32bit x86 because there are too few registers & too many constraints on how they can be used.
 - OK on 64bit x86 and other processors. (We use this for HW6)
- Option 2: Rewrite the program to use a new temporary variable, with explicit moves to/from memory.
 - Pro: Need to reserve fewer registers.
 - Con: Introducing temporaries changes live ranges, so must recompute liveness & recolor graph

Example Spill Code

- Suppose temporary t is marked for spilling to stack slot located at [rbp+offs]
- Rewrite the program like this:
 - t = a op b; ... t = a op b // defn. of t Mov [rbp+offs], t ... Mov t37, [rbp+offs] // use 1 of t ... x = t op c... y = d op tMov t38, [rbp+offs] // use 2 of t y = d op t 38
- Here, t37 and t38 are freshly generated temporaries that replace t for different uses of t.
- Rewriting the code in this way breaks t's live range up: t, t37, t38 are only live across one edge

Precolored Nodes

- Some variables must be pre-assigned to registers.
 - E.g. on X86 the multiplication instruction: IMul must define %rax
 - The "Call" instruction should kill the caller-save registers %rax, %rcx, %rdx.
 - Any temporary variable live across a call interferes with the caller-save registers.
- To properly allocate temporaries, we treat registers as nodes in the interference graph with pre-assigned colors.
 - Pre-colored nodes can't be removed during simplification.
 - Trick: Treat pre-colored nodes as having "infinite" degree in the interference graph this guarantees they won't be simplified.
 - When the graph is empty except the pre-colored nodes, we have reached the point where we start coloring the rest of the nodes.

Picking Good Colors

- When choosing colors during the coloring phase, *any* choice is semantically correct, but some choices are better for performance.
- Example:
 - movq t1, t2
 - If t1 and t2 can be assigned the same register (color) then this move is redundant and can be eliminated.
- A simple color choosing strategy that helps eliminate such moves:
 - Add a new kind of "move related" edge between the nodes for t1 and t2 in the interference graph.
 - When choosing a color for t1 (or t2), if possible, pick a color of an already colored node reachable by a move-related edge.

Example Color Choice

• Consider 3-coloring this graph, where the dashed edge indicates that there is a Mov from one temporary to another.

- After coloring the rest, we have a choice:
 - Picking yellow is better than red because it will eliminate a move.

CIS 341: Compilers

Coalescing Interference Graphs

- A more aggressive strategy is to *coalesce* nodes of the interference graph if they are connected by move-related edges.
 - Coalescing the nodes *forces* the two temporaries to be assigned the same register.

- Idea: interleave simplification and coalescing to maximize the number of moves that can be eliminated.
- Problem: coalescing can sometimes increase the degree of a node.

Conservative Coalescing

- Two strategies are guaranteed to preserve the k-colorability of the interference graph.
- 1. Brigg's strategy: It's safe to coalesce x & y if the resulting node will have fewer than k neighbors (with degree $\ge k$).
- 2. *George's strategy:* We can safely coalesce x & y if for every neighbor t of x, either t already interferes with y or t has degree < k.

Complete Register Allocation Algorithm

- 1. Build interference graph (precolor nodes as necessary).
 - Add move related edges
- 2. Reduce the graph (building a stack of nodes to color).
 - 1. Simplify the graph as much as possible without removing nodes that are move related (i.e. have a move-related neighbor). Remaining nodes are high degree or move-related.
 - 2. Coalesce move-related nodes using Brigg's or George's strategy.
 - 3. Coalescing can reveal more nodes that can be simplified, so repeat 2.1 and 2.2 until no node can be simplified or coalesced.
 - 4. If no nodes can be coalesced *freeze* (remove) a move-related edge and keep trying to simplify/coalesce.
- 3. If there are non-precolored nodes left, mark one for spilling, remove it from the graph and continue doing step 2.
- 4. When only pre-colored node remain, start coloring (popping simplified nodes off the top of the stack).
 - 1. If a node must be spilled, insert spill code as on slide 14 and rerun the whole register allocation algorithm starting at step 1.

Last details

- After register allocation, the compiler should do a peephole optimization pass to remove redundant moves.
- Some architectures specify calling conventions that use registers to pass function arguments.
 - It's helpful to move such arguments into temporaries in the function prelude so that the compiler has as much freedom as possible during register allocation. (Not an issue on X86, though.)