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Chapter 5
Reconstruction from two calibrated
views

“We see because we move; we move because we see.”
– James J. Gibson, the Perception of the Visual World

In this chapter we begin unveiling the basic geometry that relates images of points
to their 3-D position. We start with the simplest case of two calibrated cam-
eras, and describe an algorithm, first proposed by the British psychologist H. C.
Longuet-Higgins in 1981, to reconstruct the relative pose of the cameras as well
as the position of the points in space from their projection onto the two images.

Longuet-Higgins noticed that the coordinates of the projection of a point and
the camera optical centers form a triangle (Figure 6.5), a fact that can be written
as an algebraic constraint involving the camera poses and image coordinates but
not the 3-D position of the points. Given enough points, therefore, this constraint
can be solved for the camera poses. Once those are known, the 3-D position of
the points can be obtained easily by triangulation. The interesting feature of the
constraint is that, although it is non-linear in the unknown camera poses, it can
be solved by two linear steps in closed form. Therefore, in the absence of any
noise or uncertainty, given two images taken from calibrated cameras, one can in
principle recover camera pose and position of the points in space with a few steps
of simple linear algebra.

While we have not yet indicated how to calibrate the cameras (which we will
do in Chapter 6), this chapter serves to introduce the basic building blocks of the
geometry of two views, known as “epipolar geometry”. The simple algorithm of
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Longuet-Higgins, although merely conceptual1, allows us to introduce the basic
ideas that will be revisited later in the chapter as well as in Part III and IV of
the book to derive more powerful algorithms that can deal with uncertainty in the
measurements as well as with uncalibrated cameras.

5.1 Epipolar geometry

Consider two images of the same scene taken from two distinct vantage points. If
we assume that the camera is calibrated, as described in Chapter 3 (the calibration
matrix K is the identity), the homogeneous image coordinates x and the spatial
coordinates X of a point p, with respect to the camera frame, are related by

λx = Π0X. (5.1)

That is, the image x differs from the actual 3-D coordinates of the point by an
unknown (depth) scale λ ∈ R+. For simplicity, we will assume that the scene is
static (there are no moving objects) and that the position of corresponding fea-
ture points across images is available, for instance from one of the algorithms
described in Chapter 4. If we call x1,x2 the corresponding points in two views,
they will then be related by a precise geometric relationship that we describe in
this section.

5.1.1 The epipolar constraint and the Essential matrix

Following Chapter 3, an orthonormal reference frame is associated with each
camera, with with origin o in the optical center and z-axis aligned with the optical
axis. The relationship between 3-D coordinates of a point in the inertial “world”
coordinate frame and the camera frame can be expressed by a rigid body transfor-
mation. Without loss of generality, we can assume the world frame to be one of
the cameras, while the other is positioned and oriented according to a Euclidean
transformation g = (R, T ) ∈ SE(3). If we call X1 ∈ R3 and X2 ∈ R3 the 3-D
coordinates of a point p relative to the two camera frames, respectively, they are
related by a rigid body transformation in the following way

X2 = RX1 + T.

Now let x1,x2 ∈ R3 be the homogeneous coordinates of the projection of the
same point p in the two image planes. Since X i = λixi, i = 1, 2, this equation
can be written in terms of the image coordinates xi’s and the depths λi’s as

λ2x2 = Rλ1x1 + T.

1It is not suitable for real images which are typically corrupted by noise. In Section 5.2.3 of this
chapter, we show how to modify it so as to minimize the effect of noise and obtain an optimal solution.
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In order to eliminate the depths λi’s in the preceding equation, pre-multiply both
sides by T̂ to obtain

λ2T̂x2 = T̂Rλ1x1.

Since the vector T̂x2 = T × x2 is perpendicular to the vector x2, the inner
product 〈x2, T̂x2〉 = x2

T T̂x2 is zero. Pre-multiplying the previous equation by
xT

2 yields that the quantity xT
2 T̂Rλ1x1 is zero. Since λ1 > 0, we have shown

Theorem 5.1 (Epipolar constraint). Two images x1,x2 of a point p seen from
two vantage points satisfy the following constraint

〈x2, T ×Rx1〉 = 0 or xT
2 T̂Rx1 = 0 (5.2)

where (R, T ) is the relative pose (position and orientation) between the two
camera reference frames.

The matrix

E
.
= T̂R ∈ R3×3

in the epipolar constraint (5.2) is called the Essential matrix. It encodes the rel-
ative pose between the two cameras. The epipolar constraint (5.2) can therefore
be called the essential constraint. Since the epipolar constraint is bilinear in each
of its arguments x1 and x2, it is also called the bilinear constraint, the reason of
which will become clear in later chapters.

In addition to the preceding algebraic derivation, this constraint follows imme-
diately from its geometric interpretation, as illustrated in Figure 6.5. The vector
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Figure 5.1. Two projections x1,x2 ∈ R3 of a 3-D point p from two vantage points. The
Euclidean transformation between the two vantage points is given by (R,T ) ∈ SE(3).
The intersection of the line (o1, o2) with each image plane is the so-called epipole, that
is e1 and e2, respectively. The lines `1, `2 are the so-called epipolar lines which are the
intersection of the plane (o1, o2, p) with the two image planes respectively.

connecting the first camera center o1 and the point p, the vector connecting o2

and p, and the vector connecting the two optical centers o1 and o2 clearly form a
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triangle. Therefore, the three vectors lie in the same plane. Their triple product2,
which measures the volume of the parallelepiped determined by the three vectors,
is therefore zero. This is true for the coordinates of the points X i, i = 1, 2 as
well as for the homogeneous coordinates of their projection xi, i = 1, 2 since
Xi and xi (as vectors) share the same direction. The constraint (5.2) is just the
triple product written in the second camera frame –Rx1 is simply the direction of
the vector −→o1p and T is the vector −−→o2o1 with respect to the second camera frame.
The translation T between the two camera centers o1 and o2 is also called the
baseline.

Associated to this picture, we define the following set of geometric entities
which will facilitate our future study:

Definition 5.2 (Epipolar geometric entities).

1. The plane (o1, o2, p) determined by the two centers of projection o1, o2
and the point p is called an epipolar plane associated with the camera
configuration and point p. There is one epipolar plane for each point p;

2. The projection e1(e2) of one camera center onto the image plane of the
other camera frame is called an epipole. Note that the projection may occur
outside the physical boundary of the imaging sensor;

3. The intersection of the epipolar plane of p with one image plane is a line
`1(`2) which is called epipolar line of p. We usually use the normal vector
`1(`2) to the epipolar plane to denote this line.3

From the definitions, we immediately have the following relations among
epipoles, epipolar lines, and image points:

Proposition 5.3 (Properties of epipoles and epipolar lines). Given an Essential
matrix E = T̂R which defines an epipolar relation between two images x1,x2,
we have:

1. The two epipoles e1, e2 ∈ R3, with respect to the 1st and 2nd camera
frames respectively, are the left and right null space of E respectively

eT
2 E = 0, Ee1 = 0. (5.3)

That is, e2 ∼ T and e1 ∼ RTT . We recall that ∼ indicates equality up to
scale.

2. The (co-images of) epipolar lines `1, `2 ∈ R3 associated with the two
image points x1,x2 can be expressed as

`2 ∼ Ex1, `1 ∼ ET x2 ∈ R3 (5.4)

2As we have seen in Chapter 2, the triple product of three vectors is the inner product of one with
the cross product of the other two.

3Hence the vector `1 is in fact the co-image of the epipolar line.
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where `1, `2 are in fact the normal vectors to the epipolar plane expressed
with respect to the two camera frames, respectively.

3. In each image, we have the relationship that both the projected point and
the epipole lie on the epipolar line

`T
i ei = 0, `T

i xi = 0, i = 1, 2. (5.5)

The proof is simple and we leave it to the reader as an exercise. The Figure
5.2 illustrates the relationships among 3-D points, images, epipolar lines, and
epipoles.
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Figure 5.2. Left: the Essential matrixE associated to the epipolar constraint maps an image
point x1 in the first image to an epipolar line 2̀ = Ex1 in the second image – precise
location of its corresponding image (x2 or x′

2) depends on where the 3-D point (p or p′)
lies on the ray (o1,x1); Right: When (o1, o2, p) and (o1, o2, p

′) are two different planes,
they intersect at the two image planes at two pairs of epipolar lines (`1, `2) and (`′1, `

′
2),

respectively, and these epipolar lines always pass through the pair of epipoles (e1, e2).

5.1.2 Elementary properties of the Essential matrix

The matrix E = T̂R ∈ R3×3 in equation (5.2) contains information about the
relative position T and orientationR ∈ SO(3) between the two cameras. Matrices
of this form belong to a very special set of matrices in R3×3 called the Essential
space and denote by E

E .
=
{
T̂R

∣∣R ∈ SO(3), T ∈ R3
}
⊂ R3×3.

Before we study the structure of Essential matrices, we introduce a useful lemma
from linear algebra.

Lemma 5.4 (The hat operator). For a vector T ∈ R3 and a matrix K ∈ R3×3,
if det(K) = +1 and T ′ = KT , then T̂ = KT T̂ ′K.

Proof. Since both KT (̂·)K and K̂−1(·) are linear maps from R3 to R3×3, one
may directly verify that these two linear maps agree on the basis [1, 0, 0]T , [0, 1, 0]T

or [0, 0, 1]T (using the fact that det(K) = 1).
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The following theorem, due to [Huang and Faugeras, 1989], captures the alge-
braic structure of Essential matrices in terms of their singular value decomposition
(see Appendix A for a review on the SVD):

Theorem 5.5 (Characterization of the Essential matrix). A non-zero ma-
trix E ∈ R3×3 is an Essential matrix if and only if E has a singular value
decomposition (SVD): E = UΣV T with

Σ = diag{σ, σ, 0}
for some σ ∈ R+ and U, V ∈ SO(3).

Proof. We first prove the necessity. By definition, for any Essential matrix E,
there exists (at least one pair) (R, T ), R ∈ SO(3), T ∈ R3 such that T̂R = E.
For T , there exists a rotation matrix R0 such that R0T = [0, 0, ‖T‖]T . Denote
this vector as a ∈ R3. Since det(R0) = 1, we know that T̂ = RT

0 âR0 from
Lemma 5.4. Then EET = T̂RRT T̂ T = T̂ T̂ T = RT

0 ââ
TR0. It is immediate to

verify that

ââT =




0 −‖T‖ 0
‖T‖ 0 0
0 0 0






0 ‖T‖ 0
−‖T‖ 0 0

0 0 0


 =



‖T‖2 0 0

0 ‖T‖2 0
0 0 0


 .

So, the singular values of the Essential matrix E = T̂R are (‖T‖, ‖T‖, 0). How-
ever, in the standard SVD of E = UΣV T , U and V are only orthonormal, and
their determinant can be ±1.4 We still need to prove that U, V ∈ SO(3) (i.e.
they have determinant +1) to establish the theorem. We already have E = T̂R =
RT

0 âR0R. Let RZ(θ) be the matrix which represents a rotation around the Z-axis
by an angle of θ radians, i.e. RZ(θ) = eê3θ with e3 = [0, 0, 1]T ∈ R3. Then

RZ

(
+
π

2

)
=




0 −1 0
1 0 0
0 0 1


 .

Then â = RZ(+π
2 )RT

Z(+π
2 )â = RZ(+π

2 ) diag{‖T‖, ‖T‖, 0}. Therefore

E = T̂R = RT
0 RZ

(
+
π

2

)
diag{‖T‖, ‖T‖, 0}R0R.

So, in the SVD of E = UΣV T , we may choose U = RT
0 RZ(+π

2 ) and V T =
R0R. Since we have constructed both U and V as products of matrices in SO(3)
they are in SO(3) too, that is both U and V are rotation matrices.

We now prove sufficiency. If a given matrix E ∈ R3×3 has SVD: E = UΣV T

with U, V ∈ SO(3) and Σ = diag{σ, σ, 0}, define (R1, T1) ∈ SE(3) and
(R2, T2) ∈ SE(3) to be

{
(T̂1, R1) = (URZ(+π

2 )ΣUT , URT
Z(+π

2 )V T ),

(T̂2, R2) = (URZ(−π
2 )ΣUT , URT

Z(−π
2 )V T ).

(5.6)

4Interested readers can verify this using the Matlab routine “SVD”.
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It is now easy to verify that T̂1R1 = T̂2R2 = E. Thus, E is an Essential matrix.

Given a rotation matrix R ∈ SO(3) and a rotation vector T ∈ R3, it is imme-
diate to construct an Essential matrix E = T̂R. The inverse problem, that is how
to retrieve T and R from a given Essential matrix E, is less obvious. In the suffi-
ciency proof for the above theorem, we have used SVD to construct two solutions
for (R, T ). Are these the only solutions? Before we can answer this question in
the upcoming Theorem 5.7, we need the following lemma.

Lemma 5.6. Consider an arbitrary non-zero skew-symmetric matrix T̂ ∈ so(3)

with T ∈ R3. If, for a rotation matrix R ∈ SO(3), T̂R is also a skew-symmetric
matrix, then R = I or R = eûπ where u = T

‖T‖ . Further, T̂ eûπ = −T̂ .

Proof. Without loss of generality, we assume T is of unit length. Since T̂R is also
a skew-symmetric matrix, (T̂R)T = −T̂R. This equation gives

RT̂R = T̂ . (5.7)

Since R is a rotation matrix, there exists ω ∈ R3, ‖ω‖ = 1 and θ ∈ R such that
R = eω̂θ. Then, (5.7) is rewritten as eω̂θT̂ eω̂θ = T̂ . Applying this equation to ω,
we get eω̂θT̂ eω̂θω = T̂ω. Since eω̂θω = ω, we obtain eω̂θT̂ω = T̂ω. Since ω is
the only eigenvector associated to the eigenvalue 1 of the matrix eω̂θ and T̂ω is
orthogonal to ω, T̂ω has to be zero. Thus, ω is equal to either T

‖T‖ or − T
‖T‖ , i.e.

ω = ±u. R then has the form eω̂θ, which commutes with T̂ . Thus from (5.7), we
get

e2ω̂θT̂ = T̂ . (5.8)

According to Rodrigues’ formula (2.16) introduced in Chapter 2, we have

e2ω̂θ = I + ω̂ sin(2θ) + ω̂2(1− cos(2θ)).

(5.8) yields

ω̂2 sin(2θ) + ω̂3(1− cos(2θ)) = 0.

Since ω̂2 and ω̂3 are linearly independent (we leave this as an exercise to the
reader), we have sin(2θ) = 1 − cos(2θ) = 0. That is, θ is equal to 2kπ or
2kπ + π, k ∈ Z. Therefore, R is equal to I or eω̂π. Now if ω = u = T

||T‖ then,

it is direct from the geometric meaning of the rotation eω̂π that eω̂πT̂ = −T̂ . On
the other hand if ω = −u = − T

‖T‖ then it follows that eω̂T̂ = −T̂ . Thus, in any
case the conclusions of the lemma follows.

The following theorem shows exactly how many pairs of rotation and transla-
tion (R, T ) can one extract from an Essential matrix and the solutions are given
in closed form by equation (5.9).
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Theorem 5.7 (Pose recovery from the Essential matrix). There exist exactly
two relative poses (R, T ) with R ∈ SO(3) and T ∈ R3 corresponding to a
non-zero Essential matrix E ∈ E .

Proof. Assume that (R1, T1) ∈ SE(3) and (R2, T2) ∈ SE(3) are both solutions
for the equation T̂R = E. Then we have T̂1R1 = T̂2R2. It yields T̂1 = T̂2R2R

T
1 .

Since T̂1, T̂2 are both skew-symmetric matrices and R2R
T
1 is a rotation matrix,

from the preceding lemma, we have that either (R2, T2) = (R1, T1) or (R2, T2) =
(eû1πR1,−T1) with u1 = T1/‖T1‖. Therefore, given an Essential matrixE there
are exactly two pairs of (R, T ) such that T̂R = E. Further, if E has the SVD:
E = UΣV T with U, V ∈ SO(3), the following formulas give the two distinct
solutions

(T̂1, R1) = (URZ(+π
2 )ΣUT , URT

Z(+π
2 )V T ),

(T̂2, R2) = (URZ(−π
2 )ΣUT , URT

Z(−π
2 )V T ).

(5.9)

Example 5.8 (Two solutions to an Essential matrix). It is immediate to verify that
ê3RZ

(
+π

2

)
= −̂e3RZ

(
−π

2

)
since




0 1 0
−1 0 0
0 0 0






0 −1 0
1 0 0
0 0 1


 =




0 −1 0
1 0 0
0 0 0






0 1 0
−1 0 0
0 0 1


 .

These two solutions together are usually referred to as a “twisted pair”, due to how the
two solutions are related geometrically, as illustrated in Figure 5.3. A physically correct
solution can be chosen by enforcing that the reconstructed points be visible, i.e. they have
positive depth. We discuss this issue further in Exercise 5.11.

frame 2’

image plane
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image plane
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Figure 5.3. Two pairs of camera frames, i.e. (1, 2) and (1, 2′), generate the same Essential
matrix. The frame 2 and frame 2′ differ by a translation and a 180o rotation (a twist) around
the Z-axis and the two pose pairs give rise to the same image coordinates. For the same
set of image pairs x1 and x2 = x′

2, the recovered structures p and p′ might be different.
Notice that with respect to the camera frame 1, the point p′ has a negative depth.
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5.2 Basic reconstruction algorithms

In the previous section, we have seen that images of corresponding points are
related by the epipolar constraint, which involves the unknown relative pose be-
tween the cameras. Therefore, given a number of corresponding points, we could
use the epipolar constraints to try to recover camera pose. In this section, we show
a simple closed-form solution to this problem. It consists of two steps: First a ma-
trixE is recovered from a number of epipolar constraints, then relative translation
and orientation are extracted from E. However, since the matrix E recovered us-
ing correspondence data in the epipolar constraint may not be an Essential matrix,
it needs to be projected into the space of Essential matrices prior to extraction of
the relative pose of the cameras(5.9).

Although the linear algorithm that we propose here is suboptimal when the
measurements are corrupted by noise, it is important for it illustrates that the ge-
ometric structure of the space of Essential matrices is at the heart of the problem
of reconstruction from two views. We leave the more practical issues with noise
and optimality to Section 5.2.3.

5.2.1 The eight-point linear algorithm

Let E = T̂R be the Essential matrix associated with the epipolar constraint (5.2).
When the entries of this 3× 3 matrix are denoted as

E =



e1 e2 e3
e4 e5 e6
e7 e8 e9


 (5.10)

and arrayed in a vector Es ∈ R9, which is typically referred to as the “stacked”
version of the matrix E (Appendix A.1.3)

Es .
= [e1, e4, e7, e2, e5, e8, e3, e6, e9]

T ∈ R9.

The inverse operation from Es to its matrix version is then called “unstacking”.
We further denote the Kronecker product “⊗” (also see Appendix A.1.3) of two
vectors x1 and x2 as

a
.
= x1 ⊗ x2. (5.11)

Or, more specifically, if x1 = [x1, y1, z1]
T ∈ R3 and x2 = [x2, y2, z2]

T ∈ R3,
then

a = [x1x2, x1y2, x1z2, y1x2, y1y2, y1z2, z1x2, z1y2, z1z2]
T ∈ R9. (5.12)

Since the epipolar constraint xT
2 Ex1 = 0 is linear in the entries of E, using the

above notation we can rewrite it as the inner product of a and Es

aTEs = 0.

This is just another way of writing equation (5.2), that emphasizes the linear de-
pendence of the epipolar constraint on the elements of the Essential matrix. Now,
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given a set of corresponding image points (xj
1,x

j
2), j = 1, 2, . . . , n, define a

matrix χ ∈ Rn×9 associated with these measurements to be

χ
.
= [a1,a2, . . . ,an]T (5.13)

where the jth row aj is the Kronecker product of each pair (xj
1,x

j
2) using (5.12).

In the absence of noise, the vector Es satisfies

χEs = 0. (5.14)

This linear equation may now be solved for the vector Es. For the solution to
be unique (up to scale, ruling out the trivial solution Es = 0), the rank of the
matrix χ ∈ R9×n needs to be exactly eight. This should be the case given n ≥ 8
“ideal” corresponding points, as shown in Figure 5.4. In general, however, since
correspondences may be noisy (as the images shown), there may be no solution
to (5.14). In such a case, one can choose the Es that minimizes the least-squares
error function ‖χEs‖2. This is achieved by choosing Es to be the eigenvector
of χTχ that corresponds to its smallest eigenvalue, as we show in Appendix A.
Another condition to be aware of is when the rank of χ is less than 8 regardless the
number of points used, allowing for multiple solutions to equation (5.14). This can
happen when the feature points are not in “general position”, for example when
they all lie in a plane (as we will soon see in the next section).

Figure 5.4. Eight pairs of corresponding image points in two views of the Tai-He Palace in
the Forbidden City, Beijing, China.

However, even in the absence of noise, for a vectorEs to be the solution of our
problem, it is not sufficient that it be in the null space of χ. In fact, it has to satisfy
an additional constraint, that its matrix formE must belong to the space of Essen-
tial matrices. Enforcing this structure in the determination of the null space of χ is
difficult. Therefore, as a first cut, we first estimate the null space of χ ignoring the
internal structure of Essential matrix, obtaining a matrix, say F , which possibly
does not belong to the Essential space E , and then orthogonally project the matrix
thus obtained onto the Essential space. This process is illustrated in Figure 5.5.
The following theorem says precisely what this projection is.
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Figure 5.5. Among all points in the Essential space E ⊂ R3×3, E has the shortest Frobe-
nius distance to F . However, the least square error ‖χEs‖2 may not be the smallest for E
among all points in E . Possible level sets for the value ‖χEs‖2 are plotted: the darker the
area is, the lower is the value of ‖χEs‖2.

Theorem 5.9 (Projection onto the Essential space). Given a real matrix F ∈
R3×3 with SVD F = Udiag{λ1, λ2, λ3}V T with U, V ∈ SO(3), λ1 ≥ λ2 ≥ λ3,
then the Essential matrix E ∈ E which minimizes the error ‖E − F‖2f is given
by E = Udiag{σ, σ, 0}V T with σ = (λ1 + λ2)/2. The subscript f indicates the
Frobenious norm (Appendix A).

Proof. For any fixed matrix Σ = diag{σ, σ, 0}, we define a subset EΣ of
the Essential space E to be the set of all Essential matrices with SVD of
the form U1ΣV

T
1 , U1, V1 ∈ SO(3). To simplify the notation, define Σλ =

diag{λ1, λ2, λ3}. We now prove the theorem in two steps:
Step 1: We prove that for a fixed Σ, the Essential matrix E ∈ EΣ which mini-

mizes the error ‖E − F‖2f has a solution E = UΣV T (not necessarily unique).
Since E ∈ EΣ has the form E = U1ΣV

T
1 , we get

‖E − F‖2f = ‖U1ΣV
T
1 − UΣλV

T ‖2f = ‖Σλ − UTU1ΣV
T
1 V ‖2f .

Define P = UTU1, Q = V TV1 ∈ SO(3) which have the form

P =



p11 p12 p13

p21 p22 p23

p31 p32 p33


 , Q =



q11 q12 q13
q21 q22 q23
q31 q32 q33


 . (5.15)

Then

‖E − F‖2f = ‖Σλ − UTU1ΣV
T
1 V ‖2f

= trace(Σ2
λ)− 2trace(PΣQT Σλ) + trace(Σ2).

Expanding the second term, using Σ = diag{σ, σ, 0} and the notation pij , qij for
the entries of P,Q, we have

trace(PΣQT Σλ) = σ(λ1(p11q11 + p12q12) + λ2(p21q21 + p22q22)).

Since P,Q are rotation matrices, p11q11 + p12q12 ≤ 1 and p21q21 + p22q22 ≤ 1.
Since Σ,Σλ are fixed and λ1, λ2 ≥ 0, the error ‖E − F‖2f is minimized when
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p11q11 + p12q12 = p21q21 + p22q22 = 1. This can be achieved when P,Q are of
the general form

P = Q =




cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 .

Obviously P = Q = I is one of the solutions. That implies U1 = U, V1 = V .
Step 2: From Step 1, we only need to minimize the error function over the

matrices of the form UΣV T ∈ E where Σ may vary. The minimization problem
is then converted to one of minimizing the error function

‖E − F‖2f = (λ1 − σ)2 + (λ2 − σ)2 + (λ3 − 0)2.

Clearly, the σ which minimizes this error function is given by σ = (λ1 + λ2)/2.

As we have already pointed out, the epipolar constraint only allows for the
recovery of the Essential matrix up to a scale (since the epipolar constraint (5.2) is
homogeneous inE, it is not modified by multiplying it by any non-zero constant).
A typical choice to fix this ambiguity is to assume a unit translation, that is, ‖T‖ =
‖E‖ = 1. We call the resulting Essential matrix normalized.

Remark 5.10. The reader may have noticed that the above theorem relies a
special assumption that in the SVD of E both matrices U and V are rotation
matrices in SO(3). This is not always true when E is estimated from noisy data.
In fact standard SVD routine does not guarantee that the computed U and V are
in SO(3). The problem can be easily resolved once one notices that the sign of
the Essential matrix E is also arbitrary (even after normalization). The above
projection can be either operated on +E or −E. We leave it as an exercise to the
reader that one of the (noisy) matrices ±E will always has its SVD satisfies the
conditions of Theorem 5.9.

According to Theorem 5.7, each normalized Essential matrix E gives two pos-
sible poses (R, T ). So from ±E, we can recover the pose up to four solutions.
We leave the details about these four related solutions to the reader as an exercise
(see Exercise 5.11).5

The overall algorithm, which is due to [Longuet-Higgins, 1981], can then be
summarized as Algorithm 5.1.

To account for the possible sign change with ±E, in the last step of the algo-
rithm, the “+” and “−” signs in the equations for R and T should be arbitrarily
combined so that all four solutions can be obtained.

5In fact, three of the solutions can be eliminated by imposing the positive depth constraint. See
Exercise 5.11.
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Algorithm 5.1 (The eight-point algorithm).

For a given set of image correspondences (xj
1,x

j
2), j = 1, 2, . . . , n (n ≥ 8), this

algorithm recovers (R,T ) ∈ SE(3) which satisfies

x
jT
2 T̂Rx

j
1 = 0, j = 1, 2, . . . , n.

1. Compute a first approximation of the Essential matrix
Construct the χ = [a1, . . . ,an]T ] ∈ Rn×9 from correspondences x

j
1 and x

j
2 as in

(5.12), namely

a
j = x

j
1 ⊗ x

j
2 ∈ R

9.

Find the vector Es ∈ R9 of unit length such that ‖χEs‖ is minimized as follows:
compute the SVD χ = UχΣχV

T
χ and define Es to be the 9th column of Vχ. Un-

stack the 9 elements of Es into a square 3 × 3 matrix E as in (5.10). Note that this
matrix will in general not be in the Essential space.

2. Project onto the Essential space
Compute the Singular Value Decomposition of the matrix E recovered from data to
be

E = Udiag{σ1, σ2, σ3}V T

where σ1 ≥ σ2 ≥ σ3 ≥ 0 and U, V ∈ SO(3). In general, since E may not be an
Essential matrix, σ1 6= σ2 and σ3 6= 0. But its projection onto the Essential space
is UΣV T , where Σ = diag{1, 1, 0}.

3. Recover displacement from the Essential matrix
We now only need U and V to extract R and T from the Essential matrix as

R = URT
Z

(
±π

2

)
V T , T̂ = URZ

(
±π

2

)
ΣUT .

Example 5.11 (A numerical example). Suppose that

R =




cos(π/4) 0 sin(π/4)
0 1 0

− sin(π/4) 0 cos(π/4)


 =




√
2

2
0

√
2

2

0 1 0

−
√

2
2

0
√

2
2


 , T =



2
0
0


 .

Then the Essential matrix is

E = T̂R =




0 0 0√
2 0 −

√
2

0 2 0


 .

Since ‖T‖ = 2, the E obtained here is not normalized. It is also easy to see this from its
SVD

E = UΣV T .
=




0 0 −1
−1 0 0
0 1 0





2 0 0
0 2 0
0 0 0






−

√
2

2
0 −

√
2

2

0 1 0√
2

2
0 −

√
2

2




T

where the non-zero singular values are 2 instead of 1. Normalizing E is equivalent to
replacing the above Σ by

Σ = diag{1, 1, 0}.
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It is then direct to compute the four possible decompositions (R, T̂ ) for E

1. URT
Z

(π
2

)
V T =




√
2

2
0

√
2

2

0 −1 0√
2

2
0 −

√
2

2


 , URZ

(π
2

)
ΣUT =



0 0 0
0 0 1
0 −1 0


 ;

2. URT
Z

(π
2

)
V T =




√
2

2
0

√
2

2

0 −1 0√
2

2
0 −

√
2

2


 , URZ

(
−π

2

)
ΣUT =



0 0 0
0 0 −1
0 1 0


 ;

3. URT
Z

(
−π

2

)
V T =




√
2

2
0

√
2

2

0 1 0

−
√

2
2

0
√

2
2


 , URZ

(
−π

2

)
ΣUT =



0 0 0
0 0 −1
0 1 0


 ;

4. URT
Z

(
−π

2

)
V T =




√
2

2
0

√
2

2

0 1 0

−
√

2
2

0
√

2
2


 , URZ

(π
2

)
ΣUT =



0 0 0
0 0 1
0 −1 0


 .

Clearly, the 3rd solution is exactly the original motion (R, T̂ ) except that the translation T
is recovered up to a scale (i.e. it is normalized always to 1).

Despite its simplicity, the above algorithm, when used in practice, have a few
caveats that are discussed below.

Number of points

The number of 8 points assumed by the algorithm is mostly for convenience and
simplicity of presentation. In fact, the matrix E (as a function of (R, T )) has
only a total of 5 degrees of freedom: 3 for rotation and 2 for translation (up to a
scale). By utilizing some additional algebraic properties of E, we may reduce the
number of points necessary. For instance, knowing det(E) = 0, we may relax the
condition rank(χ) = 8 to rank(χ) = 7, and get two solutions Es

1 and Es
2 ∈ R9

from the kernel of χ. Nevertheless, there is usually only one α ∈ R such that

det(E1 + αE2) = 0.

Therefore, 7 points is all we need to have a relatively simpler algorithm. As shown
in Exercise 5.13, in fact a linear algorithm exists for only 6 points if more com-
plicated algebraic properties of the Essential matrix are used. Hence, it should not
be a surprise, as shown by [Kruppa, 1913], that one only needs 5 points in general
position to recover (R, T ). It can be shown that there are up to a total 10 (possibly
complex) solutions, though the solutions are not obtainable in closed form.

Number of solutions and positive depth constraint

Since both E and−E satisfy the same set of epipolar constraints, they in general
give rise to 2×2 = 4 possible solutions for (R, T ). However, this does not pose a
potential problem because only one of the solutions guarantees that the depths of
all the 3-D points reconstructed are positive with respect to both camera frames.
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That is, in general, three out of the four solutions will be physically impossible
and hence may be discarded (see Exercise 5.11).

Motion requirement: sufficient baseline

In the derivation of the epipolar constraint we have implicitly assumed thatE 6= 0,
which allowed us to derive the eight-point algorithm where the epipolar matrix is
normalized to ‖E‖ = 1. Due to the structure of the Essential matrix, E = 0 ⇔
T = 0. Therefore, the eight-point algorithm requires that T 6= 0. The translation
T induces in the image plane so called “parallax”. In practice, due to noise, the
algorithm will likely return an answer even when there is no translation. However,
in this case the estimated direction of translation will be meaningless. Therefore,
one needs to exercise caution to make sure that there is “sufficient baseline” for
the algorithm to be well conditioned. It has been observed experimentally that,
even for purely rotational motion T = 0, the “spurious” translation created by
noise in the image measurements is sufficient for the eight-point algorithm return
a correct estimate of R.

Structure requirement: general position

In order for the above algorithm to work properly, the condition that the given 8
points are in “general position” is very important. It can be easily shown that if
these points form certain degenerate configurations, the so-called “critical sur-
faces”, the algorithm will fail (see Exercise 5.14). A case of some practical
importance is when all the points happen to lie on the same 2-D plane in R3.
We will discuss the geometry for the planar case in Section 5.3, and also later
within the context of multiple-view geometry (Chapter 9).

Multiple motion hypotheses

In the case of multiple moving objects in the scene, image points may no longer
satisfy the same epipolar constraint. For example, if we know there are two inde-
pendent moving objects with motions, say (R1, T 1) and (R2, T 2), then the two
images (x1,x2) of a point p on one of these objects should satisfy instead the
equation

(xT
2 E

1x1)(x
T
2 E

2x1) = 0 (5.16)

corresponding to the fact that the point p either moves according to motion 1
or motion 2. Here E1 = T̂ 1R1 and E2 = T̂ 2R2. As we will see, from this
equation, it is still possible to recover E1 and E2 if enough points are visible on
either object. Generalizing to more than two independent motions requires some
attention; we will systematically study the multiple-motion problem in Chapter 7.

Infinitesimal viewpoint change

It is often the case in applications that the two views described in this chapter are
taken by a moving camera rather than by two static cameras. The derivation of
the epipolar constraint and the associated eight-point algorithm does not change,
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as long as the two vantage points are distinct. In the limit that the two viewpoints
come infinitesimally close, the epipolar constraint takes a related but different
form called the continuous epipolar constraint which we will study in Section
5.4. The continuous case is typically of more significance for applications in robot
vision where one is often interested in recovering of linear and angular velocities
of the camera.

5.2.2 Euclidean constraints and structure reconstruction

The eight-point algorithm just described uses as input a set of eight or more point
correspondences and returns the relative pose (rotation and translation) between
the two cameras up to an arbitrary scale γ ∈ R+. Without loss of generality,
we may assume this scale γ = 1 which is equivalent to choosing the length of
translation to be of unit length. Relative pose and point correspondences can then
be used to retrieve the position of the points in 3-D by recovering their depths
relative to each camera frame.

Consider the basic rigid body equation, where the pose (R, T ) has been recov-
ered, with the translation T defined up to the scale γ. In terms of the images and
the depths, it is given by

λj
2x

j
2 = λj

1Rx
j
1 + γT, j = 1, 2, . . . , n. (5.17)

Notice that, since (R, T ) are known, the equations given by (5.17) are linear in
both the structural scales λ’s and the motion scales γ’s and therefore they can
be easily solved. For each point, λ1, λ2 are its depths with respect to the first
and second camera frames, respectively. One of them is therefore redundant – for
instance, knowing λ1, λ2 is simply a function of (R, T ). Hence we can eliminate,
say, λ2 from the above equation by multiplying both sides by x̂2. It yields

λ1x̂
j
2Rx

j
1 + γx̂

j
2T = 0, j = 1, 2, . . . , n. (5.18)

This is equivalent to solving the linear equation

M jλ̄j .
=

[
x̂

j
2Rx

j
1, x̂

j
2T

][
λj

1

γ

]
= 0, (5.19)

where M j =

[
x̂

j
2Rx

j
1, x̂

j
2T

]
∈ R3×2 and λ̄j = [λj

1, γ]
T ∈ R2 j = 1, 2, . . . , n.

In order to have a unique solution, the matrix M j needs to be of rank 1. This is
not the case only when x̂2T = 0, i.e. when the point p lies on the line connecting
the two optical centers o1 and o2.


