
CIS 4521/5521: COMPILERS
Lecture 25

Announcements

• HW6: Analysis & Optimizations
– Alias analysis, constant propagation, dead code elimination, register

allocation
– Due: Wednesday, April 30th at 10:00pm
– Posted test case due Tuesday, April 29th at 10:00pm

• Lecture Cancelled this Thursday - 4/24
– Dr. Zdancewic will be out of town

• Final Exam:
– According to registrar: Thursday, May 8th noon - 2:00pm
– Coverage: emphasizes material since the midterm
– Cheat sheet: one, hand-written, double-sided, letter-sized page of notes

Zdancewic CIS 4521/5521: Compilers 2

LOOPS AND DOMINATORS

Zdancewic CIS 4521/5521: Compilers 3

Loops in Control-flow Graphs
• Taking into account loops is important for optimizations.

– The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at the AST level or at a lower
representation?
– Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them.

• Loops may be hard to recognize at the quadruple / LLVM IR level.
– Many kinds of loops: while, do/while, for, continue, goto…

• Problem: How do we identify loops in the control-flow graph?

CIS 4521/5521: Compilers 4

Definition of a Loop
• A loop is a set of nodes in the control flow graph.

– One distinguished entry point called the header

• Every node is reachable
from the header &
the header is reachable
from every node.
– A loop is a strongly

connected component

• No edges enter the loop
except to the header

• Nodes with outgoing edges
are called loop exit nodes

CIS 4521/5521: Compilers 5

header

exit node

loop
nodes

Nested Loops
• Control-flow graphs may contain many loops
• Loops may contain other loops:

CIS 4521/5521: Compilers 6

Control Tree:

The control tree
depicts the nesting
structure of the
program.

Control-flow Analysis
• Goal: Identify the loops and nesting structure of the CFG.

• Control flow analysis is based on the idea of dominators:
• Node A dominates node B if the only way to reach B from the start

node is through node A.

• An edge in the graph
is a back edge if the
target node dominates
the source node.

• A loop contains at least
one back edge.

CIS 4521/5521: Compilers 7

Back Edge

Dominator Trees
• Domination is transitive:

– if A dominates B and B dominates C then A dominates C

• Domination is anti-symmetric:
– if A dominates B and B dominates A then A = B

• Every flow graph has a dominator tree
– The Hasse diagram of the dominates relation

CIS 4521/5521: Compilers 8

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Dominator Dataflow Analysis
• We can define Dom[n] as a forward dataflow analysis.

– Using the framework we saw earlier: Dom[n] = out[n] where:

• “A node B is dominated by another node A if A dominates all of the
predecessors of B.”

– in[n] := ∩n’∈pred[n]out[n’]

• “Every node dominates itself.”
– out[n] := in[n] ∪ {n}

• Formally: L = set of nodes ordered by ⊆
– T = {all nodes}
– Fn(x) = x ∪ {n}
– ⨅ is ∩

• Easy to show monotonicity and that Fn distributes over meet.
– So algorithm terminates and is MOP

CIS 4521/5521: Compilers 9

Improving the Algorithm
• Dom[b] contains just those nodes along the path in the dominator tree

from the root to b:
– e.g., Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
– There is a lot of sharing among the nodes

• More efficient way to represent Dom sets is
to store the dominator tree.
– doms[b] = immediate dominator of b
– doms[8] = 4, doms[7] = 5

• To compute Dom[b] walk through doms[b]
• Need to efficiently compute intersections

 of Dom[a] and Dom[b]
– Traverse up tree, looking for least common

ancestor:
– Dom[8] ∩Dom[7] = Dom[4]

• See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and
Kennedy

CIS 4521/5521: Compilers 10

1

2

3 4

5 6

7 8

9 0

Completing Control-flow Analysis
• Dominator analysis identifies back edges:

– Edge n à h where h dominates n

• Each back edge has a natural loop:
– h is the header
– All nodes reachable from h that also reach

n without going through h

• For each back edge n à h, find the natural loop:
– {n’ | n is reachable from n’ in G – {h}} ∪ {h}

• Two loops may share the same header:
merge them

• Nesting structure of loops is determined by set inclusion
– Can be used to build the control tree

CIS 4521/5521: Compilers 11

h

n

h

n m

Example Natural Loops

CIS 4521/5521: Compilers 12

1

2

3 4

5 6

7 8

9 0

Control Tree:

The control tree
depicts the nesting
structure of the
program.

Natural Loops

Uses of Control-flow Information
• Loop nesting depth plays an important role in optimization heuristics.

– Deeply nested loops pay off the most for optimization.

• Need to know loop headers / back edges for doing
– loop invariant code motion
– loop unrolling

• Dominance information also plays a role in converting to SSA form
– Used internally by LLVM to do register allocation.

CIS 4521/5521: Compilers 13

REVISITING SSA

Zdancewic CIS 4521/5521: Compilers 14

Phi nodes
Alloc “promotion”
Register allocation

Single Static Assignment (SSA)
• LLVM IR names (via %uids) all intermediate values computed by the

program.
• It makes the order of evaluation explicit.
• Each %uid is assigned to only once

– Contrast with the mutable quadruple form
– Note that dataflow analyses had these kill[n] sets because of updates to

variables…
• Naïve implementation of backend: map %uids to stack slots
• Better implementation: map %uids to registers (as much as possible)

• Question: How do we convert a source program to make maximal use
of %uids, rather than alloca-created storage?
– two problems: control flow & location in memory

• Then: How do we convert SSA code to x86, mapping %uids to
registers?
– Register allocation.

CIS 4521/5521: Compilers 15

Alloca vs. %UID
• Current compilation strategy:

• Directly map source variables into %uids?

• Does this always work?

Zdancewic CIS 4521/5521: Compilers 16

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i64
%y = alloca i64
store i64* %x, 3
store i64* %y, 0
%x1 = load %i64* %x
%tmp1 = add i64 %x1, 1
store i64* %x, %tmp1
%x2 = load %i64* %x
%tmp2 = add i64 %x2, 2
store i64* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i64 3, 0
%y1 = add i64 0, 0
%x2 = add i64 %x1, 1
%y2 = add i64 %x2, 2

What about If-then-else?
• How do we translate this into SSA?

• What do we put for ???

CIS 4521/5521: Compilers 17

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i64 %y1, 1
 br label %merge
else:
 %x3 = mult i64 %y1, 2
merge:
 %z2 = %add i64 ???, 3

Phi Functions
• Solution: f functions

– Fictitious operator, used only for analysis
• implemented by Mov at x86 level

– Chooses among different versions of a variable based on the path by
which control enters the phi node.
%uid = phi <ty> v1, <label1>, … , vn, <labeln>

Zdancewic CIS 4521/5521: Compilers 18

int y = …
int x = …
int z = …
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;

entry:
 %y1 = …
 %x1 = …
 %z1 = …
 %p = icmp …
 br i1 %p, label %then, label %else
then:
 %x2 = add i64 %y1, 1
 br label %merge
else:
 %x3 = mult i64 %y1, 2
merge:
 %x4 = phi i64 %x2, %then, %x3, %else
 %z2 = %add i64 %x4, 3

Phi Nodes and Loops
• Importantly, the %uids on the right-hand side of a phi node can be

defined “later” in the control-flow graph.

– Means that %uids can hold values “around a loop”

– Scope of %uids is defined by dominance

Zdancewic CIS 4521/5521: Compilers 19

entry:
 %y1 = …
 %x1 = …
 br label %body

body:
 %x2 = phi i64 %x1, %entry, %x3, %body
 %x3 = add i64 %x2, %y1
 %p = icmp slt i64, %x3, 10
 br i1 %p, label %body, label %after

after:
 …

Alloca Promotion
• Not all source variables can be allocated to registers

– If the address of the variable is taken (as permitted in C, for example)
– If the address of the variable “escapes” (by being passed to a function)

• An alloca instruction is called promotable if neither of the two
conditions above holds

• Happily, most local variables declared in source programs are
promotable
– That means they can be register allocated

Zdancewic CIS 4521/5521: Compilers 20

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call malloc(i64 8)
 %ptr = bitcast i8* %y to i64**
 store i65** %ptr, %x // store the pointer into the heap

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call foo(i64* %x) // foo may store the pointer into the heap

Converting to SSA: Overview
• Start with the ordinary control flow graph that uses allocas

– Identify “promotable” allocas

• Compute dominator tree information
• Calculate def/use information for each such allocated variable
• Insert f functions for each variable at necessary “join points”

• Replace loads/stores to alloc’ed variables with freshly-generated
%uids

• Eliminate the now unneeded load/store/alloca instructions.

CIS 4521/5521: Compilers 21

Where to Place f functions?
• Need to calculate the “Dominance Frontier”

• Node A strictly dominates node B if A dominates B and A ≠ B.
– Note: A does not strictly dominate B if A does not dominate B or A = B.

• The dominance frontier of a node B is the set of all CFG nodes y such
that B dominates a predecessor of y but does not strictly dominate y
– Intuitively: starting at B, there is a path to y, but there is another route to y

that does not go through B

• Write DF[n] for the dominance frontier of node n.

CIS 4521/5521: Compilers 22

Dominance Frontiers
• Example of a dominance frontier calculation results
• DF[1] = {1}, DF[2] = {1,2}, DF[3] = {2}, DF[4] = {1}, DF[5] = {8,0},

DF[6] = {8}, DF[7] = {7,0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {}

CIS 4521/5521: Compilers 23

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Control-flow Graph Dominator Tree

Dominated
by 5

Dominated
by 5

Dominance
frontier of 5

Algorithm For Computing DF[n]
• Assume that doms[n] stores the dominator tree (so that

doms[n] is the immediate dominator of n in the tree)

• Adds each B to the DF sets to which it belongs

for all nodes B
 if #(pred[B]) ≥ 2 // (just an optimization)
 for each p ∈pred[B] {
 runner := p // start at the predecessor of B
 while (runner ≠ doms[B]) // walk up the tree adding B

 DF[runner] := DF[runner] ∪ {B}
 runner := doms[runner]

 }

CIS 4521/5521: Compilers 24

Insert f at Join Points
• Lift the DF[n] to a set of nodes N in the obvious way:

 DF[N] = ∪n∈NDF[n]
• Suppose that at variable x is defined at a set of nodes N.

 DF0[N] = DF[N]
 DFi+1[N] = DF[DFi[N] ∪ N]

 Let J[N] be the least fixed point of the sequence:
 DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆…
 That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N]

– J[N] is called the “join points” for the set N
• We insert f functions for the variable x at each node in J[N].

– x = f(x, x, …, x); (one “x” argument for each predecessor of the node)
– In practice, J[N] is never directly computed, instead you use a worklist

algorithm that keeps adding nodes for DFk[N] until there are no changes, just
as in the dataflow solver.

• Intuition:
– If N is the set of places where x is modified, then DF[N] is the places where

phi nodes need to be added, but those also “count” as modifications of x, so
we need to insert the phi nodes to capture those modifications too…

CIS 4521/5521: Compilers 25

Example Join-point Calculation
• Suppose the variable x is modified at nodes 3 and 6

– Where would we need to add phi nodes?

• DF0[{3,6}] = DF[{3,6}] = DF[3] ∪ DF[6] = {2,8}
• DF1[{3,6}]

 = DF[DF0{3,6} ∪ {3,6}]
 = DF[{2,3,6,8}]
 = DF[2] ∪ DF[3] ∪ DF[6] ∪ DF[8]
 = {1,2} ∪ {2} ∪ {8} ∪ {0} = {1,2,8,0}

• DF2[{3,6}]
 = ...
 = {1,2,8,0}

• So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four
spots.

Zdancewic CIS 4521/5521: Compilers 26

Join Points Pictorially
• Suppose variable x is modified at nodes {3, 6}

– frontend compiles variable x to “xptr” and uses alloca (in entry node E)

CIS 4521/5521: Compilers 27

1

2

3 4

5 6

7 8

9 0

E

Control Flow Graph

store i64 3, %xptr

store i64 6, %xptr

%xptr = alloca i64
store i64 0, %xptr

Join Points Pictorially
• Suppose variable x is modified at nodes {3, 6}

– the frontend compiles variable x to “xptr” and uses alloca (in node 0)

• DF2[{3,6}] = {1,2,8,0}

CIS 4521/5521: Compilers 28

1

2

3 4

5 6

7 8

9 0

E

Control Flow Graph

store i64 3, %xptr

store i64 6, %xptr

%xptr = alloca i64
store i64 0, %xptr

%x8 = phi i64 %x2, %blk5
 i64 %x6, %blk6

%x2 = phi i64 %x1, %blk1
 i64 %x3, %blk3

%x1 = phi i64 %xE, %blkE
 i64 %x2, %blk4

Rename & Insert Phi Nodes
• Suppose variable x is modified at nodes {3, 6}

– the frontend compiles variable x to “xptr” and uses alloca (in node 0)

• DF2[{3,6}] = {1,2,8,0}

CIS 4521/5521: Compilers 29

1

2

3 4

5 6

7 8

9 0

E

Control Flow Graph

%x3 = i64 3

%x6 = i64 6

%xE = i64 0

%x0 = phi i64 %x8, %blk8
 i64 %x2, %blk9

%x8 = phi i64 %x2, %blk5
 i64 %x6, %blk6

%x2 = phi i64 %x1, %blk1
 i64 %x3, %blk3

%x1 = phi i64 %xE, %blkE
 i64 %x2, %blk4

Rename & Insert Phi Nodes
• Loads of the original x variable become uses of the renamed version in

scope (i.e. the definition that dominates the use)

Example:
the load in block 5
becomes a use of %x2
(implemented via
substitution)

CIS 4521/5521: Compilers 30

1

2

3 4

5 6

7 8

9 0

E

Control Flow Graph

%x3 = i64 3

%x6 = i64 6

%xE = i64 0

%x0 = phi i64 %x8, %blk8
 i64 %x2, %blk9

%v = load i64*, %xptr

%v = %x2

Phi Placement Alternative
• Less efficient, but easier to understand:

• Place phi nodes "maximally" (i.e. at every node with > 2 predecessors)

• If all values flowing into phi node are the same, then eliminate it:
%x = phi t %y, %pred1 t %y %pred2 … t %y %predK
// code that uses %x
⇒
// code with %x replaced by %y

• Interleave with other optimizations
– copy propagation
– constant propagation
– etc.

Zdancewic CIS 4521/5521: Compilers 31

Legend of "simple" optimizations*:
LAS = load after store
LAA = load after alloca
DSE = dead store elimination
DAE = dead alloca elimination

*nomenclature taken from LLVM IR passes

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Note: the “real”
implementation
combines many of these
steps into one pass.
– Places phis directly at the

dominance frontier

• This example also
illustrates other common
optimizations:
– Load after store/alloca
– Dead store/alloca

elimination

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2:

 store 1, %p

 br %l3

l3:

 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Insert
– Loads at the

end of each
block

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0
 %x1 = load %p
 br %b, %l2, %l3

l2:

 store 1, %p
 %x2 = load %p
 br %l3

l3:

 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Insert
– Loads at the

end of each
block

– Insert φ-nodes
at each block

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0
 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]

 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]

 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Insert
– Loads at the

end of each
block

– Insert φ-nodes
at each block

– Insert stores
after φ-nodes

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0
 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0
 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0
 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0
 %x1 = load %p
 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p
 %x2 = load %p
 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p
 %x = load %p
 ret %x4

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• Dead Store
Elimination (DSE)
– Eliminate all

stores with no
subsequent
loads.

• Dead Alloca
Elimination
(DAE)
– Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p

 ret %x4

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• Dead Store
Elimination (DSE)
– Eliminate all

stores with no
subsequent
loads.

• Dead Alloca
Elimination
(DAE)
– Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i64
 store 0, %p
 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
 store %x3, %p
 store 1, %p

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
 store %x4, %p

 ret %x4

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

• Eliminate φ nodes:
– Singletons
– With identical

values from
each
predecessor

– See Aycock &
Horspool, 2002

Example SSA Optimizations

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max φs

LAS/
LAA

DSE

DAE

elim φs

Find
alloca

• Eliminate φ nodes:
– Singletons
– With identical

values from
each
predecessor

Example SSA Optimizations

l1:

 %b = %y > 0

 br %b, %l2, %l3

l2:

 br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

 ret %x4

max φs

LAS/
LAA

DSE

DAE

elim φ

Find
alloca

• Done!

LLVM Phi Placement
• This transformation is also sometimes called register promotion

– older versions of LLVM called this “mem2reg” memory to register
promotion

• In practice, LLVM combines this transformation with scalar
replacement of aggregates (SROA)
– i.e. transforming loads/stores of structured data into loads/stores on

register-sized data

• These algorithms are (one reason) why LLVM IR allows annotation of
predecessor information in the .ll files
– Simplifies computing the DF

Zdancewic CIS 4521/5521: Compilers 48

COMPILER VERIFICATION

Zdancewic CIS 4521/5521: Compilers 49

LLVM Compiler Infrastructure

[Lattner et al.]

50

LLVM

optimizations/
transformations

typed SSA IR

analysis

front ends
code

gen/jit

Other LLVM IR Features

• C-style data values
– ints, structs, arrays, pointers, vectors

• Type system
– used for layout/alignment/padding

• Relaxed-memory concurrency
primitives

• Intrinsics
– extend the language malloc,

bitvectors, etc.

• Transformations & Optimizations

Make targeting LLVM IR
easy and attractive for
developers!

But… it's complex

LLVM Reference Manual
table of contents

One Example: undef

The undef "value" represents an arbitrary,
but indeterminate bit pattern for any type.

Used for:
- uninitialized registers
- reads from volatile memory
- results of some underspecified operations

What is the value of %y after running the following?

One plausible answer: 0
Not LLVM’s semantics!
 (LLVM is more liberal to permit more aggressive optimizations)

%x = or i8 undef, 1
%y = xor i8 %x, %x

Partially defined values are interpreted
nondeterministically as sets of possible values:

⟦%x⟧ = {a or b | a∈⟦i8 undef⟧, b ∈⟦1⟧}
 = {1,3,5,…,255}
⟦%y⟧ = {a xor b | a∈⟦%x⟧, b∈⟦%x⟧}
 = {0,2,4,…,254}

⟦i8 undef⟧ = {0,…,255}
⟦i8 1⟧ = {1}

%x = or i8 undef, 1
%y = xor i8 %x, %x

Interactions with Optimizations
Consider:

versus:

56

%y = mul i8 %x, 2

%y = add i8 %x, %x

⟦%x⟧ = ⟦i8 undef⟧
 = {0,1,2,3,4,5,…,255}
⟦%y⟧ = {a mul 2 | a∈⟦%x⟧}
 = {0,2,4,…,254}

⟦%x⟧ = ⟦i8 undef⟧
 = {0,1,2,3,4,5,…,255}
⟦%y⟧ = {a + b | a∈⟦%x⟧,
b∈⟦%x⟧}
 = {0,1,2,3,4,…,255}

Interactions with Optimizations
Consider:

versus:

57

%y = mul i8 %x, 2

%y = add i8 %x, %x

Upshot: if %x is undef, we
can't optimize mul to add
(or vice versa)!

• Many more such subtle features:
– poison, inttoptr, ptrtoint, aliasing rules, …

• Complex language feature interactions
– hard to reason about LLVM IR code

(for people & compilers)

• Compiler bugs
– miscompilations

– Inconsistent optimizations

What's the problem?

58

Compiler Bugs

Csmith
random

test-case generation

LLVM

…8 other C
compilers

79 bugs
(25 critical)

202 bugs
325 bugs
in total

Source
Programs

[Regehr's group: Yang et al. PLDI 2011]

More recently:

• Yarpgen/YarpgenV2
• ALIVE/ALIVE2 projects
• miscompilation of C, Rust

sources [Lee et al. OOPSLA 2018]

60

What can we do about it?

LLVM is hard to trust
(especially for critical code)

Approaches to Software Reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming

languages tools
– “Formal” verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Techniques may
miss problems in programs

This isn’t a tradeoff… all of these methods
should be used.
Even “formal” methods can have holes:
• Did you prove the right thing?
• Do your assumptions match reality?
• Knuth. “Beware of bugs in the above code; I have only
proved it correct, not tried it.”

Goal: Verified Software Correctness
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming

languages tools
– “Formal” verification

Q: How can we move
the needle towards
mathematical software
correctness properties?

Taking advantage of
advances in computer science:
• Moore's law
• improved programming languages

& theoretical understanding
• better tools:

interactive theorem provers

CompCert – A Verified C Compiler

63

Xavier Leroy
INRIA

Optimizing C Compiler,
proved correct end-to-end
with machine-checked proof in Coq

C language

CompCert
Compiler

ISA

Csmith on CompCert?

CompCert

Csmith
random

test-case generation

Source
Programs

[Yang et al. PLDI 2011]

0 bugs(!!)

Verification Works!

"The striking thing about our CompCert results is that the middle-end
bugs we found in all other compilers are absent. As of early 2011, the

under-development version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-years to the task. The
apparent unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework, where
safety checks are explicit and machine-checked, has tangible benefits for
compiler users."

 – Regehr et. al 2011

Our Approach: Formal Verification

Interactive theorem proving in Coq
– not model checking / SMT
– human-in-the-loop

Using Coq is functional programming
…but some of your programs are proofs

66

⇒ proof engineering

The Vellvm Project

Optimizations/
Transformations

Typed SSA
IR

Analysis

• Formal semantics
• Facilities for creating

simulation proofs
• Implemented in Coq
• Extract passes for use

with LLVM compiler
• Example: verified

memory safety
instrumentation

[Zhao et al. POPL 2012, CPP 2012, PLDI 2013, Zackowski, et al. ICFP2021]

