Activity
- Given a set of numbers, design a GPU algorithm for:
 - Team 1: Sum of values
 - Team 2: Maximum value
 - Team 3: Product of values
 - Team 4: Average value
- Consider:
 - Bottlenecks
 - **Arithmetic intensity**: compute to memory access ratio
 - Optimizations
 - Limitations

Parallel Reduction
- **Reduction**: An operation that computes a single result from a set of data
- Examples:
 - Minimum/maximum value (for tone mapping)
 - Average, sum, product, etc.
- **Parallel Reduction**: Do it in parallel. Obviously

Parallel Reduction
- Store data in 2D texture
- Render viewport-aligned quad ¼ of texture size
 - Texture coordinates address every other texel
 - Fragment shader computes operation with four texture reads for surrounding data
- Use output as input to the next pass
- Repeat until done

uniform sampler2D u_Data;
in vec2 fs_Texcoords;
out float out_MaxValue;

void main(void) {
 float v0 = texture(u_Data, fs_Texcoords).r;
 float v1 = textureOffset(u_Data, fs_Texcoords, ivec2(0, 1)).r;
 float v2 = textureOffset(u_Data, fs_Texcoords, ivec2(1, 0)).r;
 float v3 = textureOffset(u_Data, fs_Texcoords, ivec2(1, 1)).r;
 out_MaxValue = max(max(v0, v1), max(v2, v3));
}

Parallel Reduction

- Reduces n^2 elements in log(n) time
- 1024x1024 is only 10 passes

Bottlenecks
- Read back to CPU, recall `glReadPixels`
- Each pass depends on the previous
 - How does this affect pipeline utilization?
- Low arithmetic intensity
Parallel Reduction

- **Optimizations**
 - Use just red channel or rgba?
 - Read 2x2 areas or nxn? What is the trade off?
 - When do you read back? 1x1?
 - How many textures are needed?

- **Ping Ponging**
 - Use two textures: X and Y
 - First pass: X is input, Y is output
 - Additional passes swap input and output
 - Implement with FBOs

```
Input X Y
Output Y X
```

Parallel Reduction

- **Limitations**
 - Maximum texture size
 - Requires a power of two in each dimension
 - How do you work around these?

All-Prefix-Sums

- **All-Prefix-Sums**
 - Input
 - Array of n elements: \([a_1, a_2, \ldots, a_n]\)
 - Binary associate operator: \(@\)
 - Identity: \(I\)
 - Outputs the array: \([a_1, a_1 @ a_2, a_1 @ a_2 @ a_3, \ldots, a_1 @ a_2 @ \ldots @ a_n]\)

All-Prefix-Sums

- **Example**
 - If \(@\) is addition, the array \([3 1 7 0 4 1 6 3]\)
 - is transformed to \([0 3 4 11 11 15 16 22]\)
 - Seems sequential, but there is an efficient parallel solution

Scan

- **Scan**: all-prefix-sums operation on an array of data
 - **Exclusive Scan**: Element \(j\) of the result does not include element \(j\) of the input:
 - In: \([3 1 7 0 4 1 6 3]\)
 - Out: \([0 3 4 11 11 15 16 22]\)
 - **Inclusive Scan (Prescan)**: All elements including \(j\) are summed
 - In: \([3 1 7 0 4 1 6 3]\)
 - Out: \([3 4 11 11 15 16 22 25]\)
How do you generate an exclusive scan from an inclusive scan?

- **In:** \[3 1 7 0 4 1 6 3\]
- **Inclusive:** \[3 4 11 11 15 16 22 25\]
- **Exclusive:** \[0 3 4 11 11 15 16 22\]

// Shift right, insert identity

How do you go in the opposite direction?

Scan: Stream Compaction

- **Stream Compaction**
 - Given an array of elements
 - Create a new array with elements that meet a certain criteria, e.g. non null
 - Preserve order

Scan: Stream Compaction

- **Stream Compaction**
 - Given an array of elements
 - Create a new array with elements that meet a certain criteria, e.g. non null
 - Preserve order

Scan: Stream Compaction

- **Stream Compaction**
 - **Step 1:** Compute temporary array containing
 - 1 if corresponding element meets criteria
 - 0 if element does not meet criteria
Scan: Stream Compaction

- Stream Compaction
 - Step 1: Compute temporary array

\[a \ b \ c \ d \ e \ f \ g \ h \ 1 \ 0 \]

Scan: Stream Compaction

- Stream Compaction
 - Step 1: Compute temporary array

\[a \ b \ c \ d \ e \ f \ g \ h \ 1 \ 0 \ 1 \]

Scan: Stream Compaction

- Stream Compaction
 - Step 1: Compute temporary array

\[a \ b \ c \ d \ e \ f \ g \ h \ 1 \ 0 \ 1 \ 0 \]

Scan: Stream Compaction

- Stream Compaction
 - Step 1: Compute temporary array

\[a \ b \ c \ d \ e \ f \ g \ h \ 1 \ 1 \ 0 \]
Scan: Stream Compaction

- Stream Compaction
 - **Step 1**: Compute temporary array

```
1 0 0 1 0 0 1
1 0 0 1 0 0 1
```

- It runs in parallel!

Scan: Stream Compaction

- Stream Compaction
 - **Step 1**: Compute temporary array

```
1 0 0 1 0 0 1
1 0 0 1 0 0 1
```

- It runs in parallel!

Scan: Stream Compaction

- Stream Compaction
 - **Step 2**: Run exclusive scan on temporary array

```
0 1 1 1 2 2 2
0 1 1 1 2 2 2
```

Scan result:

Scan runs in parallel

What can we do with the results?
Stream Compaction

Step 3: Scatter

- Result of scan is index into final array
- Only write an element if temporary array has a 1

Scan result:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Final array:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scan: Stream Compaction

- **Stream Compaction**
 - **Step 3:** Scatter

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

 Scan result: 0 1 2 3 4 5 6 7 8 9

 Final array: 0 1 2 3 4 5 6 7 8 9
 - Scatter runs in parallel!

Scan

- Used to convert certain sequential computation into equivalent parallel computation

<table>
<thead>
<tr>
<th>Sequential</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity

- Design a parallel algorithm for exclusive scan
 - **In:** [3 1 7 0 4 1 6 3]
 - **Out:** [0 3 4 11 11 15 16 22]

- Consider:
 - Total number of additions
 - Ignore GLSL constraints

Scan

- **Sequential Scan:** single thread, trivial
 - n adds for an array of length n
 - **Work complexity:** $O(n)$
 - How many adds will our parallel version have?

Scan

- **Naive Parallel Scan**

 - for $d = 1$ to $\log_2 n$
 - for all k in parallel
 - if ($k >= 2^d$)
 - $x(k) = x(k - 2^d) + x(k)$

 - Is this exclusive or inclusive?
 - Each thread
 - Writes one sum
 - Reads two values
Scan

- **Naive Parallel Scan**: Input

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

for \(d = 1 \) to \(\log_2 n \)

for all \(k \) in parallel

if \(k \geq 2d-1 \)

\[x[k] = x[k - 2d + 1] + x[k]; \]

Scan

- **Naive Parallel Scan**: \(d = 1, \ 2^{d-1} = 1 \)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

for \(d = 1 \) to \(\log_2 n \)

for all \(k \) in parallel

if \(k \geq 2d-1 \)

\[x[k] = x[k - 2d + 1] + x[k]; \]

Scan

- **Naive Parallel Scan**: \(d = 1, \ 2^{d-1} = 1 \)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

for \(d = 1 \) to \(\log_2 n \)

for all \(k \) in parallel

if \(k \geq 2d-1 \)

\[x[k] = x[k - 2d + 1] + x[k]; \]

Scan

- **Naive Parallel Scan**: \(d = 1, \ 2^{d-1} = 1 \)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

for \(d = 1 \) to \(\log_2 n \)

for all \(k \) in parallel

if \(k \geq 2d-1 \)

\[x[k] = x[k - 2d + 1] + x[k]; \]

Scan

- **Naive Parallel Scan**: \(d = 1, \ 2^{d-1} = 1 \)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

for \(d = 1 \) to \(\log_2 n \)

for all \(k \) in parallel

if \(k \geq 2d-1 \)

\[x[k] = x[k - 2d + 1] + x[k]; \]
Recall, it runs in parallel!
Consider only $k = 7$ for $d = 1$ to log$_2 n$
 for all k in parallel
 if ($k \geq 2^{d-1}$)
 $x[k] = x[k - 2^{d-1}] + x[k]$;

What is naive about this algorithm?

What was the work complexity for sequential scan?

What is the work complexity for this?
Summary

- Parallel reductions and scan are building blocks for many algorithms
- An understanding of parallel programming and GPU architecture yields efficient GPU implementations