

CIS-620 Spring 2021

Learning in Few-Labels Settings

Dan Roth Computer and Information Science University of Pennsylvania

> Meeting # 3 2/8/21

Admin

- If you haven't selected a paper to present, please do so.
 - Papers for the 15th are on the spreadsheet. Please send me your draft presentation soon; no later than Friday night.
- Recall that you need to be a discussant on two papers.

□ Please send your questions/bullets by Sunday.

- Please follow the presentation guidelines
- Please follow the schedule on the website:

□ February 15:

- □ Select a paper to reproduce
 - Reproduction papers will be released today.
- □ First Critical Survey due
 - Guidelines will be released later this week
 - Do not survey papers that were already presented in class.

Today's Papers

Zero-Shot Learning

□ <u>Zero-Shot Relation Extraction via Reading Comprehension (Kevin Xie)</u>

Incidental Signals

□ Learning Dependency-Based Compositional Semantics (Krunal Shah)

Knowledge as Supervision

□ <u>A Logic-Driven Framework for Consistency of Neural Models</u> (Jiayao Zhang)

Zero-Shot + Knowledge

□ <u>Zero-shot Learning of Classifiers from Natural Language Quantification (Young-Min Cho)</u>

Zero-Shot

Zero-Shot Learning

- Protocols: Multiple protocols are referred to as Zero-Shot in the literature.
- Assume that we are talking about multi-class classification
 - 1. The decision model has not seen any task-specific training examples
 - 2. The decision model has been trained on *some* of the labels and needs to predict also on unseen labels.
 - □ [Yin et al. EMNLP'19] called these protocols: *label-fully-unseen* and *label-partially-unseen*
- Methods:
 - 1. Representation-based: examples & labels are mapped to a common semantic space
 - Sparse representations or Dense representations
 - 2. Transfer: a model that was trained on decision task T is being used (via some mapping) to support decisions on task T'.
 - Typically, transfer is done from Textual Entailment or Questions Answering
 - 3. Learning from definitions (or other external sources)

Zero-Shot Paper

Zero-Shot Relation Extraction via Reading Comprehension (Kevin Xie)

- □ Transfer learning for relation extraction.
- □ Note that the standard relation extraction is defined as:
 - Input: Sentence, mention₁, mention₂, taxonomy of relations {R₁, R₂, ...R_k} (includes a no-relation)
 - Learn a model that maps the mention pair into one of the relations R_i
- □ **Example:** Sanders' wife is a native of North Carolina → (born_in (sander's wide, NC))

Incidental Signals

Learning from Responses

Understanding Language Requires (some) Feedback

- How to recover meaning from text?
- Standard "example based" ML: annotate text with meaning representation

□ The teacher needs deep understanding of the **agent** ; not scalable.

- Response Driven Learning (current name: learning from denotation): Exploit indirect signals in the interaction between the learner and the teacher/environment
- [A lot of work in this direction, following Clarke et al. CoNLL'10: Driving Semantic Parsing from the World's Response]

Response Based Learning

We want to learn a model that transforms a natural language sentence to some meaning representation.

- Instead of training with (Sentence, Meaning Representation) pairs
- Think about/invent behavioral derivative(s) of the models outputs
 - □ Supervise the derivatives (easy!) and
 - □ Propagate it to learn the complex, structured, transformation model

Geoquery with Response based Learning

We want to learn a model to transform a natural language sentence to some formal representation.

English Sentence Model	Meaning Representation
What is the largest state that borders NY?	largest(state(next_to(const(NY))))
Query a GeoQuery Database.	Simple derivatives of the model's outputs

The key challenge is computational. The space of possible semantic parses is huge. Approaches focused on trying to constrain this space.

Learning Dependency-Based Compositional Semantics (Krunal Shah)

□ Will present significant improvements over the original paper

Knowledge as Supervision

Models could be learned separately/jointly; constraints may come up only at decision time.

Constrained Conditional Models [Abductive Reasoning; Chang et al.'12]

How to train models?

- 1. Without the constraints; apply constraints only at decision time.
- 2. With constraints
 - More costly
- 3. What to learn during training? The objective function (w, u)? Learning all the intermediate functions $\phi(x, y)$?
- How to encode the constraints?
 - 1. Linear inequalities? Gives rise to LP/ILP
 - 2. Differentiable encoding of the linear constraints?

Knowledge as Supervision Paper

- <u>A Logic-Driven Framework for Consistency of Neural Models</u> (Jiayao Zhang)
 - □ Will present an interesting instance of this framework

Information extraction [Chang et al. ACL'07, MLJ'12]

Lars Ole Andersen . Program analysis and specialization for the C Programming language. PhD thesis. DIKU , University of Copenhagen, May 1994 .

 $\operatorname*{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y)$

Prediction result of a trained HMM

[AVTHOR] [TITLE] [EDITOR] [BOOKTITLE] [TECH-REPORT] [INSTITVTION] [DATE] Lars Ole Andersen . Program analysis and specialization for the C Programming language . PhD thesis . DIKU , University of Copenhagen , May 1994 .

Violates lots of natural constraints!

Strategies for Improving the Results

- (Pure) Machine Learning Approaches
 - □ Higher Order HMM/CRF?
 - □ Increasing the window size?
 - □ Use neural models
 - □ Adding a lot of new features
 - Requires a lot of labeled examples

Increasing the model complexity

Increase difficulty of Learning

□ What if we only have a few labeled examples?

Can we keep the learned model simple and still make expressive decisions?

- Other options?
 - □ Constrain the output to make sense
 - □ Push the (simple) model in a direction that makes sense

Examples of Constraints

- Each field must be a consecutive list of words and can appear at most once in a citation.
- State transitions must occur on punctuation marks.
- The citation can only start with AUTHOR or EDITOR.
- The words pp., pages correspond to PAGE.
- Four digits starting with 20xx and 19xx are DATE.
- Quotations can appear only in TITLE

Easy to express pieces of "knowledge"

Non Propositional; May use Quantifiers

Information Extraction with Constraints

Adding constraints, we get correct results!

Without changing the model

 $argmax \lambda \cdot F(x, y)$ [AUTHOR]Lars Ole Andersen[TITLE]Program analysis and specialization for the
C Programming language[TECH-REPORT]PhD thesis[INSTITUTION]DIKU , University of Copenhagen ,
May, 1994 .

Guiding (Semi-Supervised) Learning with Constraints

- In traditional Semi-Supervised learning the model can drift away from the correct one.
- Constraints can be used to generate better training data

□ At training to improve labeling of un-labeled data (and thus improve the model)

□ At decision time, to bias the objective function towards favoring constraint satisfaction.

Value of Constraints in Semi-Supervised Learning

Objective function:
$$f_{\Phi,C}(\mathbf{x}, \mathbf{y}) = \sum w_i \phi_i(\mathbf{x}, \mathbf{y}) - \sum \rho_i d_{C_i}(\mathbf{x}, \mathbf{y}).$$

Constraints Driven Learning (CoDL)

[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ'12] See also: Ganchev et. al. 10 (PR)

Constrained EM: Two Versions

While Constrained-Driven Learning [CODL; Chang et al, 07,12] is a constrained version of hard EM:

$$y^* = argmax_{[y:Uy < b]} P_w(y|x)$$

distribution over y

- It is possible to derive a constrained version of EM:
- To do that, constraints are relaxed into expectation constraints on the posterior probability q: _______Constraining a

The E-step now becomes: [Neal & Hinton '99 view of EM]

$$\mathbf{q'} = \underset{q:q(\mathbf{y}) \ge 0, E_q[\mathbf{U}\mathbf{y}] \le \mathbf{b}, \sum_{\mathbf{y}} q(\mathbf{y}) = 1}{\arg \min} KL(q(\mathbf{y})||P(\mathbf{y}|\mathbf{x}, \mathbf{w}))$$

■ This is Posterior Regularization [PR] [Ganchev et al, 10]

The CoDL paper and the PR papers are doing a good job comparing these frameworks; also see Samdani & Roth, NAACL-12 for a unifying framework.

Zero-Shot + Knowledge Paper

Zero-shot Learning of Classifiers from Natural Language Quantification (Young-Min Cho)

- □ Using definitions to understand the target labels
- □ Standard text classification problem.
- □ **Input:** Text Snippet, taxonomy of labels $\{I_1, I_2, ..., I_k\}$ (includes a none)
- □ **Learn** a model that maps the text snippet into one of the labels.
- Key technical question is how to use the knowledge given by the "definitions"
 Use of Posterior Regularization