

CIS-620 Spring 2021

Learning in Few-Labels Settings

Dan Roth Computer and Information Science University of Pennsylvania

> Meeting # 6 2/29/21

Admin

Please follow the schedule on the web site

□ You should know when you are scheduled to present

□ And discuss.

Please send your presentation before Friday, and your questions/bullets by Sunday.

Note that the presentations are not independent.

- Things that we have mentioned in earlier meetings are relevant to later papers. It would be nice if you can make the connections.
- Please follow the presentation guidelines
- Late policy (for critical surveys and project repots; not for presentations)

□ 4 Days (96 hours).

- Please note the guidelines for Project #1.
 - Choose what you want to change and announce/discuss on Piazza. (By March 8)
 - □ Presentation and final report (March 15)

Presentations:

- Please read the guidelines.
- Do not **cut-and-paste** the paper to the slides.
 - Not everything should be presented.
 - The order of the paper may not be the right order for a presentation.
- When you read the paper:
 - You can go back and forth to check things (notation, details, math).
 - You can consult outside resources if needed.
- Your audience cannot do it.
 - Your job as the presented is to teach your students the paper despite this limitation.
- Think about what you need to do.
- Experiments: Just putting a table on the slide is not useful. Instead, discuss:
 - What is the goal of this experiment.
 - How do the results in the table achieve it (or not)
 - You don't need to show all the results
- So far, I've given very long list of comments to all of you.
- My goal is that you will learn from earlier presentations, so that I will not need to do it...

Today's Papers

- Zero/Few-Shot Learning
 - □ <u>Few-Shot Text Classification with Distributional Signatures</u> (Chaitanya Malaviya)
- Semi-Supervised; Constrained Driven Learning
 - <u>Constrained semi-supervised learning using attributes and comparative attributes</u> (Rahul Shekhar)
- Weak Supervision
 - □ <u>A Discrete Hard EM Approach for Weakly Supervised Question Answering</u> (Venkata Sai Nikhil Thodupunuri)
- Partial Supervision
 - □ <u>Sentiment Tagging with Partial Labels using Modular Architectures (Lishuo Pan)</u>

Constraints Driven Learning

Constrained Conditional Models [Cheng et al.'07; Chang et al.'12]

- This objective can give rise to multiple learning paradigms.
 - □ It is mostly used in the structured learning paradigm, since the constraints relate the assignments (predictions) of groups of output variables.
- One common usage is in the semi-supervised learning setting
 - Start with a small set of labeled data
 - Incorporate un-annotated data that is annotated by the model
 - But this could be very noisy, and cause a model to drift away
 - □ "Fix" the examples annotated by the model using constraints.

Guiding (Semi-Supervised) Learning with Constraints

- In traditional Semi-Supervised learning the model can drift away from the correct one.
- Constraints can be used to generate better training data

□ At training to improve labeling of un-labeled data (and thus improve the model)

□ At decision time, to bias the objective function towards favoring constraint satisfaction.

Value of Constraints in Semi-Supervised Learning

Objective function:
$$f_{\Phi,C}(\mathbf{x}, \mathbf{y}) = \sum w_i \phi_i(\mathbf{x}, \mathbf{y}) - \sum \rho_i d_{C_i}(\mathbf{x}, \mathbf{y}).$$

Constraints Driven Learning (CoDL)

[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ'12] See also: Ganchev et. al. 10 (PR)

Notice that this is a (constrained) EM algorithm .

- Semi-Supervised; Constrained Driven Learning
 - Constrained semi-supervised learning using attributes and comparative attributes (Rahul Shekhar)

Response-Driven Learning / End-Supervision

Understanding Language Requires (some) Feedback

- How to recover meaning from text?
- Standard "example based" ML: annotate text with meaning representation

□ The teacher needs deep understanding of the **agent** ; not scalable.

- Response Driven Learning (current name: learning from denotation): Exploit indirect signals in the interaction between the learner and the teacher/environment
- [A lot of work in this direction, following Clarke et al. CoNLL'10: Driving Semantic Parsing from the World's Response]

Response Based Learning

We want to learn a model that transforms a natural language sentence to some meaning representation.

- Instead of training with (Sentence, Meaning Representation) pairs
- Think about/invent behavioral derivative(s) of the models outputs
 - □ Supervise the derivatives (easy!) and
 - □ Propagate it to learn the complex, structured, transformation model

Geoquery with Response based Learning

We want to learn a model to transform a natural language sentence to some formal representation.

English Sentence Model	Meaning Representation
What is the largest state that borders NY?	largest(state(next_to(const(NY))))
Query a GeoQuery Database.	Simple derivatives of the model's outputs

The key challenge is computational. The space of possible semantic parses is huge. Approaches focused on trying to constrain this space.

Key Challenges: Summary

• The **response** may not completely define the **intermediate representation**

- □ But the supervision is really dictated by the intermediate representation
- □ Consequently, the supervision is not completely defined
 - If the response is correct it may not completely define the supervison
 - If the response is incorrect credit (blame) assignment is still a problem
- The space of intermediate representation is very large
 - □ Computational issues
 - □ Constraints on intermediate representations should be used
- These issues are only beginning to be addressed now in the literature of End-Supervision, but were studied a lot earlier under learning with latent representations
 - Structured Output Learning with Indirect Supervision
 Ming-Wei Chang and Vivek Srikumar and Dan Goldwasser and Dan Roth, *ICML 2010*
 - <u>Discriminative Learning over Constrained Latent Representations</u>
 Ming-Wei Chang and Dan Goldwasser and Dan Roth and Vivek Srikumar, NAACL 2010

Today's Papers

Weak Supervision

□ <u>A Discrete Hard EM Approach for Weakly Supervised Question Answering</u> (Venkata Sai Nikhil Thodupunuri)

Partial Supervision

Exhaustive Annotation is often unrealistic Labels parts of sentences

E.g., what happens if the annotation only consists of:

□ [Mitch McConnell == PER; Lindsey Graham == PER]

CoDL has been used in this context too:

□ Mayhew et al. <u>Named Entity Recognition with Partially Annotated Training Data</u> *CoNLL* (2019)

Partial Supervision

□ <u>Sentiment Tagging with Partial Labels using Modular Architectures (Lishuo Pan)</u>