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Focus: Text Entailment Task

A Text Entailment Task

[ Give a two sentences, predict a label among Entailment, Contradiction, or Neutral.
1 Annotated Natural Language Inference (NLI) datasets from Amazon Turk such as SNLI,

MultiNLL
Sentence 1 Sentence 2 Judgement
A dog is running in the sand The dog is sitting patiently Contradiction
A woman in black pants is looking at a woman is looking at her Entailment
her cellphone phone
A cyclist rides down a rocky He is an experienced rider Neutral
mountain

The Stanford NLI Corpus (SNLI): https://nlp.stanford.edu/projects/snli/
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Example

A Consider the sentences:
A A:Bob is on a train to Berlin
O B: Bob is traveling to Berlin
[  C: Bob is eating in Berlin
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Example: Human Reasoning

A Consider the sentences:
A A:Bobis on a train to Berlin
O B: Bob is traveling to Berlin
[  C: Bob is eating in Berlin
d  We know -
(A, B): Entailment
A (B, O): Contradiction
1 Without even looking at (A, C) we can reason
that (A, C) is Contradiction.

1 Unfortunately -

d  Some models may think otherwise.

Entailment

This must be
Contradiction!

Contradiction
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Entailment

When the model fails ...

A Consider the sentences:
(A  A: Bobis on a train to Berlin

O B: Bob is traveling to Berlin

Contradiction

[  C: Bob is eating in Berlin

Input | True | Entailment | Contradiction | Neutral
decomposable-at | (A, B) | E 0.796 0.020 0.184
tention-elmo-20
20.04.09 (B,C) | C 0.361 0.371 0.268
(A Q) | C 0.267 0.273 0.461

Decomposable attention model with ELMo: https://arxiv.org/abs/1606.01933
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Entailment

... even the SOTA

A Consider the sentences:
O A: Bob is traveling to Berlin

A B: Bob is on his way to Berlin
A C: Bob is having dinner in Berlin

Contradiction

Input | True | Entailment | Contradiction | Neutral
mnli_roberta-20 | (A, B) | E 0.993 0.000 0.006
20.06.09

B,C | C 0.206 0.492 0.302

(A, C) C 0.814 0.020 0.166

RoBERTa model: https://arxiv.org/abs/1907.11692
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MultiNLI

The Multi-Genre Natural Language Inference (MultiNLI) corpus contains around 433k

hypothesis/premise pairs. It is similar to the SNLI corpus, but covers a range of genres of
oo o e ‘; e I l t e spoken and written text and supports cross-genre evaluation. The data can be

downloaded from the MultiNL| website.

Public leaderboards for in-genre (matched) and cross-genre (mismatched) evaluation are
available, but entries do not correspond to published models.

A Consider the sentences:

D A: BOb IS travellng tO Berlln RoBERTa (Liu et 90.8 90.2 RoBERTa: A Robustly Official
. ; 4 ' al., 2019) Optimized BERT
A B: Bob is on his way to Berlin S
D C: BOb IS huving dinner m Berlln XLNet-Large 90.2 89.8 XLNet: Generalized Official
(ensemble) (Yang Autoregressive Pretraining
et al., 2019) for Language
Understanding

Input | True | Entailment | Contradiction | Neutral

mnli_roberta-20 | (A, B) | E 0.993 0.000 0.006
20.06.09

(B,C) | C 0.206 0.492 0.302

(A,C) | C 0.814 0.020 0.166

Leaderboards: https://nlpprogress.com/english/natural language inference.html
AllenNLP Text Entailment Demo: https://demo.allennlp.org/textual-entailment/roberta-mnli
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Challenge: Consistency

d A good system: draw correct inference and be consistent in its beliefs.
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Challenge: Consistency

A good system: draw correct inference and be consistent in its beliefs
d  Even highly accurate models can be inconsistent
1 Possible mitigation strategies?

1 Include those “adversarial inputs” when train the model

d  Annotation is costly; automatically generate labels - computational cost.

A Models may fail to see the consistency inside - thus failing at testing time.
[ Incorporate knowledge in training (this paper).

O Q: Can we incorporate knowledge in pos

As logic forms.
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Knowledge as first-order logic

A Let x be a collection of examples (labelled or unlabelled), all constraints can be

expressed as A L(z) = R(x)
(L,R)
where L and R are Boolean formulas constructed from model predictions on

examples in x.
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Knowledge as first-order logic

A Let x be a collection of examples (labelled or unlabelled), all constraints can be

expressed as A L(z) = R(=) Equivalently L(x) vV = R(x)
(L.R)

where L and R are Boolean formulas constructed from model predictions on
examples in x.
A The rule used in the running example can be written as
E(A, By AC(B, C) — C(A, O).
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Knowledge as first-order logic

A Let x be a collection of examples (labelled or unlabelled), all constraints can be

expressed as A L(z) = R(x)
(L,R)
where L and R are Boolean formulas constructed from model predictions on

examples in x.

This is a constraint on
accuracy and will lin
to the CE loss.

A The rule used in the running example can be written

E(A, B) A C(B, C) — C(A, O).

TRUE — y(x)).

28



Consistency Rules

Annotation Consistency: V (P, H), Y € D, TRUE — Y(P, H).

Symmetry Consistency: A C(P,H)« C(H,P).
(P,H)eD

Transitivity Consistency: v(p, 1, z) ¢ D,

(E(P,H)NE(H,Z) — E(P,2))
AN(E(P,H)AC (H,Z) = C(P,2))
AN (P,H)AE (H,Z) — —C (P, Z))
A(N (P,H)AC (H,Z) — —E (P, 2))

29



If the data is annotated, its

/ label should be predicted.

Annotation Consistency: V (P, H), Y € D, TRUE — Y(P, H).

Consistency Rules

If A contradicts with B, then B

/ also contradicts with A.
Symmetry Consistency: A C(P,H)« C(H,P).
(P,H)eD

Transitivity Consistency: v(p, 1, z) ¢ D,

(E(P,H)AE(H,Z) — E(P,2)) The running
A(E(P,H)ANC (H,Z) — C(P,Z)) - '
AN (P,H)AE(H,Z) — ~C (P, Z
A(N (P,H)AC (H,Z) — —E (P, %)
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Losses from softened logic

A Predicted label probability (e.g., e(A, B)) as surrogates for Boolean decision
(E(A, B)).
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Losses from softened logic

A Predicted label probability (e.g., e(A, B)) as surrogates for Boolean decision
(E(A, B)).
d  Transform logic rules to losses by softening them using “#-norms”.

Name Boolean Logic  Product Godel Fukasiewicz
Negation -A 1—a l1—a l1—a
T-norm ANB ab min (a, b) max (0,a+b—1)
T-conorm AV B a+b—ab max(a, b) min (1, a + b)

1, ifb>
Residuum A—B min (1, ) {b, 11 = min (1,1 —a+b)
, else
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Losses from softened logic

A Predicted label probability (e.g., e(A, B)) as surrogates for Boolean decision
(E(A, B)).
d  Transform logic rules to losses by softening them using “#-norms”.

Name Boolean Logic  Product (3idel Fukasiewicz
Negation -A 1—a 1-(1-a)(1-b) l—a
T-norm ANB ab /Hﬁ(a, b) max (0,a+b—1)
T-conorm AV B a+b—ab”| max(a,b) min (1, a + b)

1, ifb>a,

min (1,1 —a + b)
b, else

Residuum A— B min (1, ) {
\

ZAXSY S z<(x > y)
34

Residuum of Product t-norm: https://wikipedia.org/wiki/T-norm#Residuum
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Losses from softened logic

Annotation Consistency V (P, H), Y € D, TRUE — Y(P, H).

Symmetry Consistency

/\ C(P.H)« C(H,P).
(P,H)eD

Transitivity Consistency

V(P,H,Z) € D,

(E(P,H)ANE(H,Z) — E(P,Z))
ANE(P,H)ANC (H,Z) — C(P,2))
AN (P,H)ANE(H,Z) — -C (P, 7))
AN (P,H)AC (H,Z) — —E (P, Z))

35



Losses from softened logic

Annotation Consistency V (P, H), Y € D, TRUE — Y(P, H). H Y(p.m)

(P,H),Y*€D

Annotation Loss L
ann

Symmetry Consistency

N\ C(P,H)« C(H,P). Lom =Y |logepm=logeqp)
(P.H)ED (P,H)ED

Symmetry Loss L

sym

Transitivity Consistenc
y y ReLU (loge(P, H)+loge(H,Z)—loge(P, Z))
(P, H)

. P; A B +ReLU (log e(P, H)+log ¢(H, Z)— log ¢(P, Z))
/\EE §P7 Hi //: CEH’ Z; : CEP’ Z;i +ReLU (logn(P, H)+loge(H, Z)—log (1—c(P, Z)))
AN (P,H)NE(H,Z) — -~C (P, Z)) +ReLU (logn(P, H)+logc(H, Z)—log (1—e(P, Z)))
AN(N(P,HYNC (H,Z) — ~E (P, 2))

Transitivity Loss L, 36



Losses from softened logic

Il vem

(P,H),Y*€D

Annotation Loss L

lllll

1. Easy to optimize!

o077 o Lsym = | log c(p,rry—log ¢, p)|
. 2. Utilize both labelled and ! (Pﬂz):@ TR
un-labelled data! Symmetry Loss L,
ReLU (loge(P, H)+loge(H, Z)—loge(P, Z))
V(P’(H (]ZD);)IZ B2 B2 +ReLU (log e(P, H)+ log ¢(H, Z)— log (P, Z))
NE (PH) A C (H. Z) C<P: 2) +ReLU (log n(P, H)+ log e(H, Z)—log (1—c(P, Z)))
AN (P, H)AE(H,Z) — =C (P, 7)) +ReLU (logn(P, H)+ log c(H, Z)—log (1—e(P, Z)))
NN (P,H)AC (H,Z) - —E (P, Z2))

Transitivity Loss L .
[ramn



Training models, with knowledge

d  Theloss L= Laun + AsymLsym + AtranLtran €an be minimized via off-the-shelf
optimizers.

d  Symmetry and transitivity losses does not require labelled datal!

d  Training

BERT/LSTM bases fined tuned on SNLI/MultiNLI then fined tuned again.
SNLI/MultiNLI: labelled data for annotation consistency.

Mirrored (M): Swap two sentences in labelled examples, for symmetry consistency.
Unlabelled Triples (T): Sample triples from COCO dataset for transitivity consistency.
Unlabelled Pairs (U): Swap the first pair in each triple in (T) for symmetry consistency.
3 Testing

ooodd

A Sample new sets using the same procedure for evaluation.

38
MS COCO Dataset: https://arxiv.org/abs/1405.0312



https://arxiv.org/abs/1405.0312

Measuring inconsistencies

A Global Violation (o)

2. | V ~(L(z) = R(z))

__zeD [(L,R)
P= D)

A Conditional Violation ()

2. [\/ ~ (L(z) = R(z))

xeD | (L,R)

T =

2. [ V. L(z)
(L.R)

xeD
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Measuring inconsistencies

A Global Violation (o)

A Conditional Violation ()

Indicator
# of violations unction
/f C
2 [ V. ~(L(z) = R(z))
>V —(L(z) = R(x)) __ z€D [(L,R)
__ zeD | (L,R) T=
p D > [ V L)
2€D | (L,R)

Dataset size
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Measuring inconsistencies

A Global Violation (o)

A Conditional Violation ()

¢ of violati Indicator -
of violations :
/functzon
2. | V. ~(L(z) = R(z))
>V —(L(z) = R(x)) _ 2€D |(L,R)
b= zeD | (L,R) T=
D] > |V L)
2€D | (L,R)

Dataset size

If a model tries not to satisfy
any L, p can also be quite
low!

L — R is a tautology if L is
FALSE. Here 7 only considers
those with a true L.

41



Experiment Insights

Highly accurate models may also be very inconsistent.

Base
Model

Training set used

Fine

Conﬁg tuned on ps

5%

TS

PT

T

100%
ps TS pPpr TT

BERT w/ SNLI
BERT w/ MultiNLI

BERT w/ SNLI+MultiNLI
BERT w/ SNLI+MultiNLI? | 22.1

26.3
284
25.3

64.4
69.3
62.4
67.1

4.9
7.0
4.8
4.1

14.8
18.5
14.8
137

18.6 60.3 4.7 149
20.6 589 5.6 17.5
18.1 59.6 45 14.8
19.3 59.7 45 15.2

LSTM w/ SNLI+MultiNLI | 25.8

69.5

9.9

21.0

16.8 53.6 5.3 16.0

/

If predicts (A, B) as Contradiction,
then at least 60% chance it predicts
(B, A) as something else.

: Global symmetry inconsistency

: Conditional symmetry inconsistency

: Global transitivity inconsistency

: Conditional transitivity inconsistency
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Experiment Insights

Base
Model

/\ C(P.H)« C(H,P).

(P,H)ED
Y(P,H,Z) € D,
(E(P,H)AE(H,Z) — E(P,Z2))
AE(P,H)AC (H,Z) — C(P,2))
Highly accurate models may also be very inconsistent. AN (P,H)NE(H,Z) — ~C (P, Z))
AN (P,H) AC (H,Z) — —E (P, %))
Training set used
Fine 5% 100%
Config tunedon | po [ 79 |pp T | ps TS pr TT
BERT w/ SNLI 263|644 149 14.8|18.6 60.3 4.7 149
BERT w/ MultiNLI 284169.317.0 18.5]20.6 589 5.6 17.5
BERT w/ SNLI+MultiNLI |25.3(62.4 |4.8 14.8 |18.1 59.6 4.5 14.8
BERT w/ SNLI+MultiNLI? | 22.1|67.1 (4.1 13.7[19.3 59.7 4.5 152
LSTM w/ SNLI+MultiNLI |25.8|69.5 [9.9 21.0|16.8 53.6 5.3 16.0
‘ / P : Global symmetry inconsistency
If predicts (A, B) as Contradiction, 7, : Conditional symmetry inconsistency
then at least 60% chance it predicts py: Global transitivity inconsistency
(B, A) as Something else. (S Conditional transitivity inconsistency
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Experiment Insights

Weak supervision with constraints tminedcan be more consistent than a

trained on the full dataset.

~o SNLI+MultiNLI = w/ M
—— w/ M,U ——w/ M,U,T

//»””'47’*‘7\”‘\‘—7\
— P il e
NN 4
=Y
/ 2

Global transitivity

inconsistency
(smaller is better) 0 1 5 2 100
(M) Symmetry Consistency (SLI datasets) ___— Percentage of train set(%)

(U) Symmetry Consistency (COCO)

A t of label /Si
(T) Transitivity Consistency (COCO) mount of label supervision



Experiment Insights

Weak supervision with constraints tminedcan be more consistent than a

trained on the full dataset.

16 7\
ie o o ) ‘ U
12 n
10
S
=
/ 6
4
Conditional transitivit e SNLI-+MultiNLI = w/ M
onditional transitivity L e
inconsistency 2 w/ MU w/ M,U,T
(smaller is better) 0
1 5 20 100
(M) Symmetry Consistency (SLI datasets) ___— Percentage of train set(%)

(U) Symmetry Consistency (COCO)

A t of label /Si
(T) Transitivity Consistency (COCO) mount of label supervision



Experiment Insights

Constraints do not conflict with each other. They are mutually beneficial.

~o SNLI+MultiNLI =  w/ M
ol —— w/ M,U ——w/ M,U,T |
. More transitively
o4 o \t> consistent when the
= symmetry consistency
datasets are used.
- )
Global transitivity
inconsistency
(smaller is better) 0 1 5 2 100

___— Percentage of train set(%)

Amount of label supervision 46



Experiment Insights

Constraints does not reduce model accuracy.

Test datasets to evaluate

Datasets the BERT Training set used test accuracy on
base model trained on /
1% 5% 20% 100% /
Config SNLI MultiNLI | SNLI MultiNLI | SNLI MultiNLI | SNLI MultiNLI

SNLI+MultiNLI | 79.7 70.1 84.6 77.2 87.8 80.6 90.1 83.5
SNLI+MultiNLI? | 80.3 71.0 85.3 77.4 87.9 80.7 90.3 84.0

w/ M 80.1 71.0 85.3 77.8 88.1 80.6 90.3 84.1
w/ M,U [ 80.2 71.0 85.4 172 88.1 80.9 90.5 84.3
w/ M,U,T » 80.6 71.1 85.4 77.2 88.1 80.9 90.2 84.2
\ Prediction accuracy not dropped
(M) Symmetry Consistency (SLI datasets) (even increased) when more
(U) Symmetry Consistency (COCO) constraints are enforced. 27

(T) Transitivity Consistency (COCO)



Experiment Insights

L O O 0O

Highly accurate models may also be very inconsistent.
Weak supervision with constraints is already very helpful for consistency.
Constraints do not conflict with each other. They are mutually beneficial.

Adding more constraints does not reduce model accuracy.
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Summary

1 Knowledge as supervision: use logic rules to guide learning with consistency
constraints.

(A What is learnt here?

A What generalization is supported?
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Summary

1 Knowledge as supervision: use logic rules to guide learning with consistency

constraints.
(A  What is learnt here?

A What generalization is supported?

7(%)

16

12

10

e SNLI4+MultiNLI = w/ M

Ay

w/ M,U —+w/ M,U,T

5

20

100
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Summary

[ Knowledge as supervision: use logic rules to guide learning with consistency
constraints.

(A What is learnt here?

A What generalization is supported?

A Many consistency constraints do not require annotated data - enabling
utilization of both labelled and un-labelled data.

1 The constraints were shown to be mutually beneficial and do not hinder
prediction accuracy.
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Summary

L O O 0O

Source of knowledge: human knowledge (logic).
How to learn models: fine-tuning on datasets made for enforcing consistencies.
Encoding constraints: softened logic.

Global inference: hard.
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Comments

[ Constraints only applied in training time. No mechanism to enforce them
during test time.
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Comments

[ Constraints only applied in training time. No mechanism to enforce them
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d A good system: draw correct inference and be consistent in its beliefs.
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Since the constraints are
over multiple instances.

Comments

S
&
[ Constraints only applied in training time. No mechanism to enforce them

during test time.

d A good system: draw correct inference and be consistent in its beliefs.

What if its beliefs are
wrong?
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Discussions

A Isit possible to automatically discover and enforce consistency constraints?
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1 Also used in many recent work, though the industry has long been using
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d  Designing consistent QA system by augment labelled training data;
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Discussions

A Isit possible to automatically discover and enforce consistency constraints?

1 Also used in many recent work, though the industry has long been using
methods such as ILP for enforcing constraints.

d  Designing consistent QA system by augment labelled training data;

Logic-Guided Data Augmentation and Regularization
for Consistent Question Answering

AKkari Asai’ and Hannaneh Hajishirzi'
TUniversity of Washington }Allen Institute for Al
{akari, hannaneh}@cs.washington.edu

[AH20] https://arxiv.org/abs/2004.10157
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d  Improve semantic role labelling models, improvements under low-resource scenarios;
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Discussions

A Isit possible to automatically discover and enforce consistency constraints?

1 Also used in many recent work, though the industry has long been using
methods such as ILP for enforcing constraints.

d  Improve semantic role labelling models, improvements under low-resource scenarios;

Structured Tuning for Semantic Role Labeling
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Discussions

A Isit possible to automatically discover and enforce consistency constraints?

1 Also used in many recent work, though the industry has long been using
methods such as ILP for enforcing constraints.

d  Event-event relation extraction with low jointly labelled data.
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Discussions

A Isit possible to automatically discover and enforce consistency constraints?

1 Also used in many recent work, though the industry has long been using
methods such as ILP for enforcing constraints.

d  Event-event relation extraction with low jointly labelled data.

Joint Constrained Learning for Event-Event Relation Extraction

Haoyu Wang', Muhao Chen', Hongming Zhang?* & Dan Roth!
!Department of Computer and Information Science, UPenn
2Department of Computer Science and Engineering, HKUST
{whyl6gzl, muhao, danroth}@seas.upenn.edu;hzhangal@cse.ust.hk

62
[WCZR20] https://arxiv.org/abs/2010.06727



https://arxiv.org/abs/2010.06727

Discussions

[ Isit possible to automatically discover and enforce consistency constraints?

1 Also used in many recent work, though the industry has long been using
methods such as ILP for enforcing constraints.

d  Designing consistent QA system by augment labelled training data;
d  Improve semantic role labelling models, improvements under low-resource scenarios;

d  Event-event relation extraction with low jointly labelled data.
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Discussions

3

3

(Vivian, Matthew): inconsistency decreased, but accuracy not changed much. Why?

(Yahan): more data are labelled as “Neutral” after consistency-constrained training.

Why?

(Dan): approximate knowledge (softend logic) used here - perhaps not optimizing the
best objective. Need to find way to prevent “shifts” and to prevent correctly predicted
sampled to be predicted wrong due to consistency constraints. Perhaps add new
constraints.
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