
CIS 4521/5521: COMPILERS
Lecture 23

Announcements

• HW6: Analysis & Optimizations
– Alias analysis, constant propagation, dead code elimination, register

allocation
– Due: Wednesday, April 30th at 10:00pm
– Posted test case due Tuesday, April 29th at 10:00pm

• Final Exam:
– According to registrar: Thursday, May 8th noon - 2:00pm
– Coverage: emphasizes material since the midterm
– Cheat sheet: one, hand-written, double-sided, letter-sized page of notes

Zdancewic CIS 4521/5521: Compilers 2

CODE ANALYSIS

Zdancewic CIS 4521/5521: Compilers 3

Dataflow over CFGs
• For precision, it is helpful to think of the “fall through” between

sequential instructions as an edge of the control-flow graph too.
– Different implementation tradeoffs in practice…

CIS 4521/55210: Compilers 4

Move

Binop

If

Unop

Jump

Move

Binop

If

Unop

Jump

Basic block CFG

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 5:
out[3]= e,x,z

Done!

CIS 4521/55210: Compilers

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x,z

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 4521/5521: Compilers 6

A Worklist Algorithm
• Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes

repeat until w is empty
 let n = w.pop() // pull a node off the queue
 old_in = in[n] // remember old in[n]

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 if (old_in != in[n]), // if in[n] has changed
 for all m in pred[n], w.push(m) // add to worklist

end

CIS 4521/5521: Compilers 7

Comparing Dataflow Analyses
Liveness:
 Facts: {set of uids live at a program point }

let gen[n] = use[n] and kill[n] = def[n]

– out[n] := ∪n’∈succ[n]in[n’] (backward)

– in[n] := gen[n] ∪ (out[n] - kill[n])

Reaching Definitions:
 Facts: {set of defns. that reach a program point}
 let gen[n] = {n} and kill[n] = def[n]\{n}

– in[n] := ∪n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

Available Expressions:
 Facts: {set of rhs exps. that reach a program point}
 e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

– in[n] := ∩n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

CIS 4521/5521: Compilers 8

Comparing Dataflow Analyses
Liveness:
 Facts: {set of uids live at a program point }

let gen[n] = use[n] and kill[n] = def[n]

– out[n] := ∪n’∈succ[n]in[n’] (backward)

– in[n] := gen[n] ∪ (out[n] - kill[n])

Reaching Definitions:
 Facts: {set of defns. that reach a program point}
 let gen[n] = {n} and kill[n] = def[n]\{n}

– in[n] := ∪n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

Available Expressions:
 Facts: {set of rhs exps. that reach a program point}
 e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

– in[n] := ∩n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

CIS 4521/5521: Compilers 9

Each analysis solves
constraints over some
domain of facts.

Comparing Dataflow Analyses
Liveness:
 Facts: {set of uids live at a program point }

let gen[n] = use[n] and kill[n] = def[n]

– out[n] := ∪n’∈succ[n]in[n’] (backward)

– in[n] := gen[n] ∪ (out[n] - kill[n])

Reaching Definitions:
 Facts: {set of defns. that reach a program point}
 let gen[n] = {n} and kill[n] = def[n]\{n}

– in[n] := ∪n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

Available Expressions:
 Facts: {set of rhs exps. that reach a program point}
 e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

– in[n] := ∩n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

CIS 4521/5521: Compilers 10

The "flow function"
(i.e. effect of an instruction
on the facts) can often
be defined by gen and kill.

Comparing Dataflow Analyses
Liveness:
 Facts: {set of uids live at a program point }

let gen[n] = use[n] and kill[n] = def[n]

– out[n] := ∪n’∈succ[n]in[n’] (backward)

– in[n] := gen[n] ∪ (out[n] - kill[n])

Reaching Definitions:
 Facts: {set of defns. that reach a program point}
 let gen[n] = {n} and kill[n] = def[n]\{n}

– in[n] := ∪n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

Available Expressions:
 Facts: {set of rhs exps. that reach a program point}
 e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

– in[n] := ∩n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

CIS 4521/5521: Compilers 11

Forward analyses define
in[] in terms of out[].

Backward analyses define
out[] in terms of in[].

Comparing Dataflow Analyses
Liveness:
 Facts: {set of uids live at a program point }

let gen[n] = use[n] and kill[n] = def[n]

– out[n] := ∪n’∈succ[n]in[n’] (backward)

– in[n] := gen[n] ∪ (out[n] - kill[n])

Reaching Definitions:
 Facts: {set of defns. that reach a program point}
 let gen[n] = {n} and kill[n] = def[n]\{n}

– in[n] := ∪n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

Available Expressions:
 Facts: {set of rhs exps. that reach a program point}
 e.g. gen[n] = {n}\kill[n] and kill[n] = use[n]

– in[n] := ∩n’∈pred[n]out[n’] (forward)
– out[n] := gen[n] ∪ (in[n] - kill[n])

CIS 4521/5521: Compilers 12

Each domain of facts
comes equipped with
a way of aggregating
information.

(Forward) Dataflow Analysis Framework
A forward dataflow analysis can be characterized by:
1. A domain of dataflow values L

– e.g. L = the powerset of all variables
– Think of ℓ∈L as a property, then “x ∈ ℓ”

means “x has the property”

2. For each node n, a flow function Fn : L → L
– So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n])
– So: out[n] = Fn(in[n])
– “If ℓ is a property that holds before the node n,

 then Fn(ℓ) holds after n”

3. A combining operator ⨅
– “If we know either ℓ1 or ℓ2 holds on entry

 to node n, we know at most ℓ1 ⨅ ℓ2”

– in[n] := ⨅n’∈pred[n]out[n’]

CIS 4521/5521: Compilers 14

n

ℓ

Fn(ℓ)

n

ℓ1 ℓ2

ℓ1 ⨅ ℓ2

Generic Iterative (Forward) Analysis
for all n, in[n] := ⟙, out[n] := ⟙
repeat until no change
 for all n

 in[n] := ⨅n’∈pred[n]out[n’]
 out[n] := Fn(in[n])
 end
end

• Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of
information.
– Having “more” information enables more optimizations
– “Maximum” amount could be inconsistent with the constraints.
– Iteration refines the answer, eliminating inconsistencies

CIS 4521/5521: Compilers 15

Structure of L
• The domain has structure that reflects the “amount” of information

contained in each dataflow value.
• Some dataflow values are more informative than others:

– Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1.
– The dataflow value ℓ2 is “better” for enabling optimizations.

Example 1: for liveness analysis, smaller sets of variables are more
informative.

– Having smaller sets of variables live across an edge means that there are
fewer conflicts for register allocation assignments.

– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2 and we have ⟙ = ∅

Example 2: for available expressions analysis, larger sets of nodes are
more informative.

– Having a larger set of nodes (equivalently, expressions) available means
that there is more opportunity for common subexpression elimination.

– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2 and we have ⟙ = {set of all nodes}

CIS 4521/5521: Compilers 16

L as a Partial Order
• L is a partial order defined by the ordering relation ⊑.

• A partial order is an ordered set.
• Some of the elements might be incomparable.

– That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1

• Properties of a partial order:
– Reflexivity: ℓ ⊑ ℓ
– Transitivity: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2

– Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2

• Examples:
– Integers ordered by ≤
– Types ordered by <:
– Sets ordered by ⊆ or ⊇

CIS 4521/5521: Compilers 17

Subsets of {a,b,c} ordered by ⊆

CIS 4521/5521: Compilers 18

{a,b,c}

{a,c}

{c}

{b,c}

{a,b}

{a}

{ }

{b}

ℓ1 ⊑ ℓ2
ℓ1

ℓ2

= ⟙

= ⟘

order ⊑ is ⊆ meet ⨅ is ∩ join ⨆ is ∪

Partial order presented as a Hasse diagram.
H

ei
gh

t i
s

3

Meets and Joins
• The combining operator ⨅ is called the “meet” operation.
• It constructs the greatest lower bound:

– ℓ1 ⨅ ℓ2 ⊑ ℓ1 and ℓ1 ⨅ ℓ2 ⊑ ℓ2
 “the meet is a lower bound”

– If ℓ ⊑ ℓ1 and ℓ ⊑ ℓ2 then ℓ ⊑ ℓ1 ⨅ ℓ2
 “there is no greater lower bound”

• Dually, the ⨆ operator is called the “join” operation.
• It constructs the least upper bound:

– ℓ1 ⊑ ℓ1 ⨆ ℓ2 and ℓ2 ⊑ ℓ1 ⨆ ℓ2
 “the join is an upper bound”

– If ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ then ℓ1 ⨆ ℓ2 ⊑ ℓ
 “there is no smaller upper bound”

• A partial order that has all meets and joins is called a lattice.
– If it has just meets, it’s called a meet semi-lattice.
– If it has just joins, it's a join semi-lattice.

CIS 4521/5521: Compilers 19

Note: duality means
that we can always "flip"

a meet semi-lattice upside
down to get a join semi-lattice

(and vice-versa).

Another Way to Describe the Algorithm
• Algorithm repeatedly computes (for each node n):
• out[n] := Fn(in[n])

• Equivalently: out[n] := Fn(⨅n’∈pred[n]out[n’])

– By definition of in[n]

• We can write this as a simultaneous update of the vector of out[n]
values:
– let xn = out[n]
– Let X = (x1, x2, … , xn) it’s a vector of points in L

– F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j]))

• Any solution to the constraints is a fixpoint X of F
– i.e. F(X) = X

CIS 4521/5521: Compilers 20

Iteration Computes Fixpoints
• Let X0 = (⟙,⟙, …, ⟙)
• Each loop through the algorithm apply F to the old vector:

X1 = F(X0)
X2 = F(X1)
…

• Fk+1(X) = F(Fk(X))
• A fixpoint is reached when Fk(X) = Fk+1(X)

– That’s when the algorithm stops.

• Wanted: a maximal fixpoint
– Because that one is more informative/useful for performing optimizations

CIS 4521/5521: Compilers 21

Monotonicity & Termination
• Each flow function Fn maps lattice elements to lattice elements; to be

sensible is should be monotonic:
• F : L → L is monotonic iff:

ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2)
– Intuitively: “If you have more information entering a node, then you have

more information leaving the node.”

• Monotonicity lifts point-wise to the function: F : Ln → Ln
– vector (x1, x2, … , xn) ⊑ (y1, y2, … , yn) iff xi ⊑ yi for each i

• Note that F is consistent: F(X0) ⊑ X0

– So each iteration moves at least one step down the lattice (for some
component of the vector)

– … ⊑ F(F(X0)) ⊑ F(X0) ⊑ X0

• Therefore, # steps needed to reach a fixpoint is at most the height H of
L times the number of nodes: O(Hn)

CIS 4521/5521: Compilers 22

Building Lattices?
• Information about individual nodes or variables can be lifted

pointwise:
– If L is a lattice, then so is { f : X → L } where f ⊑ g if and only if

f(x) ⊑ g(x) for all x ∊ X.

• Like types, the dataflow lattices are static approximations to the
dynamic behavior:
– Could pick a lattice based on subtyping:

– Or other information:

• Points in the lattice are sometimes called dataflow “facts”

Zdancewic CIS 4521/5521: Compilers 23

Any

Int

Neg Zero Pos

Bool

True False

<:

<:
<:

:>

:> :>

:>

Aliased

Unaliased

“Classic” Constant Propagation
• Constant propagation can be formulated as a dataflow analysis.

• Idea: propagate and fold integer constants in one pass:
x = 1; x = 1;
y = 5 + x; y = 6;
z = y * y; z = 36;

• Information about a single variable:
– Variable is never defined.
– Variable has a single, constant value.
– Variable is assigned multiple values.

CIS 4521/5521: Compilers 24

Domains for Constant Propagation
• We can make a constant propagation lattice L for one variable like

this:

• To accommodate multiple variables, we take the product lattice, with
one element per variable.
– Assuming there are three variables, x, y, and z, the elements of the

product lattice are of the form (ℓx, ℓy, ℓz).
– Alternatively, think of the product domain as a context that maps variable

names to their “abstract interpretations”

• What are “meet” and “join” in this product lattice?

• What is the height of the product lattice?

CIS 4521/5521: Compilers 25

⟙ = multiple values

⟘ = never defined

…, -3, -2, -1, 0, 1, 2, 3, …

Flow Functions
• Consider the node x = y op z
• F(ℓx, ℓy, ℓz) = ?

• F(ℓx, ⟙, ℓz) = (⟙, ⟙, ℓz)
• F(ℓx, ℓy, ⟙) = (⟙, ℓy, ⟙)

• F(ℓx, ⟘, ℓz) = (⟘, ⟘, ℓz)
• F(ℓx, ℓy, ⟘) = (⟘, ℓy, ⟘)

• F(ℓx, i, j) = (i op j, i, j)

• Flow functions for the other nodes are easy…
• Monotonic?
• Distributes over meets?

CIS 4521/5521: Compilers 26

“If either input might have multiple values
the result of the operation might too.”

“If either input is undefined
the result of the operation is too.”

”If the inputs are known constants,
calculate the output statically.”

QUALITY OF DATAFLOW
ANALYSIS SOLUTIONS

Zdancewic CIS 4521/5521: Compilers 27

Best Possible Solution
• Suppose we have a control-flow graph.
• If there is a path p1 starting from the

root node (entry point of the function)
traversing the nodes
n0, n1, n2, … nk

• The best possible information along
the path p1 is:
ℓp1 = Fnk(…Fn2(Fn1(Fn0(T)))…)

• Best solution at the output is some
ℓ ⊑ ℓp for all paths p.

• Meet-over-paths (MOP) solution:

⨅p∈paths_to[n]ℓp

CIS 4521/5521: Compilers 28

e = 1

if x > 0

e = y * 5e = y * 3

e = y * x

1

2

3 4

5

Best answer here is:

F5(F3(F2(F1(T)))) ⨅ F5(F4(F2(F1(T))))

What about quality of iterative solution?

• Does the iterative solution: out[n] = Fn(⨅n’∈pred[n]out[n’]) compute the
MOP solution?

• MOP Solution: ⨅p∈paths_to[n] ℓp

• Answer: Yes, if the flow functions distribute over ⨅
– Distributive means: ⨅i Fn(ℓi) = Fn(⨅i ℓi)

– Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in
the control flow graph might mean there are infinitely many paths…)

• Not all analyses give MOP solution
– They are more conservative.

CIS 4521/5521: Compilers 29

Reaching Definitions is MOP
• Fn[x] = gen[n] ∪ (x - kill[n])

• Does Fn distribute over meet ⨅ =∪?

• Fn[x ⨅ y]
 = gen[n] ∪ ((x ∪ y) - kill[n])
 = gen[n] ∪ ((x - kill[n]) ∪ (y - kill[n]))
 = (gen[n] ∪(x - kill[n])) ∪ (gen[n]∪(y - kill[n])
 = Fn[x] ∪ Fn[y]

 = Fn[x] ⨅ Fn[y]

• Therefore: Reaching Definitions with iterative analysis always
terminates with the MOP (i.e. best) solution.

CIS 4521/5521: Compilers 30

Constprop Iterative Solution

CIS 4521/5521: Compilers 31

z = 1z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(⟘, 1, 2) ⨅ (⟘, 2, 1) = (⟘, ⟙, ⟙)

(⟙, ⟙, ⟙) iterative solution

MOP Solution ≠ Iterative Solution

CIS 4521/5521: Compilers 32

z = 1z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(3, 1, 2) ⨅ (3, 2, 1) = (3, ⟙, ⟙) MOP solution

Why not compute MOP Solution?
• If MOP is better than the iterative analysis, why not compute it instead?

– ANS: exponentially many paths (even in graph without loops)

• O(n) nodes
• O(n) edges
• O(2n) paths*

– At each branch
there is a choice
of 2 directions

Zdancewic CIS 4521/5521: Compilers 33

* Incidentally, a similar idea
can be used to force ML / Haskell
type inference to need to construct
a type that is exponentially big
in the size of the program!

Dataflow Analysis: Summary
• Many dataflow analyses fit into a common framework.
• Key idea: Iterative solution of a system of equations over a lattice of

constraints.
– Iteration terminates if flow functions are monotonic.
– Solution is equivalent to meet-over-paths answer if the flow functions

distribute over meet (⨅).

• Dataflow analyses as presented work for an “imperative” intermediate
representation.
– The values of temporary variables are updated (“mutated”) during

evaluation.
– Such mutation complicates calculations
– SSA = “Single Static Assignment” eliminates this problem, by introducing

more temporaries – each one assigned to only once.
– Next up: Converting to SSA, finding loops and dominators in CFGs

CIS 4521/5521: Compilers 34

IMPLEMENTATION

Zdancewic CIS 341: Compilers 35

See HW6: Dataflow Analysis

REGISTER ALLOCATION

Zdancewic CIS 341: Compilers 36

Register Allocation Problem
• Given: an IR program that uses an unbounded number of temporaries

– e.g. the uids of our LLVM programs

• Find: a mapping from temporaries to machine registers such that
– program semantics is preserved (i.e. the behavior is the same)
– register usage is maximized
– moves between registers are minimized
– calling conventions / architecture requirements are obeyed

• Stack Spilling
– If there are k registers available and m > k temporaries are live at the same

time, then not all of them will fit into registers.
– So: "spill" the excess temporaries to the stack.

Zdancewic CIS 341: Compilers 37

Linear-Scan Register Allocation
Simple, greedy register-allocation strategy:

1. Compute liveness information: live(x)
– recall: live(x)is the set of uids that are live on entry to x's definition

2. Let pal be the set of usable registers
– usually reserve a couple for spill code [our implementation uses rax,rcx]

3. Maintain "layout" uid_loc that maps uids to locations
– locations include registers and stack slots n, starting at n=0

4. Scan through the program. For each instruction that defines a uid x
– used = {r | reg r = uid_loc(y) s.t. y ∈ live(x)}

– available = pal - used
– If available is empty: // no registers available, spill

 uid_loc(x) := slot n ; n = n + 1
– Otherwise, pick r in available: // choose an available register

 uid_loc(x) := reg r

Zdancewic CIS 341: Compilers 38

For HW6
• HW 6 implements two naive register allocation strategies:

– none: spill all registers
– greedy: uses linear scan

• Also offers choice of liveness
– trivial: assume all variables are live everywhere
– dataflow: use the dataflow algorithms

• Your job: do "better" than these.
• Quality Metric:

– first, minimize memory accesses
– then prioritize for shorter code

• Linear scan is OK
– but… how can we do better?

Zdancewic CIS 341: Compilers 39

GRAPH COLORING

Zdancewic CIS 341: Compilers 40

Register Allocation

Basic process:
1. Compute liveness information for each temporary.

2. Create an interference graph:
– Nodes are temporary variables.
– There is an edge between node n and m if n is live at the same time as m

3. Try to color the graph
– Each color corresponds to a register

4. In case step 3. fails, “spill” a register to the stack and repeat the
whole process.

5. Rewrite the program to use registers

CIS 341: Compilers 41

Interference Graphs
• Nodes of the graph are %uids
• Edges connect variables that interfere with each other

– Two variables interfere if their live ranges intersect (i.e. there is an edge in
the control-flow graph across which they are both live).

• Register assignment is a graph coloring.
– A graph coloring assigns each node in the graph a color (register)
– Any two nodes connected by an edge must have different colors.

• Example:

CIS 341: Compilers 42

%b1 = add i32 %a, 2

%c = mult i32 %b1, %b1

%b2 = add i32 %c, 1

%ans = mult i32 %b2, %a

return %ans;

// live = {%a}
%b1 = add i32 %a, 2
// live = {%a,%b1}
%c = mult i32 %b1, %b1
// live = {%a,%c}
%b2 = add i32 %c, 1
// live = {%a,%b2}
%ans = mult i32 %b2, %a
// live = {%ans}
return %ans;

Interference Graph

%a

%b1 %b2 %c

%ans

2-Coloring of the graph
red = r8
yellow = r9

%a

%b1 %b2 %c

%ans

Register Allocation Questions
• Can we efficiently find a k-coloring of the graph whenever possible?

– Answer: in general the problem is NP-complete (it requires search)
– But, we can do an efficient approximation using heuristics.

• How do we assign registers to colors?
– If we do this in a smart way, we can eliminate redundant MOV

instructions.

• What do we do when there aren’t enough colors/registers?
– We have to use stack space, but how do we do this effectively?

CIS 341: Compilers 43

Coloring a Graph: Kempe’s Algorithm
Kempe [1879] provides this algorithm for K-coloring a graph.
It’s a recursive algorithm that works in three steps:
1. Find a node with degree < K and cut it out of the graph.

– Remove the nodes and edges.
– This is called simplifying the graph

2. Recursively K-color the remaining subgraph
3. When remaining graph is colored, there must be at least one free

color available for the deleted node (since its degree was < K). Pick
such a color.

CIS 341: Compilers 44

Example: 3-color this Graph

CIS 341: Compilers 45

Recursing Down the Simplified Graphs

Example: 3-color this Graph

CIS 341: Compilers 46

Assigning Colors on the way back up.

Failure of the Algorithm
• If the graph cannot be colored, it will simplify to a graph where every

node has at least K neighbors.
– This can happen even when the graph is K-colorable!
– This is a symptom of NP-hardness (it requires search)

• Example: When trying to 3-color this graph:

CIS 341: Compilers 47

?

Spilling
• Idea: If we can’t K-color the graph, we need to store one temporary

variable on the stack.
• Which variable to spill?

– Pick one that isn’t used very frequently
– Pick one that isn’t used in a (deeply nested) loop
– Pick one that has high interference

(since removing it will make the graph easier to color)

• In practice: some weighted combination of these criteria

• When coloring:
– Mark the node as spilled
– Remove it from the graph
– Keep recursively coloring

CIS 341: Compilers 48

Spilling, Pictorially
• Select a node to spill
• Mark it and remove it from the graph
• Continue coloring

CIS 341: Compilers 49

X

Optimistic Coloring
• Sometimes it is possible to color a node marked for spilling.

– If we get “lucky” with the choices of colors made earlier.

• Example: When 2-coloring this graph:

• Even though the node was marked for spilling, we can color it.
• So: on the way down, mark for spilling, but don’t actually spill…

CIS 341: Compilers 50

X

…
X

Accessing Spilled Registers
• If optimistic coloring fails, we need to generate code to move the

spilled temporary to & from memory.
• Option 1: Reserve registers specifically for moving to/from memory.

– Con: Need at least two registers (one for each source operand of an
instruction), so decreases total # of available registers by 2.

– Pro: Only need to color the graph once.
– Not good on 32bit x86 because there are too few registers & too many

constraints on how they can be used.
– OK on 64bit x86 and other processors. (We use this for HW6)

• Option 2: Rewrite the program to use a new temporary variable, with
explicit moves to/from memory.
– Pro: Need to reserve fewer registers.
– Con: Introducing temporaries changes live ranges, so must recompute

liveness & recolor graph

CIS 341: Compilers 51

Example Spill Code
• Suppose temporary t is marked for spilling to stack slot

located at [rbp+offs]
• Rewrite the program like this:

t = a op b; t = a op b // defn. of t
… Mov [rbp+offs], t
 …
x = t op c Mov t37, [rbp+offs] // use 1 of t
… x = t37 op c
 …
y = d op t Mov t38, [rbp+offs] // use 2 of t
 y = d op t38

• Here, t37 and t38 are freshly generated temporaries that
replace t for different uses of t.

• Rewriting the code in this way breaks t’s live range up:
 t, t37, t38 are only live across one edge

CIS 341: Compilers 52

Precolored Nodes
• Some variables must be pre-assigned to registers.

– E.g. on X86 the multiplication instruction: IMul must define %rax
– The “Call” instruction should kill the caller-save registers %rax, %rcx,

%rdx.
– Any temporary variable live across a call interferes with the caller-save

registers.

• To properly allocate temporaries, we treat registers as nodes in the
interference graph with pre-assigned colors.
– Pre-colored nodes can’t be removed during simplification.
– Trick: Treat pre-colored nodes as having “infinite” degree in the

interference graph – this guarantees they won’t be simplified.
– When the graph is empty except the pre-colored nodes, we have reached

the point where we start coloring the rest of the nodes.

CIS 341: Compilers 53

Picking Good Colors
• When choosing colors during the coloring phase, any choice is

semantically correct, but some choices are better for performance.
• Example:

movq t1, t2
– If t1 and t2 can be assigned the same register (color) then this move is

redundant and can be eliminated.

• A simple color choosing strategy that helps eliminate such moves:
– Add a new kind of “move related” edge between the nodes for t1 and t2

in the interference graph.
– When choosing a color for t1 (or t2), if possible, pick a color of an already

colored node reachable by a move-related edge.

CIS 341: Compilers 54

Example Color Choice
• Consider 3-coloring this graph, where the dashed edge indicates that

there is a Mov from one temporary to another.

• After coloring the rest, we have a choice:
– Picking yellow is better than red because it will eliminate a move.

CIS 341: Compilers 55

Move
related
edge

?

Coalescing Interference Graphs
• A more aggressive strategy is to coalesce nodes of the interference

graph if they are connected by move-related edges.
– Coalescing the nodes forces the two temporaries to be assigned the same

register.

• Idea: interleave simplification and coalescing to maximize the
number of moves that can be eliminated.

• Problem: coalescing can sometimes increase the degree of a
node.

CIS 341: Compilers 56

t

u t,u

a b

c

a b

c

Conservative Coalescing
• Two strategies are guaranteed to preserve the k-colorability of the

interference graph.

1. Brigg’s strategy: It's safe to coalesce x & y if the resulting node will
have fewer than k neighbors (with degree ≥ k).

2. George’s strategy: We can safely coalesce x & y if for every neighbor
t of x, either t already interferes with y or t has degree < k.

CIS 341: Compilers 57

Complete Register Allocation Algorithm
1. Build interference graph (precolor nodes as necessary).

– Add move related edges
2. Reduce the graph (building a stack of nodes to color).

1. Simplify the graph as much as possible without removing nodes that are
move related (i.e. have a move-related neighbor). Remaining nodes are
high degree or move-related.

2. Coalesce move-related nodes using Brigg’s or George’s strategy.
3. Coalescing can reveal more nodes that can be simplified, so repeat 2.1

and 2.2 until no node can be simplified or coalesced.
4. If no nodes can be coalesced freeze (remove) a move-related edge and

keep trying to simplify/coalesce.
3. If there are non-precolored nodes left, mark one for spilling, remove

it from the graph and continue doing step 2.
4. When only pre-colored node remain, start coloring (popping

simplified nodes off the top of the stack).
1. If a node must be spilled, insert spill code as on slide 14 and rerun the

whole register allocation algorithm starting at step 1.

CIS 341: Compilers 58

Last details
• After register allocation, the compiler should do a peephole

optimization pass to remove redundant moves.
• Some architectures specify calling conventions that use registers to

pass function arguments.
– It’s helpful to move such arguments into temporaries in the function

prelude so that the compiler has as much freedom as possible during
register allocation. (Not an issue on X86, though.)

CIS 341: Compilers 59

