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Announcements

• HW6: Analysis & Optimizations
– Alias analysis, constant propagation, dead code elimination, register 

allocation
– Due: Wednesday, April 30th at 10:00pm
– Posted test case due Tuesday, April 29th at 10:00pm

• Lecture Cancelled this Thursday - 4/24 
– Dr. Zdancewic will be out of town

• Final Exam: 
– According to registrar: Thursday, May 8th  noon - 2:00pm
– Coverage: emphasizes material since the midterm
– Cheat sheet: one, hand-written, double-sided, letter-sized page of notes
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LOOPS AND DOMINATORS
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Loops in Control-flow Graphs
• Taking into account loops is important for optimizations.

– The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at the AST level or at a lower 
representation?
– Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them.

• Loops may be hard to recognize at the quadruple / LLVM IR level.
– Many kinds of loops: while, do/while, for, continue, goto…

• Problem: How do we identify loops in the control-flow graph?
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Definition of a Loop
• A loop is a set of nodes in the control flow graph.

– One distinguished entry point called the header

• Every node is reachable 
from the header &
the header is reachable 
from every node.
– A loop is a strongly 

connected component

• No edges enter the loop 
except to the header

• Nodes with outgoing edges 
are called loop exit nodes
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Nested Loops
• Control-flow graphs may contain many loops
• Loops may contain other loops:
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Control Tree:

The control tree 
depicts the nesting
structure of the 
program.



Control-flow Analysis
• Goal: Identify the loops and nesting structure of the CFG.

• Control flow analysis is based on the idea of dominators:
• Node A dominates node B if the only way to reach B from the start 

node is through node A.

• An edge in the graph 
is a back edge if the 
target node dominates
the source node.

• A loop contains at least
one back edge.
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Dominator Trees
• Domination is transitive: 

– if A dominates B and B dominates C then A dominates C

• Domination is anti-symmetric: 
– if A dominates B and B dominates A then A = B

• Every flow graph has a dominator tree
– The Hasse diagram of the dominates relation
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Dominator Dataflow Analysis
• We can define Dom[n] as a forward dataflow analysis.

– Using the framework we saw earlier:  Dom[n] = out[n] where:

• “A node B is dominated by another node A if A dominates all of the 
predecessors of B.”

– in[n] := ∩n’∈pred[n]out[n’]

• “Every node dominates itself.”
– out[n] := in[n]  ∪ {n}

• Formally:  L = set of nodes ordered by ⊆
– T = {all nodes}
– Fn(x) = x ∪ {n}
– ⨅  is ∩ 

• Easy to show monotonicity and that Fn distributes over meet.
– So algorithm terminates and is MOP
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Improving the Algorithm
• Dom[b] contains just those nodes along the path in the dominator tree 

from the root to b:
– e.g., Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
– There is a lot of sharing among the nodes

• More efficient way to represent Dom sets is
to store the dominator tree.
– doms[b] = immediate dominator of b
– doms[8] = 4, doms[7] = 5

• To compute Dom[b] walk through doms[b]
• Need to efficiently compute intersections

 of Dom[a] and Dom[b]
– Traverse up tree, looking for least common 

ancestor:
– Dom[8] ∩Dom[7] = Dom[4]

• See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and 
Kennedy
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Completing Control-flow Analysis
• Dominator analysis identifies back edges:

– Edge n à h where h dominates n

• Each back edge has a natural loop:
– h is the header
– All nodes reachable from h that also reach

n without going through h

• For each back edge n à h, find the natural loop:
– {n’ | n is reachable from n’ in G – {h}} ∪ {h}

• Two loops may share the same header: 
merge them

• Nesting structure of loops is determined by set inclusion
– Can be used to build the control tree 
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Example Natural Loops
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Uses of Control-flow Information
• Loop nesting depth plays an important role in optimization heuristics.

– Deeply nested loops pay off the most for optimization.

• Need to know loop headers / back edges for doing
– loop invariant code motion
– loop unrolling

• Dominance information also plays a role in converting to SSA form
– Used internally by LLVM to do register allocation.
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REVISITING SSA

Zdancewic     CIS 4521/5521: Compilers    14

Phi nodes
Alloc “promotion”
Register allocation



Single Static Assignment (SSA)
• LLVM IR names (via %uids) all intermediate values computed by the 

program.
• It makes the order of evaluation explicit.
• Each %uid is assigned to only once

– Contrast with the mutable quadruple form
– Note that dataflow analyses had these kill[n] sets because of updates to 

variables…
• Naïve implementation of backend: map %uids to stack slots
• Better implementation: map %uids to registers (as much as possible)

• Question: How do we convert a source program to make maximal use 
of %uids, rather than alloca-created storage?
– two problems: control flow & location in memory

• Then: How do we convert SSA code to x86, mapping %uids to 
registers?
– Register allocation.
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Alloca vs. %UID
• Current compilation strategy:

• Directly map source variables into %uids?

• Does this always work?
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int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i64
%y = alloca i64
store i64* %x, 3
store i64* %y, 0
%x1 = load %i64* %x
%tmp1 = add i64 %x1, 1
store i64* %x, %tmp1
%x2 = load %i64* %x
%tmp2 = add i64 %x2, 2 
store i64* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i64 3, 0
%y1 = add i64 0, 0
%x2 = add i64 %x1, 1
%y2 = add i64 %x2, 2



What about If-then-else?
• How do we translate this into SSA?

• What do we put for ???
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int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i64 %y1, 1
  br label %merge
else:
  %x3 = mult i64 %y1, 2
merge:
  %z2 = %add i64 ???, 3



Phi Functions
• Solution: f functions 

– Fictitious operator, used only for analysis 
• implemented by Mov at x86 level

– Chooses among different versions of a variable based on the path by 
which control enters the phi node.
%uid = phi <ty>  v1, <label1>, … , vn, <labeln>
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int y = …
int x = …
int z = …
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;

entry:
  %y1 = …
  %x1 = …
  %z1 = …
  %p = icmp …
  br i1 %p, label %then, label %else 
then:
  %x2 = add i64 %y1, 1
  br label %merge
else:
  %x3 = mult i64 %y1, 2
merge:
  %x4 = phi i64 %x2, %then, %x3, %else
  %z2 = %add i64 %x4, 3



Phi Nodes and Loops
• Importantly, the %uids on the right-hand side of a phi node can be 

defined “later” in the control-flow graph.

– Means that %uids can hold values “around a loop”

– Scope of %uids is defined by dominance
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entry:
  %y1 = …
  %x1 = …
  br label %body

body:
  %x2 = phi i64 %x1, %entry, %x3, %body
  %x3 = add i64 %x2, %y1
  %p = icmp slt i64, %x3, 10
  br i1 %p, label %body, label %after

after:
  …  



Alloca Promotion
• Not all source variables can be allocated to registers

– If the address of the variable is taken (as permitted in C, for example)
– If the address of the variable “escapes” (by being passed to a function)

• An alloca instruction is called promotable if neither of the two 
conditions above holds

• Happily, most local variables declared in source programs are 
promotable
– That means they can be register allocated
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entry:
  %x = alloca i64          // %x cannot be promoted
  %y = call malloc(i64 8)
  %ptr = bitcast i8* %y to i64**
  store i65** %ptr, %x     // store the pointer into the heap

entry:
  %x = alloca i64        // %x cannot be promoted
  %y = call foo(i64* %x) // foo may store the pointer into the heap



Converting to SSA: Overview
• Start with the ordinary control flow graph that uses allocas

– Identify “promotable” allocas

• Compute dominator tree information
• Calculate def/use information for each such allocated variable
• Insert f functions for each variable at necessary “join points”

• Replace loads/stores to alloc’ed variables with freshly-generated 
%uids 

• Eliminate the now unneeded load/store/alloca instructions.
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Where to Place f functions? 
• Need to calculate the “Dominance Frontier”

• Node A strictly dominates node B if A dominates B and A ≠ B.
– Note: A does not strictly dominate B if A does not dominate B or A = B.

• The dominance frontier of a node B is the set of all CFG nodes y such 
that B dominates a predecessor of y but does not strictly dominate y
– Intuitively: starting at B, there is a path to y, but there is another route to y 

that does not go through B

• Write DF[n] for the dominance frontier of node n.
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Dominance Frontiers
• Example of a dominance frontier calculation results
• DF[1] = {1},   DF[2] = {1,2},   DF[3] = {2},  DF[4] = {1}, DF[5] = {8,0},

DF[6] = {8},  DF[7] = {7,0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {}

CIS 4521/5521: Compilers 23

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Control-flow Graph Dominator Tree

Dominated 
by 5

Dominated 
by 5

Dominance
frontier of 5



Algorithm For Computing DF[n]
• Assume that doms[n] stores the dominator tree (so that 

doms[n] is the immediate dominator of n in the tree)

• Adds each B to the DF sets to which it belongs

for all nodes B 
 if #(pred[B]) ≥ 2                       // (just an optimization)
  for each p ∈pred[B] {
   runner := p                         // start at the predecessor of B
   while (runner ≠ doms[B])  // walk up the tree adding B

    DF[runner] := DF[runner] ∪ {B}
         runner := doms[runner]

     }
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Insert f at Join Points
• Lift the DF[n] to a set of nodes N in the obvious way:

      DF[N] = ∪n∈NDF[n]
• Suppose that at variable x is defined at a set of nodes N.

 DF0[N] = DF[N]
 DFi+1[N] = DF[DFi[N] ∪ N]

   Let J[N] be the least fixed point of the sequence:
    DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆…
 That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N]

– J[N] is called the “join points” for the set N
• We insert f functions for the variable x at each node in J[N].

– x  = f(x, x, …, x);   (one “x” argument for each predecessor of the node)
– In practice, J[N] is never directly computed, instead you use a worklist 

algorithm that keeps adding nodes for  DFk[N] until there are no changes, just 
as in the dataflow solver.

• Intuition:  
– If N is the set of places where x is modified, then DF[N] is the places where 

phi nodes need to be added, but those also “count” as modifications of x, so 
we need to insert the phi nodes to capture those modifications too…
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Example Join-point Calculation
• Suppose the variable x is modified at nodes 3 and 6

– Where would we need to add phi nodes?

• DF0[{3,6}] = DF[{3,6}] = DF[3] ∪ DF[6] = {2,8}
• DF1[{3,6}] 

  =  DF[DF0{3,6} ∪ {3,6}] 
  =  DF[{2,3,6,8}] 
  =  DF[2] ∪ DF[3] ∪ DF[6] ∪ DF[8] 
  =  {1,2} ∪ {2} ∪ {8} ∪ {0} = {1,2,8,0}

• DF2[{3,6}] 
  =  ... 
  =  {1,2,8,0} 

• So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four 
spots.
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Join Points Pictorially
• Suppose variable x is modified at nodes {3, 6}

– frontend compiles variable x to “xptr” and uses alloca (in entry node E)
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store i64 3, %xptr

store i64 6, %xptr

%xptr = alloca i64
store i64 0, %xptr



Join Points Pictorially
• Suppose variable x is modified at nodes {3, 6}

– the frontend compiles variable x to “xptr” and uses alloca (in node 0)

• DF2[{3,6}] =  {1,2,8,0} 
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store i64 3, %xptr

store i64 6, %xptr

%xptr = alloca i64
store i64 0, %xptr



%x8 = phi i64 %x2, %blk5
          i64 %x6, %blk6

%x2 = phi i64 %x1, %blk1
          i64 %x3, %blk3

%x1 = phi i64 %xE, %blkE
          i64 %x2, %blk4

Rename & Insert Phi Nodes 
• Suppose variable x is modified at nodes {3, 6}

– the frontend compiles variable x to “xptr” and uses alloca (in node 0)

• DF2[{3,6}] =  {1,2,8,0} 
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%x3 = i64 3

%x6 = i64 6

%xE = i64 0

%x0 = phi i64 %x8, %blk8
          i64 %x2, %blk9



%x8 = phi i64 %x2, %blk5
          i64 %x6, %blk6

%x2 = phi i64 %x1, %blk1
          i64 %x3, %blk3

%x1 = phi i64 %xE, %blkE
          i64 %x2, %blk4

Rename & Insert Phi Nodes 
• Loads of the original x variable become uses of the renamed version in 

scope (i.e. the definition that dominates the use)

Example:
the load in block 5
becomes a use of %x2
(implemented via
substitution)
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%x3 = i64 3

%x6 = i64 6

%xE = i64 0

%x0 = phi i64 %x8, %blk8
          i64 %x2, %blk9

%v = load i64*, %xptr

%v = %x2



Phi Placement Alternative
• Less efficient, but easier to understand:

• Place phi nodes "maximally" (i.e. at every node with > 2 predecessors)

• If all values flowing into phi node are the same, then eliminate it:
%x = phi   t %y, %pred1   t %y  %pred2  … t %y %predK
// code that uses %x
⇒
// code with %x replaced by %y

• Interleave with other optimizations
– copy propagation
– constant propagation
– etc.
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Legend of "simple" optimizations*:
LAS = load after store
LAA = load after alloca
DSE = dead store elimination
DAE = dead alloca elimination

*nomenclature taken from LLVM IR passes



Example SSA Optimizations

• How to place phi 
nodes without 
breaking SSA?

• Note: the “real” 
implementation 
combines many of these 
steps into one pass.
– Places phis directly at the 

dominance frontier

• This example also 
illustrates other common 
optimizations:
– Load after store/alloca
– Dead store/alloca 

elimination

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: 
    
    store 1, %p
    
    br %l3      

l3: 
    
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• How to place phi 
nodes without 
breaking SSA?

• Insert
– Loads at the 

end of each 
block

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  %x1 = load %p
    br %b, %l2, %l3      

l2: 
    
    store 1, %p
    %x2 = load %p
    br %l3      

l3: 
    
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• How to place phi 
nodes without 
breaking SSA?

• Insert
– Loads at the 

end of each 
block

– Insert φ-nodes 
at each block

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• How to place phi 
nodes without 
breaking SSA?

• Insert
– Loads at the 

end of each 
block

– Insert φ-nodes 
at each block

– Insert stores 
after φ-nodes 

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• For loads after 
stores (LAS):
– Substitute all 

uses of the load 
by the value 
being stored

– Remove the load

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• For loads after 
stores (LAS):
– Substitute all 

uses of the load 
by the value 
being stored

– Remove the load

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[%x1,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[%x1;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• For loads after 
stores (LAS):
– Substitute all 

uses of the load 
by the value 
being stored

– Remove the load

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  %x1 = load %p
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• For loads after 
stores (LAS):
– Substitute all 

uses of the load 
by the value 
being stored

– Remove the load

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, %x2:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• For loads after 
stores (LAS):
– Substitute all 

uses of the load 
by the value 
being stored

– Remove the load

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• For loads after 
stores (LAS):
– Substitute all 

uses of the load 
by the value 
being stored

– Remove the load

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• For loads after 
stores (LAS):
– Substitute all 

uses of the load 
by the value 
being stored

– Remove the load

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    %x = load %p
    ret %x4     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• Dead Store 
Elimination (DSE)
– Eliminate all 

stores with no 
subsequent 
loads.

• Dead Alloca 
Elimination 
(DAE)
– Eliminate all 

allocas with no 
subsequent 
loads/stores.

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    
    ret %x4     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

• Dead Store 
Elimination (DSE)
– Eliminate all 

stores with no 
subsequent 
loads.

• Dead Alloca 
Elimination 
(DAE)
– Eliminate all 

allocas with no 
subsequent 
loads/stores.

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    store %x4, %p
    
    ret %x4     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca



Example SSA Optimizations

l1: 
    
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca

• Eliminate φ nodes:
– Singletons
– With identical 

values from 
each 
predecessor

– See Aycock & 
Horspool, 2002



Example SSA Optimizations

l1: 
    
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: %x3 = φ[0,%l1]
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max φs

LAS/
LAA

DSE

DAE

elim φs

Find 
alloca

• Eliminate φ nodes:
– Singletons
– With identical 

values from 
each 
predecessor



Example SSA Optimizations

l1: 
    
    %b = %y > 0
  
    br %b, %l2, %l3      

l2: 
    
    
    
    br %l3      

l3: %x4 = φ[0;%l1, 1:%l2]
    
    
    ret %x4     

max φs

LAS/
LAA

DSE

DAE

elim φ

Find 
alloca

• Done!



LLVM Phi Placement 
• This transformation is also sometimes called register promotion

– older versions of LLVM called this “mem2reg” memory to register 
promotion

• In practice, LLVM combines this transformation with scalar 
replacement of aggregates (SROA)
– i.e. transforming loads/stores of structured data into loads/stores on 

register-sized data

• These algorithms are (one reason) why LLVM IR allows annotation of 
predecessor information in the .ll files
– Simplifies computing the DF

Zdancewic     CIS 4521/5521: Compilers    48



COMPILER VERIFICATION

Zdancewic     CIS 4521/5521: Compilers    49



LLVM Compiler Infrastructure

[Lattner et al.]
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LLVM

optimizations/
transformations

typed SSA IR

analysis

front ends
code 

gen/jit



Other LLVM IR Features 

• C-style data values 
– ints, structs, arrays, pointers, vectors

• Type system
– used for layout/alignment/padding

• Relaxed-memory concurrency 
primitives

• Intrinsics 
– extend the language malloc, 

bitvectors, etc.

• Transformations & Optimizations

Make targeting LLVM IR
easy and attractive for 
developers!



But… it's complex

LLVM Reference Manual
table of contents



One Example: undef

The undef "value" represents an arbitrary,
but indeterminate bit pattern for any type.

Used for:  
- uninitialized registers
- reads from volatile memory
- results of some underspecified operations



What is the value of %y after running the following?

One plausible answer: 0
Not LLVM’s semantics!
   (LLVM is more liberal to permit more aggressive optimizations)

%x = or i8 undef, 1
%y = xor i8 %x, %x



Partially defined values are interpreted 
nondeterministically as sets of possible values:

⟦%x⟧ = {a or b | a∈⟦i8 undef⟧, b ∈⟦1⟧}
  = {1,3,5,…,255}
⟦%y⟧ = {a xor b | a∈⟦%x⟧, b∈⟦%x⟧}
  = {0,2,4,…,254}

⟦i8 undef⟧ = {0,…,255}
⟦i8 1⟧ = {1}

%x = or i8 undef, 1
%y = xor i8 %x, %x



Interactions with Optimizations
Consider:

versus:

56

%y = mul i8 %x, 2

%y = add i8 %x, %x

⟦%x⟧ = ⟦i8 undef⟧
  = {0,1,2,3,4,5,…,255}
⟦%y⟧ = {a mul 2 | a∈⟦%x⟧}
  = {0,2,4,…,254}

⟦%x⟧ = ⟦i8 undef⟧
  = {0,1,2,3,4,5,…,255}
⟦%y⟧ = {a + b | a∈⟦%x⟧, 
b∈⟦%x⟧}
  = {0,1,2,3,4,…,255}



Interactions with Optimizations
Consider:

versus:

57

%y = mul i8 %x, 2

%y = add i8 %x, %x

Upshot: if %x is undef, we 
can't optimize mul to add 
(or vice versa)!



• Many more such subtle features:
– poison, inttoptr, ptrtoint, aliasing rules, …

• Complex language feature interactions
– hard to reason about LLVM IR code 

(for people & compilers)

• Compiler bugs
– miscompilations

– Inconsistent optimizations

What's the problem?

58



Compiler Bugs

Csmith 
random 

test-case generation

LLVM

…8 other C 
compilers

79 bugs
(25 critical)

202 bugs
325 bugs
in total

Source 
Programs

[Regehr's group: Yang et al. PLDI 2011]

More recently:

• Yarpgen/YarpgenV2
• ALIVE/ALIVE2 projects
• miscompilation of C, Rust

sources [Lee et al. OOPSLA 2018]



60

What can we do about it?

LLVM is hard to trust
(especially for critical code)



Approaches to Software Reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming 

languages tools
– “Formal” verification

More “formal”:  eliminate 
with certainty as many problems 
as possible.

Less “formal”:  Techniques may 
miss problems in programs

This isn’t a tradeoff… all of these methods 
should be used.
Even “formal” methods can have holes:
•  Did you prove the right thing?
•  Do your assumptions match reality?
•  Knuth. “Beware of bugs in the above code; I have only 
proved it correct, not tried it.”



Goal: Verified Software Correctness
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming 

languages tools
– “Formal” verification

Q: How can we move
the needle towards
mathematical software
correctness properties?

Taking advantage of
advances in computer science:
• Moore's law
• improved programming languages

& theoretical understanding
• better tools: 

interactive theorem provers



CompCert – A Verified C Compiler

63

Xavier Leroy
INRIA

Optimizing C Compiler,
proved correct end-to-end
with machine-checked proof in Coq

C language

CompCert
Compiler

ISA



Csmith on CompCert?

CompCert

Csmith 
random 

test-case generation

Source 
Programs

[Yang et al. PLDI 2011]

0  bugs(!!)



Verification Works!

"The striking thing about our CompCert results is that the middle-end 
bugs we found in all other compilers are absent. As of early 2011, the 

under-development version of CompCert is the only compiler we have 
tested for which Csmith cannot find wrong-code errors. This is not for 
lack of trying: we have devoted about six CPU-years to the task. The 
apparent unbreakability of CompCert supports a strong argument that 
developing compiler optimizations within a proof framework, where 
safety checks are explicit and machine-checked, has tangible benefits for 
compiler users."

         – Regehr et. al 2011



Our Approach: Formal Verification

Interactive theorem proving in Coq
– not model checking / SMT
– human-in-the-loop 

Using Coq is functional programming
…but some of your programs are proofs

66

⇒ proof engineering



The Vellvm Project

Optimizations/
Transformations

Typed SSA
IR

Analysis

• Formal semantics
• Facilities for creating 

simulation proofs
• Implemented in Coq
• Extract passes for use 

with LLVM compiler
• Example: verified 

memory safety 
instrumentation

[Zhao et al. POPL 2012, CPP 2012, PLDI 2013, Zackowski, et al. ICFP2021]


