
CIS 4521/5521: COMPILERS
Lecture 24

Announcements

• HW6: Analysis & Optimizations
– Alias analysis, constant propagation, dead code elimination, register

allocation
– Due: Wednesday, April 30th at 10:00pm
– Posted test case due Tuesday, April 29th at 10:00pm

• Lecture Cancelled 4/24
– Dr. Zdancewic will be out of town

• Final Exam:
– According to registrar: Thursday, May 8th noon - 2:00pm
– Coverage: emphasizes material since the midterm
– Cheat sheet: one, hand-written, double-sided, letter-sized page of notes

Zdancewic CIS 4521/5521: Compilers 2

REGISTER ALLOCATION

Zdancewic CIS 4521/5521: Compilers 3

Moving Towards Register Allocation
• The OAT compiler currently generates as many temporary variables as

it needs
– These are the %uids you should be very familiar with by now.

• Current compilation strategy:
– Each %uid maps to a stack location.
– This yields programs with many loads/stores to memory.
– Very inefficient.

• Ideally, we’d like to map as many %uid’s as possible into registers.
– Eliminate the use of the alloca instruction?
– Only 16 max registers available on 64-bit X86
– %rsp and %rbp are reserved and some have special semantics, so really

only 10 or 12 available
– This means that a register must hold more than one slot

• When is this safe?

CIS 4521/5521: Compilers 4

Register Allocation Problem
• Given: an IR program that uses an unbounded number of temporaries

– e.g. the uids of our LLVM programs

• Find: a mapping from temporaries to machine registers such that
– program semantics is preserved (i.e. the behavior is the same)
– register usage is maximized
– moves between registers are minimized
– calling conventions / architecture requirements are obeyed

• Stack Spilling
– If there are k registers available and m > k temporaries are live at the same

time, then not all of them will fit into registers.
– So: "spill" the excess temporaries to the stack.

Zdancewic CIS 4521/5521: Compilers 5

Example of Register Allocation

• Takes advantage of knowledge of calling
conventions to avoid moving data.
– e.g. %x1 is in %rdi, %x2 is in %rsi, etc.
– leaves %x7 and %x8 on the stack

• Assigns %1 to %rsi
 %2, %3, … %7 all to %rdx

Zdancewic CIS 4521/5521: Compilers 6

define i64 @baz(i64 %x1, i64 %x2, i64 %x3, i64 %x4,
 i64 %x5, i64 %x6, i64 %x7, i64 %x8) {
%1 = add i64 %x1, %x2

 %2 = add i64 %1, %x3
 %3 = add i64 %2, %x4
 %4 = add i64 %3, %x5
 %5 = add i64 %4, %x6
 %6 = add i64 %5, %x7
 %7 = add i64 %6, %x8
 ret i64 %7
}

_baz:
 pushq %rbp
 movq %rsp, %rbp
 subq $8, %rsp
 movq %rcx, -8(%rbp)
 addq %rdi, %rsi
 addq %rsi, %rdx
 addq -8(%rbp), %rdx
 addq %r8 , %rdx
 addq %r9 , %rdx
 addq 16(%rbp), %rdx
 addq 24(%rbp), %rdx
 movq %rdx, %rax
 movq %rbp, %rsp
 popq %rbp
 retq

source LLVM IR code resulting x86 assembly

Exploiting Liveness

Zdancewic CIS 4521/5521: Compilers 7

define i64 @baz(i64 %x1, i64 %x2, i64 %x3, i64 %x4, i64 %x5, i64 %x6, i64 %x7, i64 %x8) {
{_entry={%x1, %x2, %x3, %x4, %x5, %x6, %x7, %x8}
 IN : {%x1, %x2, %x3, %x4, %x5, %x6, %x7, %x8}
 %1 = add i64 %x1, %x2
 OUT: {%1, %x3, %x4, %x5, %x6, %x7, %x8}
 IN : {%1, %x3, %x4, %x5, %x6, %x7, %x8}
 %2 = add i64 %1, %x3
 OUT: {%2, %x4, %x5, %x6, %x7, %x8}
 IN : {%2, %x4, %x5, %x6, %x7, %x8}
 %3 = add i64 %2, %x4
 OUT: {%3, %x5, %x6, %x7, %x8}
 IN : {%3, %x5, %x6, %x7, %x8}
 %4 = add i64 %3, %x5
 OUT: {%4, %x6, %x7, %x8}
 IN : {%4, %x6, %x7, %x8}
 %5 = add i64 %4, %x6
 OUT: {%5, %x7, %x8}
 IN : {%5, %x7, %x8}
 %6 = add i64 %5, %x7
 OUT: {%6, %x8}
 IN : {%6, %x8}
 %7 = add i64 %6, %x8
 OUT: {%7}
 IN : {%7}
 ret i64 %7
 OUT: {}

}

Results of running the
printanalysis tool from HW6
on the example code from
llprograms/call6.ll

Observe:
 - %x2 and %1 are not live at the same time
 - none of %2, …, %7 are live at the same time

Linear-Scan Register Allocation
Simple, greedy register-allocation strategy:

1. Compute liveness information: live(x)
– recall: live_out(x)is the set of uids that are live on exit from x's

definition

2. Let pal be the set of usable registers
– usually reserve a couple for spill code [our implementation uses rax,rcx]

3. Maintain "layout" uid_loc that maps uids to locations
– locations include registers and stack slots n, starting at n=0

4. Scan through the program. For each instruction that defines a uid x
– used = {r | reg r = uid_loc(y) s.t. y ∈ live_out(x)}
– available = pal - used
– If available is empty: // no registers available, spill

 uid_loc(x) := slot n ; n = n + 1
– Otherwise, pick r in available: // choose an available register

 uid_loc(x) := reg r

Zdancewic CIS 4521/5521: Compilers 8

For HW6
• HW 6 implements two naive register allocation strategies:

– none: spill all registers
– greedy: uses (a slightly "nerfed" version of) linear scan

• Also offers choice of liveness
– trivial: assume all variables are live everywhere
– dataflow: use the dataflow algorithms

• Your job: do "better" than these.
– To beat "greedy" on small programs – it is necessary to take into account

the calling conventions

• Quality Metric - lower score is better:
– total number of memory accesses

(Ind2 and Ind3 operands, Push/Pop)
– ties broken by total number of instructions

• Linear scan is OK (and can be optimal if it gets lucky)
– but… how can we do better?

Zdancewic CIS 4521/5521: Compilers 9

Linear Scan vs. "nerfed" Linear Scan

Zdancewic CIS 4521/5521: Compilers 10

define i64 @baz(i64 %x1, i64 %x2, i64 %x3, i64 %x4,
 i64 %x5, i64 %x6, i64 %x7, i64 %x8) {
 %1 = add i64 %x1, %x2
 %2 = add i64 %1, %x3
 %3 = add i64 %2, %x4
 %4 = add i64 %3, %x5
 %5 = add i64 %4, %x6
 %6 = add i64 %5, %x7
 %7 = add i64 %6, %x8
 ret i64 %7
}

_baz:
 pushq %rbp
 movq %rsp, %rbp
 subq $8, %rsp
 movq %rcx, -8(%rbp)
 movq %rdi, %r10
 addq %rsi, %r10
 movq %r10, %rsi
 addq %rdx, %rsi
 movq %rsi, %rdx
 addq -8(%rbp), %rdx
 movq %rdx, %rsi
 addq %r8 , %rsi
 movq %rsi, %rdx
 addq %r9 , %rdx
 movq %rdx, %rsi
 addq 16(%rbp), %rsi
 movq %rsi, %rdx
 addq 24(%rbp), %rdx
 movq %rdx, %rax
 movq %rbp, %rsp
 popq %rbp
 retq

source LLVM IR code

resulting x86 assembly

"nerfed"
Linear Scan

_baz:
 pushq %rbp
 movq %rsp, %rbp
 subq $8, %rsp
 movq %rcx, -8(%rbp)
 addq %rdi, %rsi
 addq %rsi, %rdx
 addq -8(%rbp), %rdx
 addq %r8 , %rdx
 addq %r9 , %rdx
 addq 16(%rbp), %rdx
 addq 24(%rbp), %rdx
 movq %rdx, %rax
 movq %rbp, %rsp
 popq %rbp
 retq

Linear Scan

GRAPH COLORING

Zdancewic CIS 4521/5521: Compilers 11

Register Allocation

Basic process:
1. Compute liveness information for each temporary.

2. Create an interference graph:
– Nodes are temporary variables.
– There is an edge between node n and m if n is live at the same time as m

3. Try to color the graph
– Each color corresponds to a register

4. In case step 3. fails, “spill” a register to the stack and repeat the
whole process.

5. Rewrite the program to use registers

CIS 4521/5521: Compilers 12

Interference Graphs
• Nodes of the graph are %uids
• Edges connect variables that interfere with each other

– Two variables interfere if their live ranges intersect (i.e. there is an edge in
the control-flow graph across which they are both live).

• Register assignment is a graph coloring.
– A graph coloring assigns each node in the graph a color (register)
– Any two nodes connected by an edge must have different colors.

• Example:

CIS 4521/5521: Compilers 13

%b1 = add i32 %a, 2

%c = mult i32 %b1, %b1

%b2 = add i32 %c, 1

%ans = mult i32 %b2, %a

return %ans;

// live = {%a}
%b1 = add i32 %a, 2
// live = {%a,%b1}
%c = mult i32 %b1, %b1
// live = {%a,%c}
%b2 = add i32 %c, 1
// live = {%a,%b2}
%ans = mult i32 %b2, %a
// live = {%ans}
return %ans;

Interference Graph

%a

%b1 %b2 %c

%ans

2-Coloring of the graph
red = r8
yellow = r9

%a

%b1 %b2 %c

%ans

Even better: take calling
conventions into account and
put %ans in %rax.

Register Allocation Questions
• Can we efficiently find a k-coloring of the graph whenever possible?

– Answer: in general the problem is NP-complete (it requires search)
– But, we can do an efficient approximation using heuristics.

• How do we assign registers to colors?
– If we do this in a smart way, we can eliminate redundant MOV

instructions.

• What do we do when there aren’t enough colors/registers?
– We have to use stack space, but how do we do this effectively?

CIS 4521/5521: Compilers 14

Coloring a Graph: Kempe’s Algorithm
Kempe [1879] provides this algorithm for K-coloring a graph.
It’s a recursive algorithm that works in three steps:
1. Find a node with degree < K and cut it out of the graph.

– Remove the nodes and edges.
– This is called simplifying the graph

2. Recursively K-color the remaining subgraph
3. When remaining graph is colored, there must be at least one free

color available for the deleted node (since its degree was < K). Pick
such a color.

CIS 4521/5521: Compilers 15

Example: 3-color this Graph

CIS 4521/5521: Compilers 16

Recursing Down the Simplified Graphs

Example: 3-color this Graph

CIS 4521/5521: Compilers 17

Assigning Colors on the way back up.

Failure of the Algorithm
• If the graph cannot be colored, it will simplify to a graph where every

node has at least K neighbors.
– This can happen even when the graph is K-colorable!
– This is a symptom of NP-hardness (it requires search)

• Example: When trying to 3-color this graph:

CIS 4521/5521: Compilers 18

?

Spilling
• Idea: If we can’t K-color the graph, we need to store one temporary

variable on the stack.
• Which variable to spill?

– Pick one that isn’t used very frequently
– Pick one that isn’t used in a (deeply nested) loop
– Pick one that has high interference

(since removing it will make the graph easier to color)

• In practice: some weighted combination of these criteria

• When coloring:
– Mark the node as spilled
– Remove it from the graph
– Keep recursively coloring

CIS 4521/5521: Compilers 19

Spilling, Pictorially
• Select a node to spill
• Mark it and remove it from the graph
• Continue coloring

CIS 4521/5521: Compilers 20

X

Optimistic Coloring
• Sometimes it is possible to color a node marked for spilling.

– If we get “lucky” with the choices of colors made earlier.

• Example: When 2-coloring this graph:

• Even though the node was marked for spilling, we can color it.
• So: on the way down, mark for spilling, but don’t actually spill…

CIS 4521/5521: Compilers 21

X

…
X

Accessing Spilled Registers
• If optimistic coloring fails, we need to generate code to move the

spilled temporary to & from memory.
• Option 1: Reserve registers specifically for moving to/from memory.

– Con: Need at least two registers (one for each source operand of an
instruction), so decreases total # of available registers by 2.

– Pro: Only need to color the graph once.
– Not good on 32bit x86 because there are too few registers & too many

constraints on how they can be used.
– OK on 64bit x86 and other processors. (We use this for HW6)

• Option 2: Rewrite the program to use a new temporary variable, with
explicit moves to/from memory.
– Pro: Need to reserve fewer registers.
– Con: Introducing temporaries changes live ranges, so must recompute

liveness & recolor graph

CIS 4521/5521: Compilers 22

Example Spill Code
• Suppose temporary t is marked for spilling to stack slot

located at [rbp+offs]
• Rewrite the program like this:

t = a op b; t = a op b // defn. of t
… Mov [rbp+offs], t
 …
x = t op c Mov t37, [rbp+offs] // use 1 of t
… x = t37 op c
 …
y = d op t Mov t38, [rbp+offs] // use 2 of t
 y = d op t38

• Here, t37 and t38 are freshly generated temporaries that
replace t for different uses of t.

• Rewriting the code in this way breaks t’s live range up:
 t, t37, t38 are only live across one edge

CIS 4521/5521: Compilers 23

Precolored Nodes
• Some variables must be pre-assigned to registers.

– e.g., on x86 the shift instructions must use %rcx

• To properly allocate temporaries, we treat registers as nodes in the
interference graph with pre-assigned colors.
– Pre-colored nodes can’t be removed during simplification.
– When the graph is empty except the pre-colored nodes, we have reached

the point where we start coloring the rest of the nodes.

CIS 4521/5521: Compilers 24

Picking Good Colors
• When choosing colors during the coloring phase, any choice is

semantically correct, but some choices are better for performance.
• Example:

movq t1, t2
– If t1 and t2 can be assigned the same register (color) then this move is

redundant and can be eliminated.

• A simple color choosing strategy that helps eliminate such moves:
– Add a new kind of “move related” edge between the nodes for t1 and t2

in the interference graph.
– When choosing a color for t1 (or t2), if possible, pick a color of an already

colored node reachable by a move-related edge.

CIS 4521/5521: Compilers 25

Example Color Choice
• Consider 3-coloring this graph, where the dashed edge indicates that

there is a Mov from one temporary to another.

• After coloring the rest, we have a choice:
– Picking yellow is better than red because it will eliminate a move.

CIS 4521/5521: Compilers 26

Move
related
edge

?

Coalescing Interference Graphs
• A more aggressive strategy is to coalesce nodes of the interference

graph if they are connected by move-related edges.
– Coalescing the nodes forces the two temporaries to be assigned the same

register.

• Idea: interleave simplification and coalescing to maximize the
number of moves that can be eliminated.

• Problem: coalescing can sometimes increase the degree of a
node.

CIS 4521/5521: Compilers 27

t

u t,u

a b

c

a b

c

Conservative Coalescing
• Two strategies are guaranteed to preserve the k-colorability of the

interference graph.

1. Brigg’s strategy: It's safe to coalesce x & y if the resulting node will
have fewer than k neighbors (with degree ≥ k).

2. George’s strategy: We can safely coalesce x & y if for every neighbor
t of x, either t already interferes with y or t has degree < k.

CIS 4521/5521: Compilers 28

Complete Register Allocation Algorithm
1. Build interference graph (precolor nodes as necessary).

– Add move related edges
2. Reduce the graph (building a stack of nodes to color).

1. Simplify the graph as much as possible without removing nodes that are
move related (i.e. have a move-related neighbor). Remaining nodes are
high degree or move-related.

2. Coalesce move-related nodes using Brigg’s or George’s strategy.
3. Coalescing can reveal more nodes that can be simplified, so repeat 2.1

and 2.2 until no node can be simplified or coalesced.
4. If no nodes can be coalesced freeze (remove) a move-related edge and

keep trying to simplify/coalesce.
3. If there are non-precolored nodes left, mark one for spilling, remove

it from the graph and continue doing step 2.
4. When only pre-colored node remain, start coloring (popping

simplified nodes off the top of the stack).
1. If a node must be spilled, insert spill code as on slide 14 and rerun the

whole register allocation algorithm starting at step 1.

CIS 4521/5521: Compilers 29

Details for HW6
• New backend code generator uses a PMov instruction for

– Function Declaration:
moving arguments from calling convention registers to their allocated
slots

– Compiling a Call instruction:
moving arguments from their allocated slot to their locations according to
the calling conventions

• Therefore, to do well, your allocation strategy should prefer to put
%uid values in locations that work well for the calling conventions.

Zdancewic CIS 4521/5521: Compilers 30

PMov Instruction
• The PMov instruction:

– takes a list of "assignments"
(dst1 ← src1) (dst2 ← src2) (dst3 ← src3)… (dstn ← srcn)

– generates relatively efficient code to shuffle all of the srci to the
corresponding dsti

Zdancewic CIS 4521/5521: Compilers 31

ol ol' 2 2 3 2
x <- y x <- y w <- x MOV x, w MOV x, w MOV x, w
z <- z ==> z <- z ==> ------ ==> -------- ==> PUSH y ==> PUSH y
w <- x w <- x x <- y x <- y y <- z MOV z, y
y <- z y <- z y <- z y <- z POP x POP x

Algorithm:
1. filter out

• srcs already in the right location
• moves to destinations that aren't live

2. emit "ready" moves
• dst is not also a src (so no collision)

3. if none are ready:
• push src of first move
• recursively process results
• pop src into its dst

LOOPS AND DOMINATORS

Zdancewic CIS 4521/5521: Compilers 32

Loops in Control-flow Graphs
• Taking into account loops is important for optimizations.

– The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at the AST level or at a lower
representation?
– Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them.

• Loops may be hard to recognize at the quadruple / LLVM IR level.
– Many kinds of loops: while, do/while, for, continue, goto…

• Problem: How do we identify loops in the control-flow graph?

CIS 4521/5521: Compilers 33

Definition of a Loop
• A loop is a set of nodes in the control flow graph.

– One distinguished entry point called the header

• Every node is reachable
from the header &
the header is reachable
from every node.
– A loop is a strongly

connected component

• No edges enter the loop
except to the header

• Nodes with outgoing edges
are called loop exit nodes

CIS 4521/5521: Compilers 34

header

exit node

loop
nodes

Nested Loops
• Control-flow graphs may contain many loops
• Loops may contain other loops:

CIS 4521/5521: Compilers 35

Control Tree:

The control tree
depicts the nesting
structure of the
program.

Control-flow Analysis
• Goal: Identify the loops and nesting structure of the CFG.

• Control flow analysis is based on the idea of dominators:
• Node A dominates node B if the only way to reach B from the start

node is through node A.

• An edge in the graph
is a back edge if the
target node dominates
the source node.

• A loop contains at least
one back edge.

CIS 4521/5521: Compilers 36

Back Edge

Dominator Trees
• Domination is transitive:

– if A dominates B and B dominates C then A dominates C

• Domination is anti-symmetric:
– if A dominates B and B dominates A then A = B

• Every flow graph has a dominator tree
– The Hasse diagram of the dominates relation

CIS 4521/5521: Compilers 37

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Dominator Dataflow Analysis
• We can define Dom[n] as a forward dataflow analysis.

– Using the framework we saw earlier: Dom[n] = out[n] where:

• “A node B is dominated by another node A if A dominates all of the
predecessors of B.”

– in[n] := ∩n’∈pred[n]out[n’]

• “Every node dominates itself.”
– out[n] := in[n] ∪ {n}

• Formally: L = set of nodes ordered by ⊆
– T = {all nodes}
– Fn(x) = x ∪ {n}
– ⨅ is ∩

• Easy to show monotonicity and that Fn distributes over meet.
– So algorithm terminates and is MOP

CIS 4521/5521: Compilers 38

Improving the Algorithm
• Dom[b] contains just those nodes along the path in the dominator tree

from the root to b:
– e.g., Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
– There is a lot of sharing among the nodes

• More efficient way to represent Dom sets is
to store the dominator tree.
– doms[b] = immediate dominator of b
– doms[8] = 4, doms[7] = 5

• To compute Dom[b] walk through doms[b]
• Need to efficiently compute intersections

 of Dom[a] and Dom[b]
– Traverse up tree, looking for least common

ancestor:
– Dom[8] ∩Dom[7] = Dom[4]

• See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and
Kennedy

CIS 4521/5521: Compilers 39

1

2

3 4

5 6

7 8

9 0

Completing Control-flow Analysis
• Dominator analysis identifies back edges:

– Edge n à h where h dominates n

• Each back edge has a natural loop:
– h is the header
– All nodes reachable from h that also reach

n without going through h

• For each back edge n à h, find the natural loop:
– {n’ | n is reachable from n’ in G – {h}} ∪ {h}

• Two loops may share the same header:
merge them

• Nesting structure of loops is determined by set inclusion
– Can be used to build the control tree

CIS 4521/5521: Compilers 40

h

n

h

n m

Example Natural Loops

CIS 4521/5521: Compilers 41

1

2

3 4

5 6

7 8

9 0

Control Tree:

The control tree
depicts the nesting
structure of the
program.

Natural Loops

Uses of Control-flow Information
• Loop nesting depth plays an important role in optimization heuristics.

– Deeply nested loops pay off the most for optimization.

• Need to know loop headers / back edges for doing
– loop invariant code motion
– loop unrolling

• Dominance information also plays a role in converting to SSA form
– Used internally by LLVM to do register allocation.

CIS 4521/5521: Compilers 42

