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Question Answering

Which is the largest city in California?

Simple enough for Google using webpages! J

Which is the largest city in a state bordering California?

Simple enough? K

Knowledge Base

City Population
LA 3.9m
SF 800k
…

Border
(CA, OR)
(CA, NV)
…

State
(LA, CA)
(SF, CA)
…
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Semantic Parsing

Which is the largest city in the states bordering California?

Logic Program for given KB:
argmax({c: city(c) ^ s.state(s) ^ loc(c, s) ^ border(s, CA)}, population)

Simple enough for any computer!

Logic Program for given KB:
argmax({c: city(c) ^ s.state(s) ^ loc(c, s) ^ border(s, CA)}, population)

Expert annotation L

Answer:
Phoenix

Simple annotation J

* example from Liang et al. 2011

Knowledge Base

City Population
LA 3.9m
SF 800k
…

Border
(CA, OR)
(CA, NV)
…

State
(LA, CA)
(SF, CA)
…
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E2E Semantic Parsing

Which is the largest city in the states bordering California?

Answer:
Phoenix

Latent logic program:
argmax({c: city(c) ^ s.state(s) ^ loc(c, s) ^ border(s, CA)}, population)
argmax({c: city(c) ^ s.state(s) ^ border(s, CA)}, population)
argmax({c: city(c) ^ s.state(s) ^ loc(c, CA)}, population)
…

From the huge space, generate program
- Executes to correct answer
- Syntactically correct (type constraints)
And use it to supervise
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Key idea

- Formulate a logic form with tree representation called Dependency based 
Compositional Semantics (DCS) such that

- The DCS representation looks like syntactic dependency tree, to facilitate learning

Question: Which is the largest city in a state bordering California? 

* example from Liang et al. 2011

?

?

?
?

??

?

?, ?, ?, ?, ?, ?

argmax

border

CA
city

locpopulation

state

city, population, loc, border, state, 
argmax
argmax({c: city(c) ^ s.state(s) ^ loc(c, s) ^ 
border(s, CA)}, population)

city

population

argmax

loc

border

state CA

1
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Overview

Question: Which is the largest city in a state bordering California? 

city

population

argmax

loc

border

state CA

Knowledge Base

Parsing

ComputationComputation

1
1

1
1

C 2
1

2
1

1
1
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Basic DCS

- Supports join and aggregate operators
- Designed for cases with correlated semantic and syntactic scopes

every city in California

city

loc

CA

1
1

2
1

{(CA)}

{(LA, CA), (SF, CA), 
(NY, NY)…}

{(LA), (SF), (NY), …}

Constraints

c 𝛜 city

l 𝛜 loc

s 𝛜 CA

l2 = s1

c1 = l1

- A DCS tree encodes a 
Constraint satisfaction
problem

* example from Liang et al. 2011
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Towards Full DCS

- Semantic and syntactic scope diverge in examples of quantification, 
extraction, comparison, etc.

Question: Which is the largest city in a state bordering California? 

argmax({c: city(c) ^ s.state(s) ^ loc(c, s) ^ border(s, CA)}, population)

Semantic root (last execution) 
but not the syntactic root 
(dependency tree)

city

population

argmax

loc

border

state CA

1
1

1
1

C
2
1

2
1

1
1
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Full DCS

- Additionally supports extract, quantify and compare operators
- Mark-Execute: 

- mark at syntactic scope with relation
- execute at semantic scope city

population

argmax

loc

border

state CA

x1 (execute)

1
1

2
1(Comparative) C

1
1

2
1

1
1

* could be a little inaccurate
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Overview

Question: Which is the largest city in a state bordering California? 

city

population

argmax

loc

border

state CA

Knowledge Base

Parsing

Computation

Parsing
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Graphical Model

Parse scoring model
- Generate candidate parses
- Score the parses

* image from Liang et al. 2011



Recursively construct trees for sub-spans of text by using

12

Generate parse space

- Use fixed set of lexical triggers L mapping phrases (or words) to predicates
- (“California”, CA), (“most”, argmax) 𝛜 L

* image from Liang et al. 2011

Combine two trees using relation 
and predicates

Lexical trigger tree

Augmentation function to add E/X 
relation on a single tree

Filtering function
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Log linear scoring model

x: city in California
z: city loc CA

features(x, z) = (in…loc, city-1-1-loc, …) 𝝐 Rd

score(x, z) = features(x, z) . 𝜽

p(z|x, 𝜽) = escore(x, z) / 𝚺z’𝝐Z(x)escore(x, z’)

1    1 2    1

* credit: Liang et al. 2011
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Learning

Objective:
max𝜽𝚺z p(y|z,w) . p(z|x, 𝜽)

EM style learning:

k-best list
tree1 ✅

𝜽 tree2 ❌
tree3 ❌
…

score trees

update parameters

* credit: Liang et al. 2011
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Results

* credit: Liang et al. 2011

Specialized lexicon Logical forms
✅ ❌
✅ ✅
❌ ❌
✅ ❌

+ Logical forms

+ Specialized lexicon

GEO
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Observations

• Supervision compared to Clark et al.:
– Use a smaller lexicon
– Use POS tags vs dependency trees
– Use simple indicator features vs WordNet features

• Assumptions (impact generalization):
– Lexicon is general purpose but needs to be exhaustive
– Indicator features would generalize well
– DCS space restricted by lexicon and beam search
– DCS:

• Expressive enough
• Efficiently executed over any KB

ü Baked inductive bias towards syntactic structure
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Contributions

• Present a new semantic framework DCS
– Expressive
– Computationally efficient
– Well motivated to counter lambda calculus

• Show amazing results with simple, cheap e2e supervision
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Personal thoughts

About the paper:
+ Beautiful idea, well executed
+ Build a nicely presented logical framework
+ Cheaply supervised, beats highly supervised methods
- Very complicated framework

• Semantic Parsing is a fundamental roadblock to NLU
• Need more developments in building more elegant and richer logical 

frameworks

Thank you!
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